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Interaction of electrons with the confined LO phonons of a free-standing GaAs quantum wire
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A continuum model is employed to describe the allowed longitudinal-optical phonons of a cylin-

drical free-standing GaAs wire. The electron-phonon interaction Hamiltonian is then obtained and

used to calculate intrasubband transitions in the extreme quantum limit. The scattering rate is pre-

dicted to be markedly reduced compared with the bulk value, and compared with the value expect-

ed when the wire is not free standing. This result is due to the lack of LO interface modes in the

free-standing situation.

I. INTRODUCTION

Recent developments in microfabrication techniques
have led to carrier confinement in two spatial directions
resulting in quasi-one-dimensional (Q1D) behavior and
leading to a wealth of interesting physics. ' As a conse-
quence of their possible applications in microelectronic
devices, the transport properties of these systems have re-
ceived a great deal of attention since Sakaki' predicted an
enhanced mobility due to remote impurity scattering.
The interaction of the electrons with longitudinal-optical
phonons has been investigated by various workers, '

where the phonons were assumed to be bulkline and pho-
non confinement effects ignored. This is an
oversimplification; indeed in the corresponding two-
dimensional system (e.g. , GaAs/Al„Ga, „As quantum
well) it has been point out by various investigators that
phonon confinement effects lead to important
modifications in the transport properties, with both guid-
ed and interface modes contributing to electron energy
relaxation. ' Furthermore, the recent fabrication by
Hasko and co-workers" of free-standing single-crystal
GaAs wires has made the need to discuss phonon
confinement more pressing. Their wires have a triangular
cross section (although we will assume circular cross sec-
tion for mathematical simplicity) with widths of around
0.25 pm. At the moment, for various reasons, this seems
to be about the minimum width attainable.

In this paper we investigate the allowed LO-phonon
modes of a free-standing GaAs wire. The resultant
electron-phonon interaction is derived anticipating future
developments in microfabrication techniques that could
lead to devices in which truly Q1D carriers interact with
these novel LO modes at high temperatures. It is well
known that in higher dimensions LO-phonon emission is
the dominant mechanism responsible for electron energy
(and often momentum} relaxation at high temperatures.
The outline of the paper is as follows: In Sec. II we de-
scribe the guided LO modes of a cylindrical GaAs wire
using a continuum approach and show that interface
modes do not occur. The electron-phonon interaction
Hamiltonian is derived in Sec. III where it is applied to

intrasubband transitions. Finally, Sec. IV contains our
comments and conclusions.

II. THE LO MODES
OF A FREE-STANDING GaAs WIRE

We consider a single cylindrical wire of radius R and

length L (assumed large} surrounded by vacuum. As

practical radii are typically large (i.e., many atomic spac-

ings) we may employ the dispersive hydrodynamic model

developed by Babiker' and applied to the LO phonons of
a GaAs/Al„Ga, „As quantum well. This model reason-

ably assumes a dispersion for the bulk 30 phonons of the
form

~2 —~2 P2Q 2

where Q is the bulk phonon wave vector, toLo the zone-
center LO-phonon frequency (5.55X10' s ' for GaAs),
and P the velocity parameter (4.73 X 10 m s ' for
GaAs). This model describes the phonons well if the
wave vector is small (i.e., for phonons with frequencies
close to co„o), which of course is the important regime for
the electron-phonon coupling as the Frohlich interaction
is enhanced at low-phonon wave vectors. For larger
wave vectors (shorter wavelengths) this approximation
breaks down. The situation is fine for the Q2D, system as
the existence criterion for guided modes is rather restric-
tive; the allowed frequencies having to lie between the
two constituent bulk values which, for the
GaAs/A1„Ga, As system, are very close together. ' In
the case of a free-standing GaAs wire, within this contin-
uum approximation we will see that the existence cri-
terion is relaxed with the allowed frequencies lying be-
tween 0 and co„z. Nevertheless, we show in Sec. II that,
again, as with the 3D and Q2D system it is only the
modes with small wave vectors (i.e., frequencies close to
coLQ ) that give the dominant contributing to electron en-

ergy relaxation. These modes are well described by a
continuum model.

It is convenient to work with a modified ionic displace-
rnent u rather than the true ionic displacement field w;
the two are related via
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u=(M/Vp)' w . (2)

Here M is the reduced mass and Vo the volume of the
unit cell. This displacement satisfies the following wave
equation

[V +(coLo—co }P ]u=O, r ~R,

The solution of the above which is regular on the axis of
the cylinder' and satisfies the condition that the pressure
is zero at the surface (equivalent to V u~„a =0) is in cy-
lindrical coordinates (r, y, z )

u+ =(m /q, r )u, ,

u„= i(—q „/q, )C „e' ~e * J' (q „r) .

(4)

Note that applying the condition that the pressure be
zero at the surface eliminates the possibility of LO inter-
face modes. In (4) m is an integer, diff'erentiation is with
respect to the argument of the Bessel function, and we
have used the fact that the modes are purely longitudinal
(i.e., VXu=0). Also C „ is the mode amplitude, q, the
wave vector along the axis of the wire and q „ is related
to the nth zero (x „) of the Bessel function J (x) by
Qmn~ =&mn.

The frequency of a mode labeled (m, n} is easily deter-
mined from the boundary condition, we find

2 —~2 P2(q2 +q2)

This is precisely the same form as the 3D and 2D case.
Now for a given radius this theory predicts a large
though finite number of modes, the only restriction being
(with q, =0 for simplicity)

x „coLoR/P

to ensure real frequencies. As was previously discussed,
it is only the small wave-vector modes that the theory de-
scribes well. We will restrict our interest to the so-called
extreme quantum limit, in which the electrons occupy the
lowest subband. In Sec. III we demonstrate that for
scattering within this band only the (O, n) modes are al-
lowed and of these only the first few make any real con-
tribution to the scattering rate. In fact the (0, 1) mode
often dominates with the interaction reduced by at least
an order of magnitude as the mode index n increases by
1. It is of course, precisely these modes that the theory
applies to (note Np& —coLo).

Before considering in detail the electron-phonon in-
teraction, it is worth justifying the boundary conditions
employed. Within the spirit of a hydrodynamic approxi-
mation, and given that the wire is surrounded simply by
vacuum, the vanishing of the pressure at the surface is
reasonable. Indeed, from (4) the only nonvanishing com-
ponent of the phonon field is the radial component. This
is analogous to ripples on the surface of a liquid; again
the pressure is zero at the surface with no restriction on
the normal component of displacement. It is also con-
sistent with the well-known Fuchs and Kliewer'" guided
modes for an isolated ionic slab that also have antinodes

at the surface. The situation is strikingly modified if
the ionic slab is surrounded, not, as here
by vacuum, but with another material (e.g. , the
GaAs/Al„Ga& „As system). In this case, the guided
modes have near nodes at the interface and LO-interface
modes become allowed' that leads to a modification of
the electron-phonon interaction. The analogous GaAs
wire embedded in Al Ga& „As has also been investigated
by us. '

III. THE ELECTRON-PHONON INTERACTION

To obtain the electron-phonon interaction we follow
the quantization procedure used by Ridley' to derive the
interaction Hamiltonian for an ionic slab. The mode am-
plitudes may be determined by relating the total energy
in the cavity to that of an equivalent harmonic oscillator.
Thus

whence

M w* w d V= &N~nMXmn
Vp v

u*u V,1

M

Cmn =
V

gz 1

J (x ) (q2+q2 )1/2
(9)

with V the volume of the wire. The potential is related to
the ionic displacement via

e*V4= — w=
Vo&o

e*

( Vl/2M 1/2
)0 6p

(10}

with e* the Callen effective charge. It follows from (4),
(9), and (10) that the total potential is

e *

ep( Vp V)'

t

ie ' e' ~J (q „r)g~„
J +,(x „)(q, +q „)'

The electron-phonon interaction Hamiltonian is then

H, „,= —e4 (12)

and has the desired Frohlich form being inversely pro-
portional to the phonon wave number.

We are now in a position to evaluate the scattering
rate. We assume that we are in the extreme quantum
limit in which the carriers occupy the lowest subband
and scattering is within this band. The generalization to
intersubband scattering is fairly straightforward but will
not be discussed in this paper.

Within the spirit of the effective-mass and parabolic-
band approximation, the Q1D electron wave function is

Q=Jp(kp, r)e ' [V,' J, (xp, )] (13)

where g „ is the coordinate of the simple harmonic oscil-
lator equivalent to the mode labeled (m, n). The integra-
tion over the volume is outlined in the appendix and we
find

1/2
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where k, is the wave number along the axis of the

cylinder and kp~ R =xp~ ~ We assume that the electrons
occupy a cylindrical volume V, of radius R, which is less

than the volume occupied by the phonons, see Fig. 1.
This is indeed the case in practice as the conducting
channel is less than the dimensions of the wire due to car-
rier depletion into the crystal from the surface. " The to-
tal energy is simply

$2
ET=E+ kp&

2m
(14)

with E the kinetic energy along the wire ( =A' k, l2m ')
and m ' is the carrier effective mass.

The scattering rate for the emission of a guided mode
(m, n) is given by

X5(E/r ET+—fico „)dSf, (15)

where the integration is over all final states and t'(f)
denotes initial (final) energy, N(ro „)is the Bose-Einstein
factor at the mode frequency. The evaluation of the ma-
trix element is straightforward and leads to the usual con-
servation of crystal momentum along the axis of the wire.
Further, as we are dealing with carriers in the lowest sub-
band it also implies, via the P integration, that the elec-
trons may only interact with (O, n)-type guided modes.
The total scattering rate, 8', assuming only emission pos-
sible is given by

48p
J, (xo, ) q (E/AroLo (o )' Jf(qo„R)

function F„are

S„=f 'yJ, (x,„Ry)J,'(x„y)dy,
p

2 —1

F„(Q~ 7 ) = Q,
+—„+xo„R

(18)

(19)

with R =R, /R, go„=coo„/coLo, and

+
z, n

1/2
2m

XR, [(E/firoLo)' +(E/la&„o go„—)' ], (20)

where +( —) designates forward (backward) scattering.
In the limit R ~ ~, in which case qp„becomes a con-

tinuous variable, (16) reduces to the case of a wire of ra-
dius R, interacting with the bulk 3D phonons of GaAs
(Ref. 7) as it should. It is found numerically that only the
first few terms in (16) are of any importance with (0, 1)
often the most dominant. This is true away from any
phonon energies where the scattering rate is seen to
diverge. This is due to the singularity in the 1D density
of states and of course occurs also in the study of QID
electrons coupled to bulk 3D phonons; the singularity
here being at the single-phonon energy A'~LO. In practice
there will always be damping in the system and, for fairly
large radii, it is anticipated that any peaked structure in
the rate for electron energies less than Scop, would be
smoothed out leading to a gradual rise to its value at
Scop&. This novel prediction is due entirely to the discrete
nature of the LO-phonon spectrum. A quantitative in-
vestigation regarding the implications of this result is
now underway.

Figure 2 illustrates the variation in the scattering rate

X [F„(Q,+„)+F„(Q,„)],
where we have used the result

(16)

12 8-

2

8'p =
4M'

1/2
2m Q)LO

Es
(17)

and e„~,~
is the high- (low-) frequency dielectric constant;

(Wo-7. 74X10' s ' for GaAs). The i tnegr laI„adnthe
12 6-

O
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FIG. 1. Geometry of the system depicting the conducting
channel of radius R, contained within the wire of radius R.

FIG. 2. The scattering rate as a function of wire radius (solid
curve) ~ The dashed line labeled (a) corresponds to the bulk re-

sult, whilst (b) that of QlD electrons interacting with bulk pho-
nons, as deduced from Constantinou and Ridley (Ref. 7). (See
text for the assumed value of the parameters. )
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as a function of the wire radius. The carrier energy is
fixed at 5Rcu„o, with the conducting channel radius held

0

at 50 A, which prohibits intersubband events. It is seen
that the rate approaches the Q1D bulk phonon result

fairly quickly. On the otherhand, for small wire radii

( (200 A) there is quite a marked decrease in the scatter-

ing rate. For a wire radius of 50 A (equal to the channel

radius) the rate has fallen by 60% as compared with the

Q1D bulk phonon value and to 70%%uo of the well-known

result for 3D electrons interacting with bulk 3D pho-
nons. ' A reduction of about the same order is also ob-

tained in the case of a free-standing slab. '

IV. COMMENTS AND CONCLUSIONS

it is anticipated that any effects will restrict themselves to
thin wires and for larger radii, (keeping the channel ra-
dius small of course), will be negligible. This is one ad-
vantage of containing the electrons electrostatically to a
thin 1D channel over the 1D and 2D GaAs/Al„Ga, „As
systems in which interface modes are always present. In-
tersubband events are also ruled out in this system.
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In this paper we consider for the first time the interac-
tion of guided LO phonons with Q1D carriers in free-
standing GaAs wires. The phonon modes are described
by a dispersive hydrodynamic model' valid for wire di-
mensions much larger than the interatomic spacing, and
the boundary condition employed is seen to lead to re-
sults consistent with those of an isolated ionic slab. ' The
number of allowed guided modes is found to be large due
to the general reduction in the symmetry and a loosening
of the existence criteria compared to the investigations
for a symmetric heterojunction. '

The electron-phonon interaction is then derived using
an intuitive quantization procedure and applied to
scattering within the lowest band. The radius of the con-
ducting channel is assumed to be small, prohibiting any
intersubband events (the so-called extreme quantum lim-
it). It is found that the rate can be markedly reduced if
the wires are very thin. These are beyond the capabilities
of present microfabrication techniques. Nevertheless,
given the remarkable advances in microfabrication tech-
niques over recent years, we envisage that the technology
will be developed to produce free-standing GaAs wires
thin enough so that Q1D effects become important above
subliquid hehum temperatures. The formalism may of
course be extended, given the generality of the interaction
Hamiltonian obtained, to include intersubband events.
The predicted intrasubband rate for guided mode emis-
sion is found to be greater than half an order of magni-
tude less than that of bulk phonon emission.

The effects of surface modes on electron energy relaxa-
tion have been ignored in the present formalism, which
has dealt with purely longitudinal modes that have no
surface counterpart and are simply standing modes of the
system. The surface modes associated with these free-
standing structures are polaritonlike modes that are
transverse in character. The interaction of electrons
with these surface modes is now under investigation and
the results will be published in the future. Nevertheless,

APPENDIX

The z and P integrations of the volume integral are
straightforward. The integral over the radial coordinate
is the following:

R mI„= r J q r 1+
0 qz r

2

+ [J' (q „r)] dr .
q,

(A 1)

4—pl(i) (A2)

where
R

0
2

nq

(A3)

2 2
qmnR

rJ +, (q „r)dr= J +, (x „),
2qz

(A4)

R QC

2
r J q r dr=

2 Jm+k +mn
q 0 qz k=]

(A5)

I„''= J +lq „rJ q „rdr,
q 0

(A6)

I(4)
r (A7)

All the above integrals may be found in any standard text
on Bessel functions, e.g. , Ref. 19. The result of Eq. (9)
follows easily.

When the recurrence relation is employed for the deriva-
tive the integral is then the sum of four integrals, viz.
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