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Guided and interface LO phonons in cylindrical GaAs/Al„Ga, „As quantum wires
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A dispersive hydrodynamic continuum theory is employed to describe the LO phonons in

GaAs/Al„Ga& „As cylindrical quantum wires. It is demonstrated that a finite number of guided
modes exist for a given wire radius, their number being greater than the corresponding slab system
due to the reduced symmetry. As for the interface modes, it is shown that a given mode occurs at a
critical wave vector, although the axially symmetric mode always exists, it having zero critical wave

vector. The situation is drastically modified in the case of a free-standing wire. Within the continu-
um model and with physically plausible boundary conditions, guided modes exist whereas interface
modes do not. Implications for electron transport are discussed.

I. INTRODUCTION

Recently there has been concerted attention given to
electron energy relaxation in semiconductor quantum
wells. An important mechanism in these quasi-two-
dimensional (Q2D) structures is carrier relaxation via
LO-phonon emission. Early calculations assumed a bulk
three-dimensional character for the phonons' although
subsequent experimental evidence, mainly inelastic light
scattering, suggests that they are confined to the quantum
well. Various investigators have incorporated the
confinement of the LO modes in discussing transport
properties, with particular application to the
GaAs/Al„Ga, „As system. To describe the modes, two
continuum theories have been employed; a slab mode ap-
proach ' and the dispersive Born-Huang model of Babik-
er. Both predict confined guided modes together with
modes localized at the interfaces (interface modes). Un-
fortunately, they differ markedly in the symmetry of the
phonon potential 4. This difference is crucial for the
description of the electron —LO-phonon scattering, where
the interaction Hamiltonian is e4 (i.e., Frohlich type).
This has been pointed out by Ridley, who employed
Babiker's model to evaluate scattering rates in these Q2D
devices. The resolution of this convict lies in experiment
and the recent work of Tatham et al. ' suggests that it is
in fact the dispersive model of Babiker that yields the
correct phonon potential.

Given the apparent usefulness of this model, it is
worthwhile applying it to quasi-one-dimensional (Q1D)
structures. The system we have in mind consists of a cy-
lindrical GaAs wire embedded in A1„Ga& As, which
was proposed by Infrate et al. " and is similar to struc-
tures fabricated by Gibert et al. The interaction of Q1D
electrons with phonons has been discussed in these struc-
tures with the phonons being bulk three dimensional in

I

character. ' ' We would expect the interaction to be
modified (as indeed is the case in Q2D systems) when
confined and interface phonons are involved. Our aim in
this paper is to describe the guided and interface LO pho-
nons in these structures. We leave their coupling to elec-
trons for a future paper.

II. THE GUIDED LO MODES

(V +k )u"=0 (2)

with

k 2 = (co2 —co2)p

In the above, co& and e2 are the zone-center LO-phonon
frequencies for material one and two, respectively, with

P, and P2 the acoustic velocity parameters.
We solve this equation in cylindrical coordinates

(r, 4,z) The solutio. ns involve Bessel functions of various
kinds, and it is straightforward to show that the guided
mode solution (oscillatory behavior within the wire and
decay outside) is, in vectorial notation ( u „,u &, u, ),

We take as our model system a cylindrical wire of
length L (assumed large) and radius R composed of ma-
terial one embedded in material two. Within the disper-
sive hydrodynamic model developed by Babiker, it is
convenient to work with the modified ionic displacement
u rather than the true ionic displacement w. The two are
related via

u=(M„/V )' w=p' w

where M„ is the reduced mass, Vo the volume of the unit
cell, and p the mass density. This displacement satisfies
the following vector Helmholtz equation

u(1) g (n)einP 'qz—~& e
lql n

J„'(q&r), J„(q|r),J„(q&r), r (R;
q,

"
q, r

(4)
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FIG. 3. (a) Variation in the radial component of the displacement and (b) its associated potential for the highest frequency n=0
guided mode of a 50-A wire (q, R =2.0).

(v/q, i) A I"'J„(q,r)e'"~e ', r ~R

(alq, i)Az" K„(lq lr2)e'" e ', r &R .
(12b)

This implies that for n=O, 4 is proportional to Bessel
I

n=O symmetry. This is because, within the effective-
mass approximation, the electron wave function has n =0
symmetry leading to a 6 function on the index n when in-
tegrations over P are performed. Figure 2 depicts the
n =0 mode dispersion. It is seen that they are only slight-
ly dispersive, which is consistent with what is found for
the slab.

The LO-phonon potential 4 is related to the ionic dis-
placement via

e*
V4 W —Ku (12a}

Voeo

with e* the Callen effective charge. The above together
with (4) and (5) gives

functions of type n=0, whereas from (4) and (5) the radi-
al component w„has n= 1 behavior. Figure 3(a) shows
the radial variation of w„ for the highest frequency n=O
mode. Note that it is practically confined within the wire
with a near node at the boundary and zero displacement
on the axis. In the slab case the corresponding mode is
again practically confined within the layer with near
nodes at the surfaces, but here the maximum displace-
ment occurs at the layer midpoint. In Fig. 3(b) we illus-
trate the potential associated with this mode, noting that
this is practically zero outside of the wire due predom-
inantly to the large value of lqzlR ( —17). A quantum
theory of these modes follows from (12}.

III. THE INTERFACE MODES

We seek solutions to the vector Helmholtz equation (2)
that are purely longitudinal (7 Xu"=0) and decay on ei-
ther side of the interface. Such solutions do indeed exist
and are of the form

&
e

u' '=g'"'e'"4ee

n
I„'(lq, lr), I„(lq, lr), I„(lq, lr),

q, q~f'

q,

—ilq2I, n
&„' ( I q 2 I

r ), K„( I qz I
r ), K„( I q z I

r), r & R .'
q,

(13)

(14)

Again, B'i"' and B2"I are mode amplitudes and here I„(x)
is the modified Bessel function of the first kind. On appli-
cation of the hydrodynamic boundary conditions (7) and
(8) we find that the mode frequencies satisfy the following
equation:

P(~', —~')Iq, l+„'(Iq, IR)I„(lq, IR)

—(~~—~') lqi II.'( lqi IR)&„(Iq& IR }=0 (15)

with the interface mode frequencies satisfying the condi-
tion

2& 2 p2 2

Figure 4 depicts the interface LO-phonon dispersion
0

for a wire of radius 50 A. The bold solid curve is the
solution of lq i l

=0, namely,

(17)

This is simply the dispersion curve for "bulk" LO modes
in GaAs and the various branches (n =0, 1,2, 3, . . . , }
emerge from this "bulk" curve. Analogous behavior is
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IV. FREE-STANDING WIRE

%e briefly consider the LO modes of a free-standing
GaAs wire. These types of structures have recently been
fabricated by Hasko et al. ' Since the wire is surrounded
simply by vacuum, the correct boundary condition within
our hydrodynamic approximation is the vanishing of the
pressure at the interface. This is consistent with the van-
ishing of both energy and momentum flow at the bound-
ary. The solution of (2) is then
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FIG. 4. Interface mode dispersion curves for a 50-A wire.
The bold solid curve corresponds to the "bulk" result (17).
Note that the various interface modes (here corresponding to
n =0,1,2,3) emerge from this curve.

observed for other surface modes; for example, surface
phonon polaritons emerge from the "light line" at some
critical wave vector (see, e.g. , Cottam and Tilley' for a
slab and Ruppin' for a cylinder). The critical wave vec-
tor q,', at which an LO-interface mode of type n appears,
satisfies the following quadratic equation:
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Equation (18) may be deduced from (15) in the limit

~q, ~
~0 and on noting that ~qz ~R is large (again typically

—17). It is interesting that q,'=0 for the axially sym-
metric (n=0) interface mode, this is readily deduced
from (18).

The radial component of the n=O interface mode is
shown in Fig. 5(a). Again as with the guided mode most
of the energy is confined within the well with a rapid de-
cay outside the wire. The potential associated with this
mode is depicted in Fig. 5(b). It is practically constant in-
side the well and zero outside. The fact that there is little
variation of the potential within the wire (even when q, is
varied) is consistent with a constant scattering rate (in-
dependent of in-plane wave vector) predicted for interface
mode scattering in the Q2D system. The units for Figs.
3 and 5 are unrelated, the mode amplitudes may only be
compared after a quantization procedure is carried out.
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FIG. 5. Variation in the radial component of the displace-
ment (a) and its associated potential (b) for the n=0 interface
mode of a 50-A wire (q,R=2.0). The units are not related to
those of Fig. 3.
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where C'"' is the mode amplitude and q„ is related to
the mth zero (x„) of the Bessel function J„(x) via

q„R =x„.The dispersion relation is then simply

2 2 p2( 2+ 2
)

Note that the potential is zero at the interface in this case
since 4-J„(q„r). The important point is that purely
longitudinal interface modes (i.e., modes with vanishing
curl) are not present. The reason is straightforward. The
phonon wave functions for a "possible" interface mode
would involve Bessel functions of type I„(q„r)completely
analogous to (13), where q„ is some radial wave vector.
The dispersion relation would then follow from the van-
ishing of the pressure at the boundary that leads to
I„(q„R)=0. This has no solutions for n=0 and the un-

physical solution q„=0 for n greater than zero. ' The
lack of LO-interface modes in these structures has impor-
tant consequences for electron transport. Interface
modes dominate energy relaxation in thin quantum wells
and their absence in these novel free-standing structures
leads to a dramatic reduction in the scattering rate (see
Constantinou and Ridley' for a more detailed discussion
of these modes and their coupling to electrons). The sur-
face excitations that are allowed are polaritons that are
transuerse solutions of Maxwell's equations (i.e., have
vanishing divergence) and are hybrid TO-phonon-photon
modes. ' The interaction of these surface polaritons with
electrons is now under investigation, but it is known that
in the bulk the TO part of the mode contributes to the
usual deformation-potential scattering only in the case of
holes and not at all for electrons in a I minimum,

whereas the electromagnetic part interacts only Uery

weakly with the carriers.

V. CONCLUSIONS

In this paper we have applied the hydrodynamic model
of Babiker to describe both guided and interface LO pho-
nons in typical GaAs/Al„Ga, „As cylindrical quantum
wires. This type of model is valid for small wave vectors
which, of course, is the regime in which the Frohlich in-
teraction is enhanced. Indeed our aim was to provide a
detailed description of the allowed modes with a view to
coupling these to the carriers in a later paper.

A finite number of guided modes is predicted for a
given wire radius. This number is greater than that
found for the equivalent slab system due to the reduced
symmetry. As for the interface modes, we demonstrate
that they exist only if the wave vector is greater than
some critical wave vector where the mode emerges from
the "bulk" result. The axially symmetric mode (n=0) al-

ways exists as it has zero critical wave vector. This is the
analogue of the odd (with respect to reflection in the mid-

point) slab interface mode, which is mainly responsible
for intrasubband scattering. The situation is drastically
modified in the case of free-standing wires. Here it is
demonstrated that although LO-guided modes are al-
lowed, interface LO modes are not. This leads to a
marked reduction in the scattering rate for thin wires. '
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