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The quantum-transport-equation approach, which was used to calculate nonequilibrium screen-

ing in the nondegenerate regime [Phys. Rev. B 39, 8468 (1989)],is extended to study nonequilibrium

screening in the highly degenerate regime. %e obtain an expression for the nonequilibrium electric
susceptibility y(q, co) =5n (q, co)/5U(q, co) for a degenerate system in the presence of a large static
electric field, within the relaxation-time approximation. Using the drift-diffusion equation as
modified by Thornber and Price to include gradients of the field, we show that in both degenerate

and nondegenerate systems, when the drift velocity exceeds a critical velocity U, (U, =vF/&6 and

u, =V'k&T/2m for the degenerate and nondegenerate cases, respectively), the real part of
y(q, co=0) is positiue for small q. The fact that Re[y(q, tv=0)]) 0 suggests that, with the proper
device configuration, instabilities with respect to density perturbations might be possible. Since the

large-q limit of the nonequilbrium g is the nonequilibrium Lindhard form of the susceptibility, gN„,
we scale y by gNL. The ratio y(q)/yNL(q) is a universal function, independent of both the degenera-

cy and the value of mv, ~/A (the product of the wave vector and mean free path of a carrier with ve-

locity v, ), for 0(vdlu, 5 and mv, 'r/h'&maxt1, vd/v, ).

I. INTRODUCTION

The constantly shrinking physical proportions of
solid-state devices gives rise to very high operating elec-
tric fields within the devices. These fields lead to a highly
nonequilibrium distribution of hot carriers, and therefore
the study and understanding of the physics of the carriers
under nonequilibrium conditIons is technologically im-
portant. One aspect of the physics that changes in these
highly nonequilibrium situations is that of the free-carrier
screening. Study of screening is important because it
affects the carrier scattering rates and hence the mobili-
ties and distribution function of the carriers. Further-
more, the properties of the collective modes of the free
carriers are also altered by changes in the screening.

Various attempts have been made to characterize
screening in nonequilibrium situations. ' Recently, a
method by which screening in steady-state nonequilibri-
um situations can be studied was introduced. ' In these
studies, linear screening in a nondegenerate semiconduc-
tor under application of a high electric field was studied,
within the relaxation-time approximation for the scatter-
ing term. In this paper, we extend the calculation to the
case of linear screening in a degenerate electron gas in a
high electric field, again within the relaxation-time ap-
proximation. Such situations can exist experimentally,
for example, in metals or highly doped semiconductors at
low temperatures, under application of a high electric
field.

Linear screening is quantified by the electric suscepti-
bility y(q, co) which is the ratio of the linear density
response to the total potential. It has been previously

shown that the features of the susceptibility in the
small-q and -co regimes can be understood to first order in

q and co from the conventional drift-diffusion equation
[i.e., j =n vd (F ) 8Vn—]. However, the conventional
drift-diffusion equation did not correctly give the real
part of the nonequilibrium static susceptibility at small q.
In this paper, we obtain the correct nonequilibrium static
susceptibility at small q by using a modification of the
drift-diffusion equation that was first introduced by
Thornber to describe velocity overshoot in submicron
devices. This modified drift-diffusion equation was subse-
quently studied by Price' and is further generalized in
this paper.

Using this modified drift-diffusion equation, we show
that the real part of g(q, co=0) is positiue at q-0 for
drift velocities that exceed a critical velocity u, for both
the degenerate and nondegenerate systems. Since Re
(g) )0 means that the carriers move towards the crest
(rather than the trough) of the potential, it implies that,
with the proper device configuration, the system could be
unstable with respect to density perturbations. Further-
more, the critical velocity u, provides a convenient veloc-
ity scale which permits comparisons to be made between
the degenerate and nondegenerate susceptibilities. In the
large-q region, both the susceptibilities tend towards the
nonequilibrium Lindhard forms of the susceptibility yNL,
in which the equilibrium distribution functions f, (p) in
the expression for the Lindhard susceptibility are re-
placed by the nonequilibrium distribution functions. If
we scale the actual nonequilibrium static susceptibilities
by the nonequilibrium Lindhard susceptibility over the
entire range of q, scale the drift velocities by u„and scale
q by 1/u, ~, we find that the curves obtained in this
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manner for the degenerate and nondegenerate systems
are quantitatively very similar. This seems to indicate
that the scaled nonequilibriurn g's are independent of the
degeneracy of the system, which would simplify the ex-
trapolation of nonequilibrium screening from the highly
degenerate to the nondegenerate regime. Moreover, with
this scaling procedure, we find that for a given scaled
drift velocity, curves for a wide range of scattering rates
and Fermi or thermal velocities are essentially identical.

Section II reviews our method for calculating none-

quilibrium screening and the relaxation-time approxima-
tion used for the scattering. Within this approximation,
the analytic results for the nonequilibrium susceptibility
of a degenerate system under application of a large static
electric field is shown. Section III shows how the small-q
behavior of the nonequilibrium susceptibility for both de-
generate and nondegenerate systems can be understood,
with a modified drift-diffusion equation. For both degen-
erate and nondegenerate systems, when drift velocities
exceed the appropriate critical velocities, the real part of
the small-q nonequilibriurn static susceptibility is posi-
tive. We include a brief discussion on the possibility of
obtaining instabilities due to the positive real static sus-

ceptibility. Section IV shows that when the drift veloci-
ties are scaled by this critical velocity and when the none-
quilibriurn static susceptibilities are scaled by their large-

q approximations of y, the curves that are obtained are
very similar. Section V contains a summary of the paper.
In Appendix A, we discuss the effective linear scattering
operator, which we use in constructing the modified
drift-diffusion equation when the scattering operator is
nonlinear. Appendix 8 discusses the properties of the
differential mean free path, a quantity which is used to
construct the modified drift-diffusion equation. Appen-
dix C gives the details of the derivation of the modified
drift-diffusion equation.

II. NONEQUILIBRIUM LINEAR SCREENING

f (p, x, T)= J drexp[ i (r —p/A')]

X(g (x—
—,'r, T)g(x+ ,'r, T)) . — (2.1)

By using the Kadanoff-Baym approach, the following
quantum transport equation for the Wigner function is
obtained"

In this section we briefly review the method obtaining
the nonequilibrium linear susceptibility from a quantum
transport equation. We also review the quantum
relaxation-time approximation that makes the solution to
this problem analytically tractable. We then present the
expressions for the nonequilibriurn susceptibility for a de-
generate system in an applied static homogeneous electric
field, for a parabolic band within the relaxation-time ap-
proximation.

In linear screening is due to the linear response of the
charge density n, e 'q " " to a total potential
U&e'q" "". Linear screening can be calculated by using
transport equations, such as the classical Boltzmann
equation. However, in order to observe quantum effects
arising from the wavelike nature of electrons, a quantum
transport equation such as the Kadanoff-Baym equation
has to be used. '" In this paper, the latter approach is
utilized. While the quantum approach is somewhat more
complicated than the classical approach, it must be used
if nonequilibriurn effects on inherently quantum effects
such as Friedel oscillations are to be seen. The classical
result can always be recovered simply by letting A' go to
zero.

In Ref. 7, the linear charge-density response is calcu-
lated from the Wigner distribution function

+ f(p, x, T)+i J drJ,e' t' t''" "[U e(x+ ,'r, T) Ue(x ——,r, T—)]f(p—', x, T)p i( — ') rib
m

=S[g,g,X,X ], (2.2)

where U,z is the sum of the external potential and the
Coulomb potential of the carriers, S[g',g', X,X ] is

the quantum scattering term, and X,X are the self-
energies. (In this paper, V always refer to the spatial
derivative. Derivatives with respect to momentum are
denoted by 8/Bp. ) This transport equation is the basis
for the calculation of nonequilibrium screening. To re-
capitulate the calculation procedure, it is briefly given as
follows: (i) For the nonequilibrium situation being inves-

tigated, set up and solve the quantum transport equation
to obtain the "unperturbed" Wigner distribution func-
tion fo(p). (ii) Linearly perturb the transport equation
with an additional small sinusoidal potential
U,e(x, T)= U&e' '* "" to produce a response
f&(p)e'q'" "" in the Wigner function and solve for

f, (p). (iii) Integrate f, (p) with respect to p to obtain n, .

f(p, x) —f„(p, )u+&p(~ ))
Slf](p x)= (2.3a)

f,q(p, p+6p(x)) =
exp[P[e(p) —p —5p(x)]] +1

(2.3b)

The ratio n, /U, gives y(q, co), and the dielectric constant
e(q, co) =1—4m.e y(q, cu)/q .

Some approximation for the scattering term in the
transport equation has to be made in order to solve the
problem analytically. The relaxation-time approximation
is widely used as a simple (albeit rough) description of
scattering processes. In the classical Boltzmann equa-
tion, the scattering term in this approximation takes the
form
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where P= I/ks T, s(p) is the carrier kinetic energy, and p
is the global chemical potential. 5p(x), the change in the
local chemical potential, is determined by local particle
conservationf, f(p, )=f, , f„(p,p+5p( )) .

4m. A 4~%
(2.4)

Since the classical relaxation-time approximation does
not take the wavelike nature of the carriers into account,
a quantum analogue of this approximation that can be
used in the quantum transport equation must be found.
By analogy with the classical relaxation-time approxirna-
tion [Eq. (2.3)], the quantum approximation models the
collisions by a constant-rate relaxation of the (reduced
one-particle) density matrix p to the (reduced one-
particle) local equilibrium density matrix '

1

exp[13(s —p —5P)]+1
(2.5)

Note that the functions s(p) and 5p(x) in Eq. (2.3b) have
been replaced by the operators f and 5p which are diago-
nal in the momentum and coordinate representations, re-
spectively. As in the classical case, 5p(x) =(xl5Plx) is
obtained from the particle-conserving condition,
(xlplx) =(xlp&„, lx). It can be shown that within this

approximation, a small static density perturbation n& of
wave vector q results in a change in the chemical poten-
tial 5p(q) of

n],5p(q)=-
yL(q, 0)

(2.6)

This result is consistent with the argument that, at equi-
libriurn, the susceptibility is given by the ratio of the
change in density and the change in local chemical poten-
tial. ' Equation (2.6), together with an expansion of
pf zeq allows us, in the case of small density perturba-
tions, to construct a scattering term which includes the
wavelike nature of the carriers.

We treat the problem where the carriers are acted
upon by a strong static homogeneous electric field pro-
ducing a force Fo on each carrier, in which case the "un-
perturbed" transport equation within the relaxation-time

approximation is

'fo fo(p) —f„(p)' ap
(2.8)

(In this paper, the subscript "0" always refers to quanti-
ties in the presence of the static homogeneous electric
field. ) The result for the linear density response to the to-
tal potential, for a parabolic band and with the relaxation
time approximation, is

where gL is the equilibrium Lindhard expression for the
susceptibility

f, (p+A'q/2) —f,~(p —Rq/2)
xi(q ~)=

4~3&3 s(p+Aq/2) —s(p —fiq/2) —fico

(2.7)

1 ~dt
n] 1— —exp

y, (q, o) o

/Foqt' t dp . t+i cot —— exp —i—p q2m 4~$ m

f, (p+A'q/2) —f,q(p —fiq/2)

Aq p/m

iU&

0
t exp

iFo qt t dp t

2m r 4~'g' m
+i~t —— f exp —i—p q [fo(p+fiq/2) —fo(p —Aq/2)] . (2.9)

In Ref. 7 we evaluated Eq. (2.9) with f,~(p) equal to the Maxwell-Boltzmann distribution function. In this paper we
evaluate Eq. (2.9) with f, (p) equal to the Fermi-Dirac distribution at zero temperature,

f,q(p)=e(p —p~),
where pF is the Fermi momentum.

Substituting Eq. (2.10) above into Eq. (2.9), one obtains the following relation

(2.10)

n, 1—
U]

lx, «, 0)l
dg exp

y'(q, 0)qvFr o

lwd CP cow y+i y ——
27

(q/2) —1

2
1+—y —ci 1 —+y +

2 2

1 ' cos
2g

1++ y +cos 1 ——y
q

2 2

1+ 1 ——sin 1++ y + 1+—sin 1 —+ y
2qy 2 2 2 2

= —lyz(0, 0)l f dyexp
. co~ y+i y ——

2r
sin(qy) —

qy cos(qy) 2sin(q y/2)
1+iwd. qy (qy)'

where wd =pd /pF =Foi/pz is the scaled drift momentum, ~=pF~/mA, and q=q/qF, and the + is + for q & 2qF and
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—for q) 2q~. The function ci(x) is the cosine integral function, ' and ~yI (0,0)~ =(mq~/A' m )=(3no/mv~) is the
magnitude of the equilibrium long-wavelength static Lindhard expression for a metal (no is the carrier density). The
susceptibility p = n

&
/U[ can be obtained from this equation.

In the limit where A~O, the above equation reduces to one which can be obtained from the classical Boltzmann equa-
tion. The equation is

1 ~ dx slnx1— exp
U, 0 s x

1Wd 'SX

2s
. $7X X+1

s s

= —iyI (0,0)i I dx exp
0

1Wd 'SX

2s
. NTx x slnx x cosx 1+l

1+lxs w

where s =qvF ~, and s is the unit vector in the s direction.
Since these equations are somewhat complicated, it

would be advantageous to understand them in certain
limits. In the large-q limit, when the effects of the
scattering and of the homogeneous electric field Fp are
negligible over the period of a wavelength, we have
shown that the susceptibility approaches the nonequili-
brium Lindhard form (which is appropriate for ballistic
carriers in the absence of a homogeneous field). ' In the
small-q and -e regime, one would expect that
hydrodynamic-type equations should describe the screen-
ing. " Here, one would expect the conventional drift-
diffusion equation (i.e., j =nvd(F) DVn—) would com-

pletely describe the small-q and -co regime, but this is not
correct. As shown below, a slight modification to the
conventional drift-diffusion equation is needed in order to
completely describe the nonequilibrium y(q, co ) in this re-
gime.

III. QUASISTATIC SUSCEPTIBILITY
AT SMALL WAVE VECTOR:

CRITICAL VELOCITIES

In this section, we first note that the conventional
drift-diffusion equation does not fully describe the none-

quilibrium static susceptibility at small q. We then show

that the drift-diffusion equation as modified by Thornber
and Price, ' and further generalized here to include the
effects of degeneracy (henceforth referred to as the
Thornber-Price drift-diffusion equation), fully describes
the behavior of y(q, 0) at small q. The Thornber-Price
drift-diffusion equation is derived in the appendices using

the Boltzmann equation. ' Then, using this Thornber-
Price drift-diffusion equation, we show that within the
relaxation-tin1e approximation, the real part of the none-
quilibrium static susceptibility is positive for small q for
drift velocities greater than a critical drift velocity v, .
This critical velocity is vz/&6 for degenerate systems
and Qks T/2m for nondegenerate systems, and provides
a convenient velocity scale for making comparisons of the
susceptibilities of degenerate and nondegenerate systems.

Figure 1 of Ref. 6 shows that, at small wave vectors
and in quasistatic situations, the susceptibility can, to
first order in q and co, be described by the conventional
drift-diffusion equation. However, we also saw that the
conventional drift-diffusion equation did not exactly
reproduce the real part of the static susceptibility and
that another term was needed in the drift-diffusion equa-

A. Linearized scattering operator S&;,

In a nondegenerate system, the scattering operator S is
a linear operator. Therefore, when the distribution func-
tion deviates from fo(p) by 5f(p), the scattering opera-
tor changes linearly with 5f(p)

S[f,+5f 1
—S[f,]=S[5f](p) . (3.1)

When the system is degenerate, or when carrier-carrier
scattering is present, the scattering operator is not linear
in f(p). However, if the deviations 5f(p) of the distribu-
tion function from fo(p) are small, one can linearize the
scattering operator around the steady-state fo(p). '

Then, the change in the scattering operator due to a
small deviation 5f(p) away from fo(p), is given by

(3.2)

where S&;„ is a linear operator. Details and examples are
given in Appendix A.

tion to achieve agreement with the results obtained via
the Boltzmann equation. The correction to the drift-
diffusion equation was introduced phenomenologically by
Thornber and was subsequently derived from the
Boltzmann equation by Price. '

Price showed that for carriers in a homogeneous static
electric field producing a force Fp, when there is no
carrier-carrier interaction and no degeneracy effects in

the scattering term, one can write down an exact relation
for the static linear response of the drift velocity 5u(x) to
a force perturbation 5F(x), and spatial gradients of the
density Vn(x) and distribution function Vf(p, x). ' The
terms that depend on 5F and Vn are the drift and
diffusion terms of the conventional drift-diffusion equa-
tion, respectively. The third term, which depends on Vf,
is the correction to the drift-diffusion equation.

We review the formulation and extend it to include
temporal variations and the possibility of a nonlinear
scattering operator, so that we can use it to calculate
screening in both nondegenerate and degenerate systems.
In dealing with small variations in the distribution func-
tion around the steady-state distribution function in sys-
tems where the scattering operator is nonlinear, we find it
convenient to define a linearized scattering operator S&;„.
S&;„ is described in the next subsection and in Appendix
A.
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B. DifFerential mean free path I'(p )

In the equation that Price obtained relating 5u to
5F, Vn and Vf, ' the coefficients multiplying 5F, Vn

and Vf, all depend on a quantity which Price calls the
"differential mean free path", I'(p). All the coefficients
in the Thornber-Price drift-diffusion equation that we ob-
tain below depend on I'(p). In this subsection, we de-
scribe the physical meaning of I'(p) when the scattering
operator is linear [A. nonlinear scattering operator com-
plicates the interpretation of I'(p) a little (see Appendix
B).]

The "differential mean free path" I'(p) (in the case
where the scattering operator is linear} is the nonequili-
brium generalization of the equilibrium concept of the
mean free path, 1(p}. The equilibrium mean free path
1(p) is the average distance that a particle with initial
momentum p moves relative to the lattice before it
thermalizes. That is,

since v(t) approaches vz as t~ ce. To define an
equivalent finite "mean free path" for a carrier in the
presence of a static electric field, the overall drift of the
carriers must be subtracted out; therefore, one defines the
"differential mean free path", viz.

I'(p)= f dt v(t) vz—. (3.&)

Hence, I'(p) is the difference between the average dis-
tance that a particle with momentum p moves and the
distance that the system as a whole drifts. In other
words, I'(p) is the mean free path of a particle with
momentum p in the reference frame that is drifting at ve-

locity vz.
In Appendix B, we give a mathematical definition of

I'(p) and discuss the interpretation of I'(p) when the
scattering operator is nonlinear.

1(p)= f dt v(t),
Q

(3.3}

where v(t) is the velocity of a single particle which had
momentum p at t =0, and where the long overbar
denotes averaging over many of these particles.

When a static electric field Fo is applied, the carriers
drift with an average velocity vz(Fo). For this system,
the mean free path as defined in Eq. (3.3) will be infinite,

I

C. Beyond the conventional drift-difFusion approximation:

The Thornber-Price drift-difFusion equation

The linear-order change in the drift velocity 5u in

response to a small (spatially and temporally dependent}
change in the force term of the Boltzmann equation is
(see Appendix C)

Vn(x, t) f v(p)l'(p)go(p)dp —f Vg(p, x, t) v(p)1'(p)dp
no

5u(x, t) =5F(x, t) f I'(p)go(p)dp-a

Bp

f I'(p)go(p)dp f I—'(p) (p, x, t)dp+ f S„„[go](p)l'(p)dp,
no

(3.5)

Bg BF ~go Bn

dt Bt BF Bt on

(3.6)

where the derivatives with respect to F and n are evalu-
ated at FQ and no, respectively. This would clearly be
valid only in the small wave vector (e.g. , qvFr, qvzr 5 1 in
the degenerate case) and quasistatic (co~ ~ 1) regime,
since it assumes that the distribution function at any
point x is dependent only on the local density n(x) and
the local electric force F(x). Using these approximations
in Eqs. (3.6), and the result [see Appendix 8, Eq. (B19)]

go(P} ~go, ~fof I'(p) + (p) dp—= f I'(p) (p)dp=o,
no Bn Bn

(3.7)

where g(p, x, t) =f(p, x, t)/n (x, t), is the distribution
function normalized by the local density and go(p} is the
normalized steady-state distribution function in the pres-
ence of the static electric field.

To linear order, Eq. (3.5) is exact, but unless one solves
for the perturbed transport equation, the terms Vg and
Bg/Bt are unknown. A further approximation would be
to assume

~g0 ~go
Vg =VF +Vn

I

Eq. (3.5) becomes

5u=5F.f I'go(p)dp — fv(p)l'(p) (p)dp
a, Vn ay,

ap ' n, Bn

BF) &go(P )-~a: f
ij i 1

aF a
~ f I'(p) (p)dp

+ " f Ss.[go](p)l'(p)dp . (3.8)
no

This is the Thornber-Price drift-diffusion equation. The
first two terms are the drift and diffusion terms of the
conventional drift-difFusion equation, whereas the other
terms are corrections to the drift-diffusion equation
which turn out to have important consequences in the be-
havior of the long-wavelength nonequilibrium susceptibil-
ity.

D. The Thornber-Price drift-diffusion equation

within the single-rate relaxation-time approximation

In the single-rate relaxation-time approximation in a
parabolic band, the differential mean free path is (see Ap-
pendix B)
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I'(p) = —
vg

m
(3.9}

Vy

where v&=F0~/m. With this, and the expression for
&&;„[go] (see Appendix B), all the coefficients of Eq. (3.8)
can be calculated. We do this for both the degenerate
and nondegenerate systems in a parabolic band, with the
electric force vector Fo in the z direction (x, for i =1,2, 3
are the unit vectors in the x, y, and z directions, respec-
tively}

75u=5F ——
m

ugr
2 +V Fx3

aF
Bx3 A

—X
BF 1 r}n

(2u, +5;su~)rx;,
m dt; np Bx;

(3.10)

where u, =up/&6 for the degenerate case and

u, =
—,'u, h

=
—,'+2ks Tlm for the nondegenerate case. We

show in the next subsection that U, corresponds to the
drift velocity at which Re[y(q -0)]becomes positive.

We compare Eq. (3.10) with the form [Eq. (3.11)] that
Price originally wrote the equation [Eq. (3) of Ref. 10]
where the perturbations of field and density were as-
sumed to be only in the direction of F0,

FIG. 1. Explanation of the sign of the length coefficient
L {F0). In a slowly varying inhomogeneous electric field as
shown above, the carriers at point A on average have a higher
drift velocity than carriers at point B {assuming dU&/dF & 0). A
small fraction of the carriers will travel ballistically from A to
B. Since these ballistic carriers arriving at B originated from A,
a region with a higher drift velocity, their presence should in-
crease the average velocity of the carriers at B. Since the change
in the average velocity due to the field gradient is given by
[u„L(Fo}/F~](dF/dx} [cf. Eq. (3.11)], to obtain a positive
change with dF/dx & 0 {asat point 8), L (Fo) must be negative.

L (Fc) dF
u = u (F0+5F ) 1+

0 z

D(F0} dn

n dz
(3.11)

E. Possible instabilities

On comparison of Eqs. (3.10) and (3.11), we see that the
field-dependent diffusion coefficient D (Fc ) is given by

D (Fo)=(2v, + vz )r . (3.12)

The longitudinal diffusion constants increase with in-
creasing field because the distribution heats up. Roughly
speaking, since the diffusion coeScient is proportional to
the effective temperature of the carriers (by the Einstein
relation), heating the distribution by increasing the field
will increase the diffusion constant. '

By comparing the field-gradient terms in Eqs. (3.10)
and (3.11) we see that the length coefficient defined by
Price in Eq. (3.11) is given by

Fcr
L (Fo)= —3 = —3uzr (3.13)

in both the degenerate and nondegenerate cases of our
calculation. Note that we find L (Fo) to be negatiue
within our single-rate relaxation-time approximation. In
this approximation, the fact that L(FO)(0 can be ex-
plained by arguing that a small fraction of carriers travel
ballistically from regions of higher field to region lower
field (see Fig. 1). In contrast, Artaki concluded that the
L (F) is positive from a Monte Carlo simulation of n-type
silicon. It is possible that in his simulation, because of
problems with obtaining suScient statistics, Artaki did
not go to small enough wave vector and so was probing
the regime where the Thornber-Price drift-diffusion equa-
tion is not valid.

We can use Eq. (3.10), along with the continuity equa-
tion V j+r}n /Bt =0 to calculate the nonequilibrium sus-
ceptibility. The expression for yTp(s, O), the nonequilibri-
um static susceptibility obtained from the Thornber-Price
drift-diffusion equation, is

3l lug
yTp(, 0)= —

lyL (0,0)
igiv~ l2+(1+ iv ~ l2)Q2

(3.14)

where Q =qv, r, tv& =v&.Q/u, (Q is the unit vector in the
Q direction), and yL(0, 0) =no/(2mu, ) is the equilibrium
static susceptibility at q =0. The Q term in the numera-
tor of Eq. (3.14) is a direct result of the field-gradient
terms of Eq. (3.10). Expanding the denominator of Eq.
(3.14) in powers of Q/iv& gives (to second order in Q)

2ly, (0,0}l
Xrp(Q 0)= (3.15}iQ+2Q ivq-

Wg

This equation is consistent with those obtained from ex-
panding the nonequilibrium susceptibilities derived from
the Boltzmann equation [Eq. (2.12) in this paper and Eq.
(3) in Ref. 6] in powers of q.

From Eq. (3.15), we see that the sign of the real part of
the yTp(Q, O) goes from negative to positive when the
scaled drift velocity wz exceeds 1. This sign change has
two implications. First, this critical velocity U,

( u UF /i 6 for the degenerate case and v, =v,h l2
=QksT/2m in the nondegenerate case) at which the
real part of yTp becomes positive (at q -0) sets a natural
velocity scale with which to compare nonequilibrium sus-
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ceptibilities of the degenerate and nondegenerate regimes,
as discussed in the next section. Second, a positive real
part of the susceptibility implies that the carriers tend to
move towards the crest (rather than the trough) of the po-
tential (recall that the susceptibility is defined by
y=n, /Ui ). Since carriers at the crest of the potential
will enhance rather than screen the potential, one can
speculate that with the proper device design, this system
might be coaxed into becoming unstable with respect to
small density perturbations, by application of a
sufficiently large electric field so that the drift velocity of
the carriers exceeds U, . '

Finally, note that a positive real part of the susceptibil-
ity in the Eq. (3.15) is due to a sufficiently large negative
imaginary coefficient of the Q terms in the numerator of
Eq. (3.14). The Q term itself, as noted above, is generat-
ed by the electric-force-gradient term, while its negatiUe
imaginary coefficient is due to a negati Ue length
coefficient I.(Fo). Therefore, to produce a region of posi-
tive real harp(Q, O), a sufficiently large negative I. (Fo) is
required.

- (a)

10'—

10-1

'Iqtm Ibal

phase of these scaled curves are plotted as a function of q
in Fig. 2 for Ud =0.8U, and in Fig. 3 for vd =4v, . The
wave vector has been scaled by U, ~, and we show curves
with mu, r/fi= ac (the classical limit) and mu, r/Pi=0 I.
The parameter mU, ~/A is the product of the wave vector
mu„/A' and the mean free path u, r of a carrier with veloc-
ity U, .

IV. SCALED NONEQUILIBRIUM
STATIC SUSCEPTIBILITIES FOR

DEGENERATE AND NONDEGENERATK SYSTEMS

In the previous section, we showed that the real part of
the nonequilibrium static susceptibility at q -0 was posi-
tive for drift velocities exceeding the critical velocities
u, = uF /&6 and u, =u,h/2 for degenerate and nondegen-
erate systems, respectively. The U, for a degenerate or a
nondegenerate system provides a natural velocity unit for
scaling. In this section, we show that when the nonequili-
brium static y's are scaled by the nonequilibrium
Lindhard expression of susceptibility, gNL, the velocities
are scaled by U, and the lengths are scaled by U, 7., the
scaled g's for the degenerate and nondegenerate systems
are remarkably similar.

A. Scaled susceptibility g/y&&

10~
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The nonequilibrium static susceptibilities in the large-q
limit, when the wavelength becomes shorter than the
mean free path and the energy gained by carrier over the
wavelength is negligible compared to the energy it
possesses, tend to the nonequilibrium Lindhard form '

dp fo(p+i)lq/2) —fo(p —iriq/2)
XNL(q cv

4a A Aq-p/m —i 0+

(4.1)

where the fo(p)'s are the nonequiiibrium distribution
functions. Since the true g approaches gN„at large q, we
divide the true y by gNL, so that at large q the scaled sus-
ceptibility y/gNL approaches unity. A comparison of the
scaled curves with the same ud/U„but for different de-
generacies and different ~'s, can then be made.

The y(q, co=0) are evaluated from the quantum trans-
port equation, i.e., Eq. (2.11) for the degenerate case and
Eq. (32) of Ref. 7 for the nondegenerate case, and then di-
vided by their respective g&L's. The magnitude and

FIG. 2. The ratio of the nonequilibrium static susceptibility

g(q, co=0) (as calculated from the quantum transport equation
within the quantum relaxation-time approximation) to the none-
quilibrium Lindhard form of the static susceptibility gNL (where
the nonequilibrium fv(p) s are inserted into the equilibrium
form of the Lindhard function), for degenerate and nondegen-
erate systems, at drift velocity v„=O.gu, I where v, is the
minimum drift velocity at which Re[y(q-~O, co=0)] is posi-
tive). Since this ratio is a complex quantity, its magnitude of
the ratio is shown in (a), and the phase of the ratio is shown in

(b). The solid lines are for the degenerate case, and the dashed
lines are for the nondegenerate case. The bold-face hnes corre-
spond to the classical Boltzmann equation case (mu,'~/R= ~ ),
while the light-face lines correspond to mu, ~/A=O. l. The wave
vectors qqt u 7 mu ~/A for the mu ~/6=0 1 case, and

q„„v,r=maxt I, vd/v, . ) are indicated. In either case, the curves
for these scaled nondegenerate and degenerate susceptibilities
are very similar and seem to imply some kind of "universality"
of the nonequilibrium g's, independent of the degeneracy.
Furthermore, all curves with mv, r/fi~ maxI I, v„/v, ) are al-
most indistinguishable from the classical curve.
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10'

Boltzmann calculation, and gN„ is the susceptibility for a
collisionless classical plasma

&(
—p) —f dp q'~f (p)/~p

4' A q-v —io
(4.2)
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FIG. 3. Same as Fig. 2, except for vd =4U, . Again, the solid
lines are for the degenerate case and the dashed lines are for the
nondegenerate case; and, the bold-face lines correspond to clas-
sical Boltzmann curve mU, ~/A= ~, while the light-face lines
correspond to mv,'~/%=0. 1. Again, the curves for the scaled
nondegenerate and degenerate susceptibilities are very similar,
and all curves for mv,'i./ivi& maxI 1, v„/u, I are almost indistin-
guishable from the classical curve.

-0.4
102 102

Figures 2 and 3 display the remarkable similarity be-
tween the scaled degenerate and nondegenerate static sus-
ceptibilities of equal ud lu, and mu, rifi. This similarity
persists up to ud/u, =5, the highest value tested. We
speculate that the properly scaled susceptibilities will also
be similar for a fermion gas at any temperature (i.e., full
degeneracy to nondegenerate regimes).

B. Universality for mu, i /A + max t 1, vz /u, I

In addition, for a given ud /u„all curves of y/gNL with

mu, rifi & max( 1, vd /u, I are almost indistinguishable
from the classical (i.e., mu, rifi= OD) y/yNL curve. This
indistinguishability means that, over an extremely wide
range of scattering rates and thermal or Fermi velocities,
the scaled y/yNL is equal to a universal curve
(y/yNL)„„;„which is determined classically That is, in.

(g/yN„)„„;„, the y is obtained from the classical

which is the classical limit of the nonequilibrium
Lindhard susceptibility Eq. (4.1).

The argument for this universality of y/yNL for
mu, r/A'& maxI 1, u&/v, I is as follows. We begin by in-

troducing two characteristic wave vectors (which depend
on the system and on the drift velocity), qz, and q»i.
The first of these, q, is the largest wave vector at which
the classical description of the carriers is valid; that is,
for q & q, , the quantum (i.e., wave) nature of the car-
riers plays an important role. Hence, for q &q, , the
classical Boltzmann equation and the classical collision-
less plasma susceptibility are good approximations for
determining y and yNL, respectively. This implies that
for q &q, , the scaled g/gNL curve is essentially identi-
cal to the universal curve (g/yNL)„„;„[since (y/gNL)„„;„
is given by the classical y and AN&]. We show below that
in the relaxation-time approximation q, is given by the
thermal or Fermi momentum. For q & qqt~ this argu-
ment makes no claim about y/yNL; that is, for q & q~,
y/yNL may or may not be universal. The universality of
g/yNL for large q is determined by the second charac-
teristic wave vector, q»~.

Over short distances, a carrier in a scattering medium
under an applied field can be considered to be moving
ballistically. The criteria for the validity of approximat-
ing the motion of the carrier over some distance by ballis-
tic motion are that, over that distance (1) there is a low
probability that the carrier is scattered and (2) the carrier
does not gain a significant amount of energy from the
field. For a given system and drift velocity, there is a
largest length lb, ~

for which both of the above criteria
hold for a typical carrier. For qlb, &) 2~, most carriers
move ballistically in the (wave)length 2ir/q. Since the
nonequilibrium Lindhard yN„ is the susceptibility for
ballistic carriers with a distribution fo(p) (recall in the
derivation of the Lindhard susceptibility, the carriers are
assumed not to scatter, and there is no applied homo-
geneous static field ), then for ql»i & 2ir, y=yNL because
most carriers are traveling ballistically over the distance
of the wavelength. We define q»&=2~/lb, &. Then, for
q & q»~, y/gNL= l for a11 systems, and hence is universal.
Note that for q &q»&, this argument makes no claim
about g/gNL; that is, for q & q», , y/gNL may or may not
be universal.

Since the scaled susceptibility y/yNL is equal to the
universal (y/yNL)„„;„ for q &q, and q &q»i, it follows

that if q»~ &q, , then the scaled curves are equal to

(y/yNL)„„, „for all q. Therefore, the y/yNL is universal if

q»& &q,~. Below, we give estimates for both q»& and

qqt for the relaxation-time approximation and show that
in this approximation q»~ & q, is equivalent to
mu, r/A&maxI1, vdlu, J.

To estimate q, , we look at Eq. (2.9), the equation re-

lating the density response to the perturbing potential in
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the relaxation-time approximation. The classical limit of
Eq. (2.9) is obtained by expanding the distribution func-
tions in powers of Aq and keeping only the first nonvan-
ishing term, i.e.,

1O'

1O-'

f, (p+iiiq/2) —f, (p —A'q/2) =iiiq.

pfo (p+ iiiq/2) —fo( p —iriq/2) =Rq

(4.3)
C)

II

1 P-2

When is this valid? Actually, since these terms are in-
tegrated over p in Eq. (2.9), the real question is, when is it
valid to keep only the first term in the expansions of the
projections of the distribution functions onto the q axis

dpi
eq, o(p

~~

) i i feq, O( pi. &p l ) &

4m A
(4 4)

(where pj and
p~~

are perpendicular and parallel to q, re-

spectively); that is, when can we approximate

dI',
F,u(pll+fiq/2) F(peal iiiq—/2) =A'q

103

1O-4
1 0-2

100

- (b) v, =4v,

10' 1O'

qvc

101 102

dI' p
Fo(p~~ +Aq /2) Fo(pi flq/2) Rq

(4.5) 1P-1

qqtm =pF. ih/~ . (4.6)

This approximation is valid only if the second- and
higher-order terms of the expansion of the projected dis-
tribution functions are small, or equivalently, when

fiq/p~, h & 1 (where p~ and p,„are for the degenerate and
nondegenerate cases, respectively). Therefore, as long as

q &pF th/A', the classical description is valid. Therefore,

qtm is roughly given by

C)
II

102

103

&o~
10~ 10-1 1PO )(

qvct q

101 102

Below, we give a rough estimate for the wave vector
qb, &

at which the criteria for ballistic transport previously
given breaks down. The first criterion, that scattering
probability is small over the wavelength, is roughly (i.e.,
ignoring factors of order 1) quantified by

qVF th7 ~ 1 (4.7)

The second criterion, that the energy gained from the
field is small over the wavelength, is roughly given by

Fp
~ PlVF th

q

Substituting mud =For into Eq. (4.8) gives

qVF, th+ Vd /VF, th

(4.8)

(4.9)

Since qb, ~
is defined as the wave vector where both the

above conditions are satisfied, we find

qb, ]uF,hi. =maxI 1, ud /vF, hI (4.10)

Equation (4.10) can also be obtained by looking at Eq.
(2.12). In Eq. (2.12), if q )qb, i, the terms in the exponent
corresponding to scattering and acceleration from the
field (the —x /s and i wd. sx /2—s terins, where

wd=pd/PF and s =quFr) are small, and therefore one
obtains the susceptibility for ballistic carriers.

FIG. 4. The imaginary part (dashed lines) and absolute value
of the real part (solid lines) of the degenerate, nonequilibrium
static susceptibility, y(q, co=0)/~yi (0,0)~ for (a) vd =0.8v, and
(b) vd=4v„calculated from the quantum transport equation.
The bold-face lines are for the classical Boltzmann case
(mu, r/A'= 00), and the light-face lines are for mu, r/8=0. 1.
For q ~ q«(where q« is the wave vector at which the classi-
cal description breaks down due to quantum effects resulting
from the wave nature of the carriers) the mu, 'r/%=0. 1 curves
are essentially indistinguishable from classical Boltzmann curve.
The wave vectors qqt v r mu, r/A for the mu, r/8=0. 1 case,
and q»~ v, r =max t I, u„ /u, ] are indicated on the figures. For
q & q«, y falls off quickly, since it tracks the rapidly decreasing

In the small-q limit, when qu, i.~minIv, /ud, I/&6I (i.e.,
the wavelength is much smaller than the equilibrium mean free
path, or the drift mean free path) and q q«(not in the quan-
turn regime) then one can understand g from a "hydrodynamic"
type of equation (the Thornber-Price drift-diffusion equation).
In the large-q regime, when qu, r ~ qb, ~

(carrier does not scatter
or gain significant amount of energy within a wavelength) then
the susceptibility approaches the nonequilibrium Lindhard
form, which is the susceptibility for collisionless carriers in the
absence of a field. Note that in (a), since vd (u„ the real part is
always negative, whereas in (b), since ud & u„ the real part is pos-
itive for small q, and then becomes negative as q increases.
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From Eqs. (4.6) and (4.10), we see that the condition
for obtaining the universal curve q»] &qq, is given by

mu~, h 7/fi & max {1, ud /u~, „J. Since v, =vz/+6, u, h /2,
and the arguments given above are only "order of magni-
tude" type of arguments, we replace v~,h by u„which
gives the condition for universality

80

mv,'r/X max{1, u, /u, t . (4.11) ) 40—
CT

C. Breakdown of universality for mu, ~/il & max {1, vd /u, ]

We now discuss what happens when the condition for
universality fails. We illustrate the behavior of y/yNL for
mv, r/Pi&1 in Figs. 4(a) and 4(b). In these figures, we
show the the static susceptibilities (scaled only by the
static-equilibrium susceptibility ~yL(q =0)~, i.e., scaled
only by a rea! positive constant) for the degenerate case,
for mv, r!fi= ~ (bold line) and mv, r/A'=0. 1 (thin line),
with ud =0.8v, [Fig. 4(a)] and vd =4u, [Fig. 4(b)]. In the
scaled wave-vector unit qu, ~ used for the x axis, the posi-
tion of the wave vectors qqfm and q»~ are given by

qq, u, r=(mu, r/A) and q b~ ,ur=ma x{1, vd!u, j. The

q, for the mu, rifi=0. 1 case (thin line) and qb, ~
are

shown on the figures.
We see that for both the drift velocities shown, the q

dependence of the real and imaginary parts of the
mv, r/fr=0. 1 curves track the classical limit curve
(mv, ~/A'= ~ ), until approximately q, . For q & q,
the y for mu, ~/6=0. 1 fall sharply. This behavior of y
for q &qq, (-qz) can be explained by noting that the
carriers cannot respond to spatial disturbances for q
greater than roughly the diameter of the Fermi surface.
The behavior of yNL as a function of q gives a rough indi-
cation of the e6'ect of the diameter of the Fermi surface
on y. For q ~q, , the gN„decreases, and the true g
tracks it and also decreases for q ~

qq, . However, the
scaled susceptibility y/yNi, being the ratio of y to yNL,
does not decrease. In fact, from Figs. 2 and 3, we see that
for q & qq, , the magnitude scaled susceptibility for
mu, vI%=0. 1 rises above the universal curve and then
saturates (at 1) at a q lower than qb„(which is where the
universal curve saturates). The curves for the phase
behave in a similar fashion. At this time, we do not have
an explanation for this behavior.

D. Wave-vector range for Re(y) & 0

Note that in Fig. 4(a), when ud & v„ the real part of y is
always negative, whereas in Fig. 4(b), where ud &u„ the
real part of g changes from positive to negative with in-
creasing q, which is consistent with the definition of u, .
To make a further comparison of the degenerate and non-
degenerate systems, the q at which the real part of the g
equals zero is plotted as a function of ud /u, for both sys-
tems in Fig. 5. Both curves are similar for small ud/u„
but for very large ud /u„ the nondegenerate system has a
larger wave-vector range where Reh'(co=0)] is positive.
We might conclude from this that a drift instability is
easier to attain for a nondegenerate system than for a de-
generate system at high drift velocities, but these drift ve-

20—

0
0 10 15 20

Vd/Vc

25 30 35

FIG. 5. The wave vector at which the real part of the none-

quilibrium static susceptibility Re[y(q, co=0)] goes through

zero, as a function of the drift velocity, for degenerate (solid

lines) and nondegenerate (dashed line) systems, for the classical

Boltzmann case (mU,'~/A= ~ ). The Ud has to exceed a critical

drift velocity v, (where v, =U,h/2 for nondegenerate systems

and u, =l/+6ur for degenerate systems), before Re[y(co=0)]
exhibits a change in sign from negative to positive with decreas-

ing wave vector. For vd & u„Re[y(co=0)] is neuer positive for

any q. The drift velocities and wave vectors for both curves

have been normalized by their respective U, 's.

locities are so high that they are probably practically
unattainable.

V. SUMMARY AND CONCLUSIONS

The method previously applied to a nondegenerate sys-

tem ' is used here to calculate the nonequilibrium sus-

ceptibility for free carriers in a static electric field in a de-

generate system. We extended the Thornber-Price drift-
difFusion equation (which includes an electric-field-
gradient term) to include effects of degeneracy and used
this equation to explain the behavior of the nonequilibri-
um susceptibilities at small q and co. For drift velocities
above a critical drift velocity v, (equal to —,'u, „and
(I/v 6)vz for the nondegenerate and degenerate systems,
respectively), the real part of y(q, co=0) is positive for
small q. This critical velocity v, sets a convenient veloci-

ty scale for comparisons of the screening of the degen-
erate and nondegenerate systems. The fact that Re[y] & 0
may result, with the proper device configuration, in a sys-
tem that is unstable to density perturbations under appli-
cation of a large electric field.

When the nonequilibrium static susceptibilities for the
degenerate and nondegenerate systems are scaled by their
respective nonequilibrium Lindhard susceptibilities and
the drift velocities and wave vectors are scaled by u, and

u, ~, respectively, the curves of the scaled y's for both
look remarkably similar. Furthermore, all scaled curves
with mu, rifi & max{1, ud /u, I are essentially identical.

One possible extension of this work is to calculate the
nonequilibrium susceptibility at arbitrary degeneracy, to
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determine if our conjecture that all scaled g's indepen-
dent of degeneracy is in fact correct. Another extension
would be to treat cases with more realistic scattering
mechanisms to see if the features in the susceptibilities
shown in this paper and our previous papers still persist
when we go beyond the single-rate relaxation-time ap-
proximation. Both Monte Carlo and other numerical
approaches could be used to study screening in none-
quilibrium situations.
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APPENDIX A:
LINEARIZKD SCATTERING OPERATOR

In a nondegenerate system, the scattering operator is

S[fo](p)= f dp'[W(p;p')fo(p') —W(p';p)fo(p)],

(A l)

where W(p', p) is the scattering rate from state p to state
p'. This scattering operator is linear in fo(p), and hence
the change in the scattering term due to a change 5f(p)
in the distribution function is

S [fo+5f ] S[—f, l=S[5f] . (A2)

When a system is degenerate, or when carrier-carrier
scattering is present, the scattering operator is nonlinear.
For example, in the degenerate case, the scattering opera-
tor is

S [f0](p}=f dp'I [l —fo(p) l ~(p'p')fo(p)

—[l —fo(p')]~(p';p)f, (p)I . (A3)

However, if the deviation of the distribution function
5f(p) away from the steady-state distribution function
fo(p) is small, then one can linearize the scattering
operator around fo(p). The change in the scattering
term caused by a change 5f(p) [to linear order in 5f(p)]
is given by the linear operator S];„

S[f+5f ] s[f]=sh.—[5f]
= f dp'I [l —fo(p)]ll'(p;p')+ ~(p';p)fo(p) ]5f(p') —I[l —fo(p')]~(p', p)+ ~(p;p') fo(p')I5f(p) . (A4)

Note that S~;„ is a functional of fo(p). Physically,
Sb„[5f] describes the rate of change of a small deviation
in the distribution function 5f(p), due to scattering in
the presence of the steady-state distribution function
fo(p}

APPENDIX B:
THK DIFFERKNTIAI. MEAN FREE PATH

In this appendix, we give the formal definition of the
differential mean free path I'(p). We also list several
properties of I'(p) and give the explicit form of I'(p) for
the case of the parabolic band relaxation-time approxi-
mation. We begin by introducing the propagator
R(p', p;t), which we use in defining I'(p).

cle, it is a small perturbation on the distribution function,
and therefore the scattering term can be approximated by

s[fo+ R ]=s[f0]+Si;.[R] . (B2)

—+F, , R(p', p;t)= f dp"S„„(p',p")
at ' ap'

XR(p",p;t) . (B3)

Since R(p, p;t) represents the insertion of a particle in
state p at t =0, the initial condition for R (p', p;t) is

Substituting Eq. (B2) into Eq. (Bl), and subtracting away
the unperturbed Boltzmann equation (i.e., Fo (8fo /
Bp)=s[fo]) gives

1. The propagator R(p', p;t) R(p', p; r =0)=5(p' —p) . (B4)

The quantity R(p', p;t) describes the change in the
probability of occupation of state p' at time t, due to the
addition of a particle in state p at t =0, in the presence of
the steady-state distribution function fo(p) and the field
Fo. We show that R (p', p; t) satisfies the time-dependent
Boltzmann equation with the linearized scattering opera-
tor.

The evolution of the distribution function, after the ad-
dition of a particle in state p at t =0, is given by

8+Fo', [fo(p'}+R(p', p;t)]=s[fo+R] . (Bl)
Bt imp'

Since R(p', p;r) represents an addition of a single parti-

When the scattering operator S is linear, R(p', p;t} is
independent of the distribution fo(p) of the other parti-
cles in the system. R (p', p; t) is simply equal to the prob-
ability that a particle added at time t=0 in state p is
found in the state p' at time t. However, when the
scattering operator is nonlinear, then the other particles
present in the system affect R (p', p;t). For example, if S
describes carrier-carrier scattering, then R(p', p;t) not
only includes the probability that the particle inserted at
p itself scatters into p', but also includes the probability
that another particle in the system scatters into state p'
through an interaction with the inserted particle.

We conclude this section by proving two equalities re-
garding R (p', p;r) which will be useful later. These are
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and

R (p', p, t = oo ) = (p')
dn

(85)
2. The definition of I'(p)

The "differential mean free path" I'(p) is defined by

afp afp
dpi' p', p;t p = p' for all t . B6

Bn an

To obtain Eq. (85), we first note that for small uniform
change in the density 5n, we have

Fp' fp(p)+5n (p) =S[f p+5n (af plan )]
a fp

ap an

S[fp ]+5 nSi' [af Ian ]

(87)

Subtracting away the unperturbed Boltzmann equation
yields

Fp (p) =Si [afp Ian ]an
(88)

That is, afplan is the solution of the steady-state
Boltzmann equation with the linearized scattering opera-
tor Si;„. From Eq. (83), we see that R (p', p;t) is the solu-
tion of the time depende-nt Boltzmann equation with Si;„.
Therefore, as t~~, R (p', p;t) approaches the steady-
state solution of the linearized Boltzmann equation (as-
suming that the equation is well-behaved), and therefore
R (P', P;t = m ) =(afp/an )(P').

To obtain Eq. (86), we start by writing the equation for
the evolution for R (p', p;t) in matrix form

"=LA,
at

(89)

where

L (p', p")=F V5(p" —p')+Si;„(p', p"), (810)

R = exp(Lt) .

From Eq. (88},we have

(811)

L =0.
Bn

(812)

and matrix multiplication means integration over mo-
menta I i.e., [EP ](p', p; t ) = f d p" L (p', p" )R (p",p; t) ) .
The formal solution for P is

I'(p)= f dt I dp' v(p') — R(p', p;t), (814)

I'(p)= f dt v(t) vd . — (816)

That is, I (p) is the mean free path of a particle with ini-
tial momentum p in the frame of reference moving with
velocity vd.

When the scattering operator S is nonlinear, then inter-
pretation of I'(p) is more complex. In this case,
R (p', p;t) is the probability of occupation of state p' not
only by the particle added in the state p, but also by other
particles that have interacted (directly or indirectly) with
the added particle. Therefore, the quantityj dp'R(p', p;t)v(p') is the ensemble average net change
of the sum of the velocities of all the particles in the sys-
tem, given the addition of a particle in state p at t =0.
Hence, when the scattering operator is nonlinear, I'(p)
cannot be interpreted as the mean free path of the parti-
cle added in state p.

3. Properties of I'(p)

In this section we show that I'(p) satisfies the equation

where j=nvd is the current density and n is the particle
density. The derivative aj/an is evaluated at field Fp and
density n p.

When the scattering operator S is linear, 1'(p } has a rel-
atively simple interpretation. When S is linear, the drift
velocity vd is a function of the field Fp alone (and not of
the density np), and hence aj/an=vd. Furthermore,
R (p', p; t) is simply equal to the probability that a particle
added in the state p at time t =0 propagates to the state
p' in time t He. nce, the average velocity v(t) of an en-
semble of particles with initial momentum p is given by

Jdp'R(p', p;t)v(p')=v(t) . (815)

Therefore, when the scattering operator is linear, Eq.
(814}is equivalent to

Using Eqs. (811)and (812) we obtain

„afp „af,
R = exp(Lt )

Bn Bn

BjF. +S),„ I'(p) =v(p)— (817)

=(1+Lt+ 'L t + -. )—af,
Bn

p

Bn

(813)
where S&;„ is the transpose of the effective scattering
operator, i.e., Si,„(p,p')=S„„(p',p). Physically, S„„ is

the operator that gives the rate of change, due to scatter-
ing, of an observable at a given momentum p, that is,

which proves Eq. (86). Physically, Eq. (86) simply states
that if a small deviation in the distribution function pro-
portional to (afp/an)(p) is added at time t =0, it
remains unchanged for all t.

[S„„h](p)= (p)
dh

We also show that

scattering

(818)
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Bfo
dp 'p p =0. (819)

for the case of a single-rate relaxation-time approxima-
tion in a parabolic band solid.

a. Proof ofEq. (B17)

These two relations are used in deriving the Thornber-
Price drift-diffusion equation. Finally, we evaluate I'(p)

To prove Eq. (817), we substitute the definition of
l'(p), Eq. (814), into the left-hand side of Eq. (817),
which gives

Fo +S;;„ l'(p)= —f dt f dp' v(p')— Fo R(p', p;t)+ f dp"S&;„(p,p")R(p', p";t)0 (820)

We show below that the right-hand side of Eq. (820) is equal to v( p) 8j —/Bn
The term in the second set of large parentheses on the right-hand side of Eq. (820) can be written in matrix form,

with E defined in Eq. (810):

Fo R(p', p;t)+ f dp"S„„(p,p")R(p', p";t)= fdp" R(p', p")[F oV5(p p"—)+S„„(p",p)]'
p

(821)

The penultimate equality in Eq. (821), that E commutes with P, is due to Eq. (811). The last equality in Eq. (821}is
Eq. (89).

Substituting Eq. (821) into Eq. (820) yields

'I

Fo +S„„ l'(p)= —f dp' f dt v(p')—'
ap

""
o an at

a= —f dp' v(p') — [R(p', p; t=ao) —R(p', p; t=0)] .
n

(822)

The term corresponding to R (p', p; t = ao ) in Eq. (822) gives zero contribution because from Eq. (85)

Bff dp' v(p') — R(p', p; t=ao)= f dp' v(p') — (p')
Bn Bn Bn

= f f dp'v(p')f, (p')

Bj Bj
dn Bn

Hence, using Eq. (823) and the initial condition for R (p, p;t ), Eq. (84), we obtain from Eq. (822)

— Fo +Sl';. l'(p)= f dp' v(p'}-T . . . Bj , Bj
ap ""

an an

(823)

(824)

This proves Eq. (817}.

b Proof of E.q. (B19)

To prove Eq. (819), we multiply both sides of Eq. (814) by (Bfo/Bn )(p) and integrate over p, giving

fdpi'(p) (p)= f dt f dp' v(p')—
Bn 0 Bn

T

~fo
dp R p', p;t p (825)
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= f "dt fd p'v(p )fo(p }
o Bn

3 3 0
o Bn Bn

(826)

which is the desired result.

c. Evaluation of l'(p ) for the single rate re-laxation time-
approximation in a parabolic band

We show that, within this approximation,

l'(p) =—(p —For )r= (v- vd }r .1

m
(827)

The scattering operator within this approximation is

S[f]= f(p) —f„(p,n)
(828)

where the density of the equilibrium distribution function
is given by conservation of particles

p eqpsn = p p (829)

Substituting Eq. (86) into the right-hand side of Eq. (825}
gives

f dp I'(p) (p)= f dt fdp' v(p') — (p')~fo -, , a] ~fo

relaxation-time approximation. The additive constant is
determined by Eq. (819). Equations (833) and (819)
show that Eq. (827) is the correct expression, within this
approximation, for l (p). One can easily verify this by
substituting the expression for l'(p) from Eq. (827) into
Eqs. (833) and (819). Both substitutions give the correct
result.

+F + vV(ng) = —S[ng—],B(ng) Bg 1

n r}t Qp n n
(Cl)

where g(p, x, t)=f (p, x, t)/n(x, t), so that

fg(p, x, t)dp= l. The unperturbed. Boltzmann equation
then reads

Bgp
F ~

Bp

1 S [nogo],
no

(C2)

APPENDIX C:
DETAILS OF THE DERIVATION

OF THE THORNBER-PRICE
DRIFI'-DIFFUSION EQUATION

In this appendix, we provide some of the details of the
derivation of Thornber and Price's extension of the con-
ventional drift-diffusion equation. ' We also further ex-
tend it to include (1) a nonlinear scattering term in the
transport equation and (2) temporal variations. We refer
to this equation (with the extensions for nonlinear
scattering and temporal variations} as the Thornber-Price
drift-diffusion equation. We start from the Boltzmann
equation.

The Boltzmann equation is

The linearized scattering operator is given by

5f (p) —5n(Bf, q/Bn)(p)
S„„[5f]=— (830)

where the subscripts "0"refers to the steady-state homo-
geneous electric field quantities. Then, we assume small
perturbations about the steady homogeneous state

dfeq
S„„(p,p') = ——5(p' —p) — (p) (831}

[Recall that matrix multiplication is defined by

S„„f(p) =fdp'S„„(p,p')f(p').] Hence, from Eq. (831),
the transpose of S&;„ is

S,r;„(p,p') = ——5(p' —p) — (p')f.q (832)

where 5n = fdp 5f (p). From Eq. (830), we obtain the

matrix form of S&;„,

g (p, x, t) =go(p)+5g (p, x, t),
n (p, x, t) =no+5n(x, t),
F(x, t) =Fo+ 5F(x, t),
S[fo+5f]=S[fo]+Si;.[5f]
5f (p, x, t) =no5g(p, x, t)+5n(x, t)go(p) .

(C3)

Substituting Eqs. (C3) into the Boltzmann equation, Eq.
(Cl), and subtracting the unperturbed Boltzmann equa-
tion, Eq. (C2), gives

On substituting Eq. (832) into Eq. (817) (the
integrodifferential equation that l'(p) satisfies) and using
the fact that in the single-rate relaxation-time approxima-
tion in a parabolic band, v=p/m and Bj/Bn
=Fo~/m =vd, we obtain

—Fo. ——f d p' (p')l'(p')+ —l'(p)
Bl' 1,r}feq . . . 1

Bp 'T Bn 7

~go 1Si;„—Fo. 5g =5F + gov Vn
&p ap n, '

86n

no

+ Gag 5n
iIDRO (C4)

1=—(p —F r) . (833)
m 0

Equation (833) is the equation that determines I', up to
an additive constant, in the parabolic-band single-rate

Multiplying the left-hand side of Eq. (C4) by 1'(p) and in-

tegrating over p gives
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fdpi'(p) &„„—Fo 5g(p)= f dp5g(p) S„„+Fo I'(p)
Bp Bp

(C5)

where we have used Eq. (B17) to obtain the last equality in Eq. (C5). By multiplying both sides of Eq. (C4) by I (p) and

integrating over p we obtain, using Eq. (C5)

—5u(x, t)= f dpi'(p}5F(x, t) + ' .f dpgo(p)v(p)l'(p)
')go V n (x, t)

P no

+f dp I'(p)v Vg(p, x, t)+ ' f dp I'(p)go(p)+ fdpi'(p)
0

f dp Sh„[go](p)l'(p) .
no

(C6)

After integrating the 5F terms by parts, we obtain Eq. (3.5). This equation is exact to linear order in the perturbations.
Unfortunately, it requires the knowledge of the linear-order change in the distribution function 5g(p, x, t), which can

only be obtained from solving the transport equation. In the text, this equation is used in conjunction with the approxi-
mation that assumes 5g (p, x, t) is only dependent on the local electric field and density, to obtain a drift-diffusion type of
equation with VF, c}F/Bt and 5n correction terms, which we refer to as the Thornber-Price drift-diffusion equation.
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