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We present an extended k p model to calculate the electronic structure of any direct-band-gap
semiconductor heterostructure with either normal or with inverted bulk band structure. The full

Hamiltonian is block diagonalized in sets of time-reversed states by an appropriated unitary trans-
formation which separates the degenerate spin states into two blocks. The model takes into account
the full degeneracy of the eight lowest Bloch states at the I point, the subband mixing and coupling,
the warping, and the derived boundary conditions at the interface. The anisotropy is treated in per-
turbation theory. Subbands in quantum wells of Ga& Al, As/GaAs, of semimagnetic

Cd&, Mn„Te/CdTe, and of narrow-band-gap lattice-matched Gao 47Ino &3As/Alo 48Ino»As are cal-
culated as a function of the dimension and composition of the heterostructure. These examples
show the effect of conduction-band —valence-band coupling, subband mixing, and the inclusion of
the split-off band in the energy dispersions. Extensive comparison with experimental data and other
theoretical approaches is presented.

I. INTRODUCTION

In recent years, the increasing ability to control the ep-
itaxial growth of semiconductor crystals has made possi-
ble the fabrication of high-quality artificial heterostruc-
tures of many different geometries, doping profiles, and
semiconductor classes. The III-V compound heterostruc-
tures, grown by molecular-beam epitaxy or metal-organic
chemical-vapor deposition, are used in a variety of
optoelectronic and electronic devices, with
(Ga,Al)As/GaAs being the most well-known system.
The magneto-optic properties of these heterolayered sys-
tems are very intriguing and have been extensively stud-
ied in the literature. ' More recently, other compounds
such as Ga, „In„As/Al, In As are receiving special
attention due to their importance for telecommunication
systems operating with silica optical fibers. These materi-
als are grown on InP substrates and, therefore, present
large lattice mismatch except for In contents of x =0.53
and y =0.52, the so-called lattice-matched heterostruc-
ture. Their physical properties have been broadly investi-
gated in Refs. 4 and 5. The magneto-optical properties of
II-VI pseudobinary-compound diluted magnetic semicon-
ductors (DMS's) have also been studied, such as, for ex-
ample, (Cd,Mn)Te/CdTe in Refs. 6 and 7 and
(Zn, Mn)Se/ZnSe in Ref. 8. These DMS systems exhibit a
vast range of features new to semiconductor physics.
The 3d Mn ion randomly replaces the group-II element
in the fcc sublattice and their antiferromagnetic spin-spin
exchange interaction leads to a magnetization of the sam-
ple. Therefore, the subband structure is strongly affected
and as a direct consequence so are their optical, thermal,
and transport properties.

Several calculations of the subband structures, using
Kane's' k p model within many different approxima-
tions, are found in Refs. 11—14 for metal-oxide-

semiconductor field-effect transistor interfaces, in Refs.
15 and 16 for heterojunctions, and in Refs. 17—21 for
quantum wells and superlattices.

In this paper we present an extended Kane k p model
to calculate electron and hole subbands in heterostruc-
tures as a function of the parallel momentum. The model
includes all eight lowest Bloch states bordering the I
point, and the various aspects of their mixing and cou-
pling are discussed as examples. The model applies to
any III-V compound, II-VI compound, or pseudobinary
DMS alloys with normal or inverted zinc-blende-
structure symmetry. We have chosen three special ma-
terials, with different band gaps and spin-orbit energies,
as examples for the application of our method and also
compare the subband structure and the square of the op-
tical matrix elements from the present model with the re-
sults from the tight-binding model as well as with a
different approach based on the k p model of Ref. 20.

II. THEORY

The typical bulk energy-band structure near the funda-
mental band gap of a zinc-blende-structure semiconduc-
tor, with normal (or direct) and with inverted structure,
is schematically illustrated in Fig. 1. The conduction-
band states of normal materials transform as the s-like
doubly degenerate I 6 representation of the Td crystallo-
graphic point group (as most of the III-V compounds)
while in inverted materials, especially II-VI compounds
having Hg or Se and usually referred to as zero-band-gap
semiconductors, the conduction band has the p-like sym-
metry of the doubly degenerate (J =—', , +—,') I s representa-
tion.

Let us choose to order the eight periodic Bloch func-
tions, using the

~ J,MJ ) "cubic-harmonics" notation for
the angular-momentum states at the I point, as
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FIG. 1. Qualitative change in the bulk band structure of
Hg& „Cd„Te, for increasing concentration of Cd, illustrating
the inverted (Hg-rich) and the normal (Cd-rich) zinc-blende-
structure symmetries close to the I point. The inversion occurs
close to Cd content x =0.146.

The set of states (la) transforms in the set (lb), under
the application of the time-reversal operator for zinc-
blende-structure semiconductor symmetry, A = —iver CJ,
where cr is the spin Pauli matrix which flips the spin
component, C' is the complex-conjugation operator, and J
is the inversion operator.

Let the z axis be perpendicular to the direction of the
heterostructure. We can write an extended version of the
k p Hamiltonian in the set of Bloch states given in Eqs.
(1) as

Dei
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Dhh=D+ and D,„=D

D+ = E„'——,'(y, ky~)k ——
—,
' [k,(y ) + 2y~)k, ],

D, , = b —E'„' —y, k —
—,'[k, (y—, )k, ],

Ag =&I /6Pk, +&2/3[G, k, Ik~,
B &1/3[P k I 2i&1/3Gk ky

L =&3/2[y3, k, jk

S =&3 ,'(yk —pk+ —), y = ,'(yz+y3},—p=—,'(y3 y2)

Q =&2[k,(yz)k, ]—&1/2y2k

where s.o. denotes spin orbit, and the matrix elements are
defined in terms of combinations of the linear-momentum
components, kz+kz=k, k+ =(k„haik„)=k exp(+i8),
and k„ times Kane's parameters (atomic units), as

D,) =Eg+E'„+(F+—,')k2+[k, (F+—,')k, ],

For layered systems in the flat-band condition, ' ' the
z component of the linear momentum, perpendicular to
the interface, becomes a differential operator,
tr, = id/dz, —whereas in the bulk it is a number. ' '

Also, in these expressions, [ A, k] =
—,'( AS+JA ) is an

average of the anticommutator, E is the smaller band

gap of the materials in the heterostructure, P(F) is the
first-order (second-order} Kane parameter for the I 6

band, y„y2, and y3 are equivalent to the Luttinger pa-
rameters for the I 8 band, 5 is the spin-orbit energy
which splits the I 7 and the I 8 multiplets as shown in the
Fig. 1, and lastly E' is the band offset for the ith branch
in a given interface. For bulk states the parameters P, F,

p 3 T, and G are independent of the coordinate z,
and E'„ is zero. Although we use the z dependence of a11

parameters as two different constants for each side of the
heterostructure, in principle, they can change smoothly
from one side of the interface to the other (graded inter-
face). Also, we choose the zero of energy at the top of
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the I 8 energy branch, and for this choice, the I 6 elec-
trons have energies larger than E, the I 8 holes have neg-
ative energies whereas the I 7 split-off electrons have en-

ergies smaller than h. The parameter p, in the definition
of the matrix element S, gives the warping of the valence
(conduction} subbands in normal (inverted) materials.
The inversion asymmetry terms T for the I 7 and I 8

bands and 6 for the I 6 band are responsible for the spin
splitting of the Kramers doublets in zinc-blende-structure
materials. However, their values are small, and,
therefore, we have chosen to treat them in perturbation
theory.

We have ordered the Bloch functions at the I point in
a convenient way for our future purpose, and it may not
be the same order as used by a number of authors as for
example Okhawa and Uemura, ' Altareli, Ekenberg, and
Fasolino, ' Broido and Sham, ' Eppenga, Schuurmans,
and Colak 20 and Liu and Sham zs However, a direct
comparison becomes simple since we have listed them
above.

For certain energy E, a general band structure displays
solutions inside the Brillouin zone, which have real (prop-
agating or extended Bloch functions} and complex
(evanescent or localized Bloch functions) wave vectors.
The complex wave vectors appear along the so-called real
lines, and along these lines the energy is a real and mono-
tonic function of the complex vector k. For an extensive
treatment of the properties of real lines in a given band
structure see Ref. 29. In Ref. 20, the authors Eppenga,
Schuurmans, and Colak have called them spurious solu-
tions and, in their k p method, followed an approach
which avoi. d them by decomposing the 8X8 model for
the electron-hole system into a 2 X 2 matrix for the elec-
trons and a 6X 6 matrix for the holes. A block decompo-
sition becomes necessary once general solutions with the
full 8X 8 matrix exhibit numerical diSculties if one is in-
terested in the total wave function as for example in the
calculation of optical absorption. However, their decom-
position procedure has to handle a term proportional to

Eg

[Es E —fi (k„+k—+k, )/2mo]

which, in layered systems, becomes much too complicat-
ed since k, is a differential operator. By setting this term
to E /(E E), they have —avoided their spurious solu-
tions; however, this procedure, only justified for wide-
band-gap semiconductors, would lead to uncontrolled
di5culties in narrow-band-gap and zero-band-gap layered
systems, as for example InSb and (Hg, Cd)Te, respective-
ly, where the role of the evanescent states is essential.
Moreover, the effect of such a procedure on the boundary
conditions at a given heterointerface is not clear.

We have chosen a different approach. Since the asym-
metry terms T and G are small, at first we neglected
them, and therefore were able to find an unitary transfor-
mation U which block diagonalizes the 8 X 8 Hamiltonian
into two 4 X4 sets of states which are time-reversal trans-
formations of each other. A similar procedure was done
by Marques, White, and Sham' ' for the 6X6 Kane
Hamiltonian and by Broido and Sham' for the 4 X4 Lut-
tinger Hamiltonian. The block-diagonalized Hamiltoni-

an is thus much simpler to deal with since the whole set
of degenerate spin states can be treated separately
without any need to impose drastic approximations.
Therefore, our procedure can be applied to all different
classes of material previously mentioned. Moreover, even
for degenerate branches, the selection and identification
of eigenvectors for the optical-absorption calculation is
extremely simple and only demands a modest computa-
tional effort. After solving the full subband structure for
the block-diagonalized Hamiltonian, we then include the
small effect of the asymmetry and warping terms T and G
in first-order perturbation theory.

In order to perform the block diagonalization, we write
the Hamiltonian previously mentioned as a sum of 8 X 8
matrices, H =H, (y }+H (p)+H, ( T, G). Then, it is al-
ways possible to find four parameters 5, 4, g, and g such
that the symmetric part H, (y) transforms into two 4X4
block-diagonalized matrices under the application of the
8 X 8 unitary matrix

I R R
—R' R' (3)

where R is a 4 X 4 diaganal matrix with elements
exp( —i5), exp( i 4)—, exp( —i'), and exp( i g) —The .same
unitary transformation on the warping part of the Hamil-
tonian is given by 0 H (iJ, )O=H, (p)+H 2(p). Here
the term H, is block diagonalized and gives almost all
the warping effect on the subband dispersions. The term
H 2 is not block diagonalized: its contribution to the
warping is very small and only appears at large values of
the parallel momentum k. We have checked its effect by
diagonalizing bath the full 8X8 and the 4X4 matrices.
Therefore, we treat the asymmetry term in H, (T, G) as a
perturbation to the states determined by the block-
diagonalized Hamiltonian. In view of the great simplici-
ty of treatment determined by this procedure, we prefer
to consider the nondiagonalized part as perturbation in-
stead of having to take a not well-controlled approxima-
tion. Also, all types of solutions are fully kept within our
procedure.

After adding every blocked part of the transformed
Hamiltonians, we obtain a 4 X4 upper block, that we will
call the U states, as

D i Pi P2

Hu
P) Dhh L) L2

Pf Lf Dm Qi
(4)

P3 L2 Q) D, ,
where the matrix elements are defined as

P, = Q ,'Pk, —-
P2 =Q—', [P,k, I +i Q ,'Pk, —

P, = Q ,' [P,k, I+i+—,'Pk-, —

L, =&3k [y3, k, I+i (v'3)/2k2y(g),

Lq= —Q —',k [y3, k, ]+i (Q—,')k y(8),
Q, =&2[0,( y2)k, ]—Q —,

' y2k —i (3/&2)k [ y3, k, ] .
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The diagonal operators in Eq. (4) have already been
defined, and the strongest contribution to the warping of
the subband structure comes from the terms proportional
to y(8)=y3 —2pcos (28). Notice that this is a two-
dimensional version of the quasigermanium model for
layered systems.

The lower block, for L states, satisfies the following re-
lation, HL =H U, as required by time reversal.

In the k p approach there are seven bulk band-
structure parameters Eg, P, F, 6, y&, y2, and y3 which
are usually obtained from the fitting of the magneto-
optical absorption spectra. The literature registers a
large number of parameters for a given material which, in
general, depends upon the approximation, on the sample,
or even on the physical property fitted, and, in almost all
tables of parameters, the second-order contribution to the
I 6 effective mass, F, has been neglected. Since the funda-
mental band gap Eg and the spin-orbit energy 5 can be
determined independently as a function of the concentra-
tion and temperature, we therefore use them to calculate
the other five parameters from the measured effective
masses namely, m,', m hh, rn i'h, m,', in the [100]direction
and from m hs in the [111]direction

The eigenvalues of our blocked Hamiltonian for the
bulk case (k, is just a number and E„=O), calculated up
to second order in the components of the momentum k,
can be used to determine the effective mass of each kind
of particle in the vicinity of the I point. We get for the
I s effective mass (as in the original Kane's model),

4P=1+2F+ 1+
m, 3Eg 2(E +b)

which explicitly shows the dependence of finite spin-orbit
energy of the split-off band (the warping gives no contri-
bution here}. Also, the heavy-hole efFective mass in the
[100] direction is determined only by the parameters

1

, =(yi —2y2»
mhh

determined in a consistent way, the experimental values
of all masses for a given material are sometimes dimcult
to find. It should be noticed from Eqs. (5), (7), and (9)
that in the k.p model the heavy-hole branches are weakly
coupled to the other valence branches in the vicinity of
the I point. However, both light-hole and split-off
branches are coupled to the conduction branch. Also,
Eqs. (5), (7}, and (9) clearly show how the finite spin-orbit
energy influences the amount of band mixing in the
valence band and coupling of the conduction band.

For a general direction k = ( k„,k, k, ) in the bulk,
there is a dependence of the heavy (

—
) and light (+)

masses on the warping, and they are given by

1 2 2- =yiL+[(Ei+3&2)3 2Lm(k)

+12(k„k +k k, +k,k, )y3L

3y2 E2] 1/2 (10)

where s=(k „+k ), c, , =(2k, —e), and E2=(k „—k «).
Also y;I are the usual parameters for the 4X4 Lut-
tinger Hamiltonian and y„=@sin(48) measures the
difference between the inclusion of the effect of warping
in our block-diagonalization procedure from the solution
of the 8 X 8 Hamiltonian.

With this set of parameters, determined uniquely for a
given material, the motion of electrons and holes in the
heterostructure is found from the solutions of the
Schrodinger equation for each four-component spinor in
the upper (U states) and in the lower (L states) blocks.
Therefore, we must solve, (HU ~Li+ V)%U ELi

=EU [L]%'U [L~, where the blocked Hamiltonian is given in
Eq. (4), V is a 4 X 4 matrix containing any external poten-
tial applied across the junction as well as the internal
strains due to lattice mismatch (after appropriated uni-
tary transformation with U). Note that the band offset,
F.„, is already included in Eq. (2), and we either take their
experimental and theoretical values or use it as a free pa-
rameter if its value is not known.

Let the envelope wave function for each four-
component spinor be written as

'Ai(x, y, z, k)
'

whereas in the same direction the light-hole effective
mass is coupled to the I 6 band as

T

A2(x, y, z, k)
+U(x, y, z, k)=

A ( k) (1 la)

1 4P, =(yi+2Y2)+
m)g 3E (7)

and

A~(x, y, z, k)

On the other hand, the heavy-hole effective mass in the
[111]direction depends on y, and y2 and is given by

1
=~yl —2y3~ .

mhh

'A5(x, y, z, k)
'

A~(x,y, z, k)
(x g z k)=

X,J,Z,

As(x, y, z, k)

(1 lb)

2P2=y)+ 3' (Eg +6) (9)

Although all five parameters F, P, y, , y2, and y3 are

Finally, the effective mass of the split-off branch is
given by

Since present heterojunctions, grown by epitaxial tech-
niques, have interfaces of high quality, the translational
invariance along the x-y plane can be assumed without a
loss of reality, therefore, the explicit dependence of any
component in Eqs. (11)on the parallel momentum can be
separated as a plane wave in the x-y plane and a implicit
dependence of the component, as
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A)(x,y, z, k) =e'"'A, (z, k), (12)

Fi —&2G2 G2

—&2@i Ei
G+ Q,

' (13)

where the matrix elements are defined by FI

=(F+ ,' )d /dz, G~—= ,'(y, +—2—y2)d/dz, G, = —( —,'y i)d /
dz, Gz = i &1/1—2P, E, = i &3/Sy 3k, and—
Q, =&2y 2(d /—dz)+i &3k

For L states, the time-reversed of the operator in the
Eq. (13) must be conserved. Notice that, in the parabolic
effective-mass limit, where both the interband coupling
and the band mixing are neglected, the operator in Eq.
(13) reduces to the well-known BenDaniel-Duke bound-
ary conditions for each wave-function component corre-
sponding to the four kinds of particles described by the
differential operators D,&,D&]„D,„, and D... respective-
ly. If only the conduction-band-valence-band coupling is
neglected, i.e., P is set to zero, the operator in Eq. (13)
reduces to the boundary conditions used by Altarelli'
et al. and by Liu and Sham for the Luttinger Hamil-
tonian. As a last observation, notice that in the deriva-

where k and r are two-dimensional vectors in the x-y
plane and j =1,2, . . . , 8.

In the k.p method, the derivation of boundary condi-
tions at a given interface between two different materials
is fundamentally based on three assumptions. (i) The
set of Bloch functions at the I point is the same for both
semiconductors. (ii) The interface is an ideal geometrical
plane separating two thin regions of each material. (iii)
Within this thin slice of the interface, the evanescent
waves are indispensable to assure a smooth continuity of
both the wave function as well as its normal derivative.
Assumption (iii) is easily met within our procedure, and
(ii) depends on the quality of real interfaces. The assump-
tion (i) is the strongest one and deserves further discus-
sion. Later on we will compare the results from our k p
model with the ones obtained from the tight-binding
method where assumption (i) is completely relaxed.

The generalized boundary conditions at a given inter-
face is a consequence of the flux conservation and can be
easily obtained from the integration of Eq. (4) over the
thin slice of the junction' ' ' ' In the limit where the
thickness of the slice of the interface goes to zero, the
evanescent waves of each side die out, and their role be-
come unimportant. Therefore, the smooth matching at
the interface in the position z, is guaranteed for U states
if the following operator is continuous:

tion of boundary conditions in Eq. (13) we only neglected
a small contribution due to warping of the I 8 band con-
tained in the H 2 and the contribution from the small
asymmetry terms H, ( T, G).

In the following sections we will discuss the main
features of the subband structure of quantum wells for
three different materials in order to explore our model,
point out the effect of coupling and mixing on the sub-
band dispersions, and compare them with experiments.

III. SUBBAND STRUCTURE
OF ZINC-BLENDE-STRUCTURE

HETEROSTRUCTURES

A. Ga& Al„As/GaAs

The lattice mismatch in GaAs/(Ga, A1)As heterostruc-
tures is small, thus, the particles will be mainly confined
to the GaAs layer, therefore, any net strain existing in the
interface can be neglected, and we may set V =0 in Eq.
(10). Also, the best accepted band offset for this hetero-
junction, 40—60% will be used in the following calcula-
tions unless another value is explicitly mentioned. The
fundamental band gap for a given concentration x of Al
is calculated from

F. (x)= 1519+1040x +470x meV, (14)

and all parameters in Hamiltonians shown in Eqs. (2) and
(4) are determined from the effective masses given in
Table I in the text,

In Fig. 2 we present the calculated subband structure
for electrons and holes in a 100-A quantum well, as a
function of the parallel momentum, for [100] and [110]
directions in the x-y plane. Note that the Kramers-
doublets are degenerate since the potential has inversion
symmetry, and we have neglected terms depending on T
and G. The valence-subband structure shows strong ad-
mixture at small values of k, represented by the anticross-
ing regions. This band mixing is different for each
branch and comes, mainly, from the term proportional to
y(8) in Eq. (4). At large values of k, the quadratic terms
in the diagonal will become dominant, and, therefore, the
dispersions will approach the parabolic curvatures of
bulk materials.

The conduction-subband structure shows the strong
nonparabolicity and subband mixing at large values of kiI.
These effects are partially due to the coupling to light
holes, the split-off branches in the valence band, the
wave-function penetration into the confining potential
barriers, and the boundary conditions at the interfaces.
The minigaps decreases rapidly with increasing subband
index.

TABLE I. The full set of parameters for GaAs (1) and AlAs(2). For the alloy we use linear interpo-
lation. The effective masses, in units of free-electron mass, are taken from Refs. 20, 34, and 35.

(1)
(2)

m, [001]

0.0665
0.1500

m „*„[001]

0.3800
0.4785

m |h[001]

0.0870
0.2079

m hh[11 1]

0.9524
1.1490

m,*, [001]

0.1735
0.3147

5 (meV)

340
280
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FIG. 3. Valence-subband structure of a 100-A QW of
Gao poAlp 3oAs/GaAs, along the [100] direction, calculated with
finite (solid lines) and infinite (dashed lines) spin-orbit energy.
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FIG. 2. The (a) valence and the (b) conduction subband
structures of a 100-A QW of Gao, OAIO, OAs/GaAs. The se-
quence of valence subbands, labeled as 0&, L &, 0&, L&, etc., in-
dicate the origin and dominant character of each state at k =0.
The solid lines are dispersions in the [100]direction and the dot-
ted lines are dispersions in the [110]direction.

The importance of including the spin-orbit energy
branch is shown in Fig. 3. First notice that the energy of
the heavy-hole branches at k =0 are not affected (they
are decoupled from other branches) by finite spin-orbit
energy, but the light-hole branches are pulled up. As a
result of this stronger mixing, the minigaps between a
light-hole and a heavy-hole branch decrease whereas be-
tween two neighboring heavy-hole branches they in-
crease. Second, the cur vatures of all branches are
affected by the mixing between a I 7 and a I 8 state, and,
as a consequence, they will present effective masses
different from their bulk values.

TABLE II. Effective masses, determined from quantum-well

dispersions of subbands in Gao7QAlp 3QAS/GaAs with L 100
0
A, calculated with finite (E) and infinite (I) spin-orbit coupling.
The light-hole masses are calculated in (a) k =0 and (b) off
center at the maximum of the L, branch.

L, branch
k direction

[100] (F) [100] (I) [110] (F)

Electron
Heavy hole

Light hole

Split off

(a)
(b)

0.0698
—0.1692

0.1895
—0.1785

—0.1614

0.0743
—0.1609

0.0969
—0.1309

0.0698
—0.1692

0.1896
—0.1543

—0.1616

As an illustration of the effect of subband mixing and
warping in different approximations, in Table II we show
the values of the effective masses calculated for each
species. Notice that these masses are strongly dependent
on the Hamiltonian model (6 X 6 or 8 X 8) because the
valence-subband mixing and the conduction-
band-valence-band coupling depend on the value of the
spin-orbit energy A. They are also affected by the band
offset, by the direction of growth, and by the well width.
It is clear that, due to the s character of the bottom of the
conduction band, the effective mass in the quantum well

(QW) as well as in the bulk does not show any angular
dependence. The value for the heavy-hole mass is in ex-
cellent agreement with that reported by Duggan,
m hh

=0. 1 8w 0 for the best fit of the exciton binding ener-

gy in (Ga,A1)As/GaAs quantum wells. Other effects of
the effective masses as well as of the exciton binding ener-
gies will be discussed in the next section.

The effect of increasing the confinement can be seen in

Fig. 4& where we show the valence-subband structure for
a 70-A quantum well of Gap7pAlp3pAs/GaAs. Notice
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-20

-40

—I20

Hq

(Cd,Mn)Te is paramagnetic above a certain temperature
Tz(x), the spin-glass freezing temperature, which de-

pends on the Mn concentration, on the host II-VI materi-
al, and, for heterostructures, the spin-glass phase may
be totally suppressed below approximately 20 A of layer
thickness. Under no applied magnetic field, the sample
magnetization is zero and the parameters for the band
structure other than the band gap E and the band offset
E„are only slightly affected by the concentration of
Mn. The situation with an applied magnetic field is rath-
er different and will be considered in a future publication.

The value of the band gap Eg as a function of the Mn
concentration is given by

E = 1595+1592x, meV .
—I40

l60
0,0 1.5 3.0 4.5 6.0 7.5

k„(IO cm )

FIG. 4. Valence subband structure of a 70-A QW of
Gao,OAIO, OAs/GaAs, along the [100] direction, calculated with
finite spin-orbit energy.

that, as the well width increases from 70 to 100 A, the
levels show a piling up, and this leads to an enhancement
of the valence-band mixing and a change in the minigaps.
The region where the effect of the diagonal quadratic
terms overcome the k-linear ones also depends on the
well width.

The efFect of the inclusion of the split-ofF branch on the
optical properties of quantum wells will be discussed
later.

B. Cd, „Mn Te/CdTe

This material has normal zinc-blende band structure
for Mn concentration below x =0.7. Above x the
crystal structure starts to show poor quality and large
(MnTe„) islands having the wurtzite symmetry. For
values of x, 0 ~ x x, the substitution of Cd by Mn in-

creases the fundamental band gap and (Cd,Mn)Te acts as
barrier in the heterostructure. In this sense the Mn has a
similar effect as Al in (Ga,A1)As system, however the
quantum well here has a much larger spin-orbit energy.
The ions of Mn + are randomly distributed in the fcc
sublattice of the element of group II and their half-filled
3d atomic shell are highly localized at each replaced
Bravais site. The five paired spins form a local magnetic
moment which displays an antiferromagnetic coupling
with next neighbors. Due to thermal agitation,

Since Mn Te has wurtzite symmetry, the band parame-
ters for (Cd,Mn)Te are not easy to find. We have chosen
to procure all five masses at a given concentration where
the alloy displays zinc-blende-structure symmetry, and
for x &x, use linear interpolation or extrapolation to
calcu1ate the other parameters, which are given in Table
III. However, this set of numbers is certainly subjected
to changes once new experimental findings on its band
structure are reported. It is clear, however, that this ma-
terial is rather different (wide-band-gap and large-spin-
orbit energy) from the previous system (large-band-gap
and small-spin-orbit energy), and therefore, is a suitable
example where one can check the effect of valence-band
mixing and decreasing coupling to the conduction band.

The lattice mismatch in the heterostructure induces a
strain in the CdTe layer, therefore, the potential V, in
Eq. (12), should play a role. We will not discuss this
effect here, since another important parameter in the
method, E„ is not precisely known for this heterojunc-
tion. It is accepted, however, that a small fraction on the
band-~ap difFerence can be accommodated in the valence
band. ' Since this point is still open for the system we
have chosen to use the rule 20%(VB)-80%(CB) to deter-
mine each band offset in the present calculations.

In Fig. 5 the valence-subband structure for a 100-A
quantum well with Cdo 9Mno, Te/CdTe is shown. As ex-
pected, there is very little band admixture in the disper-
sions since we are dealing with a material having wide-
band-gap and large-spin-orbit energies. Also, due to fact
that the heavy-hole masses are almost three times heavier
than in the GaAs case, the band ofFset is smaller and the
spin-orbit energy considerably larger; thus, the number of
light-hole states inside the well is very small. Since, as we
have shown in the previous system, the heavy holes are
only weakly coupled, therefore, the mixing only appears
at very small values of k~~. This large-spin-orbit system
confirms the conclusions reached in the Fig. 3, that is, an

TABLE III. The full set of parameters for (1) CdTe and (2) (Cd,Mn)Te. For the alloy we use linear
interpolation. The effective masses, in units of free-electron mass, are taken from Refs. 35 and 37.

(1)
(2)

m, [001]

0.0960
0.0960

mhh [001]

0.6600
0.3200

m, ),[001]

0.1000
0.0800

m hh[111]

2.7000
0.3200

m,', [001]

0.2800
0.1500

6 (meV)

910
910
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FIG. 5. Valence-subband structure of a 100-A QW of wide-

band-gap Cdo, oMno, oTe/CdTe, a1ong the [100] direction, cal-
culated with finite spin-orbit energy. The small subband mixing
is mainly due to both large-spin-orbit (910 meV) and band-gap
(1595 meV) energies.

FIG. 6. Valence-subband structure of a 100-A QW of
lattice-matched (narrow-band-gap and small-spin-orbit energy)
Gap $71nc 53As/Gao 4slno, 2As, along the [100] direction (solid
lines) and [110]direction (dotted lines). Notice the different or-
dering of states at k =0 as compared to the system described in

Fig. 2.

increase in the spin-orbit energy causes a decrease in the
subband mixing. Thus, away from k =0, the diagonal
quadratic terms overcome the others, then both valence
and conduction subbands resemble parabolic dispersions.

C. Gao 47InQ 53As/Alo 4&Ino 5&As

The lattice-matched (Ga, ln)As/(Al, In)As heterostruc-
ture has technological importance for the fabrication of
fiber optical devices operating with wavelengths between
1.30 and 1.55 pm. Both concentrations of In are chosen
in order to match the lattice parameter of the InP sub-
strate, and for this case the potential V can be set to zero.
Also, the band offset ' for this system is estimated to be
30—70%. The other parameters are calculated from the
effective masses in Table IV. Notice here that we have
quantum wells where the fundamental band gap is almost
one-half that of the GaAs case, but the spin-orbit ener-
gies are almost identical. Thus, one should expect an
enhancement of the subband coupling and mixing.

It is shown in Fig. 6 the valence-subband structure fox
a 100 A quantum well along the [100] and [110] direc-
tions. As mentioned before, one can notice a certain

enhancement of the subband mixing when compared to
Fig. 2. Moreover, the ordering of states at k =0 is even
different from the GaAs case. In any quantum well there
are two kinds of particles inside the well with different
masses, and certainly the first level of the heavier particle
is below the first level of the lighter particle. However,
the position of the excited levels of each particle will de-
pend on the difference of masses, on the well width and
on the offset. In Fig. 7 we show the position of three
lowest valence subbands of this system at k =0 as a func-
tion of the well width. It is seen that, above 88 A, the
second heavy-hole state is positioned below the first
light-hole state. The same crossing should occur for all
excited states at different well widths since, in the bulk
limit l.,~~, every heavy-hole state must be located
below the top of the light-hole subband. In principle, the
identification of the second peak in the optical absorption
of quantum wells should certainly depend on the well
width. However, we will show later that the oscillator
strength for forbidden transitions, hn %0, are much
weaker than the oscillator strength for transitions with
An =0.

On the other hand, the complexity of subband disper-

TABLE IV. The full set of parameters for lattice-matched (1) {Ga,In)As and (2) (Al, In)As. Masses,
in units of free-electron mass, are taken from Refs. 4, 5, 41, and 42.

m,*[001] m h„[001] m, h [001] m „*„[111] m,*, [001] 6 (meV) Eg (meV)

(1)
(2)

0.0410
0.0750

0.3800
0.5700

0.0520
0.0950

0.7500
1.0300

0.1290
0.1936

360
332

813
1.508
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200 FIG. 9. The binding energy of heavy-hole excitons in the
finite quantum wells, calculated with the effective masses of Fig.
8. Experimental data are taken from Ref. 4.

FIG. 7. The relative position of the valence-subband levels at
the I point, for each type of particle in the lattice-matched
(Ga, In) As/(Al, In) As quantum wells.

sion due to the coupling to the I6 band and to the
valence-band mixing will determine effective masses rath-
er different from their bulk values. The effective mass for
electrons were measured from the cyclotron-resonance
experiment and from Shubnikov-de Haas experiment as
well as the reduced mass for the pair electron heavy hole
were measured from magnetoabsorption experiment.
Their experimental values are shown in Fig. 8 together
with the electronic masses determined from the disper-
sions of subbands for each well width. Our values are in
excellent agreement with the efFective masses of electrons.
The experimental points for the reduced mass are above
the electronic mass; however, the correct value should be
below the electronic mass. We believe that these values
are larger than the electronic masses because the authors
in Ref. 5 have determined them through the effective

mass for bulk heavy holes, mhh =0.066, which is smaller
than the values for the quantum wells. For further com-
parison, we show in Fig. 8 the effective mass for heavy
holes calculated from the dispersions in the quantum
wells, which takes all details of the valence-subband mix-
ing into account. It is apparent that, for quantum wells
close to 200 A, the theoretical value of m hh is almost the
double of the bulk value used in Ref. 5. The reduced
effective mass, calculated from the theoretical curves in

Fig. 8, is just like the electronic curve but shifted
0.015m 0 downwards.

In Fig. 9, we show how the binding energy of heavy-
hole excitons in a finite-barrier quantum well and calcu-
lated from the effective masses of Fig. 8 compares with
experimental values taken from absorption and magneto-
absorption as described in Ref. 4.

Since the position of the light holes in k =0 are strong-
ly affected by the inclusion of the split-off band, therefore,
it is interesting to check the spacing between the valence

0.08
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M
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~~ 0.05-
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)
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100 150
WELL WIDTH (A)
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0.04-
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FIG. 8. The electronic (solid line) and the heavy-hole (dashed
line) effective masses in lattice-matched (Ga, In)As/(Al, In)As
quantum wells compared to experimental data of Ref. 4 and 5.

FIG. 10. The spacing between the ground states and excited
states, with same quantum number, for each type of particle in
the valence subbands of lattice-matched (Ga,In)As/(Al, In)As
quantum wells. The experimental points are taken from Ref. 5.
The difference between the binding energies of light-hole and
heavy-hole excitons were included in the present calculation.
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subbands through the energy difference between the tran-
sitions associated to electron heavy hole (E H-„) and
those associated to electron light hole (E L„-). Since
both the heavy-hole and light-hole excitonic effects are
present in these transitions we used their binding ener-
gies, calculated as in Fig. 9, to determine these valence-
subband spacings.

Figure 10 shows the energy differences for these transi-
tions and satisfying the selection rule n =m, calculated
with the present block-diagonalization procedure. The
experimental values taken from Ref. 4 show very good
agreement even for the high subband index and demon-
strate how important the inclusion of the split-off band
on the properties derived from the quantum-well sub-
bands is.

Finally, we can also check the spacings between the
conduction and the valence subbands. In Fig. 11 we
show the comparison between the calculated energy
differences, for transitions satisfying the selection rule
m =n and the experimental data from Ref. 4. Since the
forbidden transitions are not experimentally resolved for
any sample shown in Refs. 4 and 5 we will only make a
comment on their effect in the optical matrix elements
which will be discussed in the next section.

IV. COMPARISON TO OTHER APPROACHES

The most restrictive assumption in the k.p approach
for heterostructures, namely the equality of the periodic
Bloch functions at the I point of materials in each side,
can be checked by comparing the subband structure of a
given system, obtained with the k p model and the de-
rived boundary conditions in Eq. (13) with those obtained
by the tight-binding (TB) method where such assumption

„(k)=l&+' „(r)~e PI+"„„(r))I', (16)

which, due to the strong subband mixing and nonpara-
bolicity, becomes a nontrivial function of the linear
momentum k along the interface. For two subbands ex-
hibiting parabolic dispersions, P„becomes weakly
dependent on ~lt~, and thus the selection rules for optical
transitions are strictly m =n. In the present system,
however, the subband mixing makes transitions with
mWn (forbidden transitions) also possible, and they have
been observed by Miller et al. and by Vina et al. The
intensity of the optical transitions is determined by the
oscillator strength which is, basically the average of this
transition probability over the Brillouin zone.

First let us compare the subband dispersions deter-
mined by each model. Figure 12 shows the valence-
subband structure for (Ga,A1)As/GaAs, calculated from

is completely relaxed. One of the most sophisticated TB
model was presented by Chang and Schulman and
based on 15 optimized parameters associated with sets of
atomic orbitals 5, P, and S* for each material. Also, in
their TB model, the boundary conditions for the wave
functions are exact in the sense that they do not depend
on the kind of interface, although the choice of tight-
binding matrix elements involving a function in one side
with the other function in the other side of a given inter-
face is always an approximation. The interband optical-
transition probability, for a given polarization of the light
s, is a suitable property to check the two approaches
since it depends on the full Bloch wave functions for the
conduction subband 4'„&(r) and for the valence subband
tp' z(r) as

700 0
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E—500-
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X
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w 300-
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Z,'

g~) 200- 3 3
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FIG. 11. The subband energy spacings (E -H -Eg) and
(E -L -Eg), in lattice-matched (Ga, In)As/(Al, In)As quantum
wells, calculated in the present model. The experimental data
for the normally allowed optical transitions (Am =0) were tak-
en from Ref. 4.

-35
O.O 0.9 I.O 2.7 3.6 4 5

k (io' cm ')
II

FIG. 12. Valence-subband structure of a 192 A QW of
Gao 75A10 2,As/GaAs, along the [100] direction, calculated with
15%-85% band offset and with the same parameters used by
Chang and Schulrnan. It is clear that there is no difference in
the dispersions and in the ordering of states at k =0 when cal-
culated in our block-diagonalized k-p model or in the sophisti-
cated TB method of Refs. 43 and 44.
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FIG. 13. The matrix elements in the x-y polarization, P»(k),
for optical transitions from the jth valence subband to the first

conduction subband, in the same quantum well described in Fig.
12. The agreement of our calculation and the optical matrix
elements determined by TB model of Ref. 44 is excellent.

Eq. (4), with the same set of parameters as used by Chang
and Schulman and also by Eppenga et al. assuming
the old 15%-85% band offset rule. There is no difference
between the subband dispersions and, particularly impor-
tant for us, in the ordering of states obtained in all three
methods, nevertheless the TB method was applied to a
superlattice comprising 68 atomic layers (L, =192 A) in
the wells and 71 atomic layers (La =199 A} in the bar-
riers. It is apparent that a superlattice with a thick bar-
rier is definitively close to a multiple quantum well.
Here, the agreement with the k p model of Eppenga et
al. z is certainly expected, as we mentioned before, since
their procedure is only justified for large-band-gap ma-
terials such as GaAs.

The dependence of the optical probabilities P „(k)
with the parallel momentum, in the same
(Ga,A1)As/GaAs quantum well of Fig. 12, with light po-
larized in the x-y plane, is shown in Fig. 13. Again, one
can see that they agree remarkably well with those from
the k p model of Ep enga et al. and from the TB
method of Schulman. Therefore, it is rather clear that
all three methods must present almost identical full Bloch
wave functions describing the motion of particles in the
heterostructure. White et al. have reached similar con-
clusions, that is, the k p and the TB methods, both with
derived boundary conditions at the heterointerface, pro-
duce identical subband structures, Bloch wave functions
and, therefore, the optical-transition probabilities. Only
for light with z polarization is a small difference in the
(E&-Hz) transition probability noticed. When calculated
in the present model, P,z(k =0}=0,or in the TB model,

P,2(k =0)=0.02. This small difference is due to the fact
that in the TB method there is a small mixing of the
light- and heavy-hole branches even at k =0, whereas in
the k-p model the two branches are coupled only away
from the zone center. However, the oscillator strengths
in both methods are almost identical, and therefore, so
are the calculated intensities for each optical transition.

As an example of the effect of the inclusion of the
split-off subbands in the optical absorption see in Fig. 14
the transition probabilities, for an 80-A QW of the

0.2

O. I

O.O
0.0 I.5 3.0 4.5 6.0 7.5

k (l06 cm-l )
II

0.8

0.7-

0.6-

0.5 .
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FIG. 14. The effect of the spin-orbit energy on the optical
matrix elements, for z polarization and for the QW described in

Fig. 7, calculated with (a) finite and (b) infinite spin-orbit energy.

narrow-band-gap and small-spin-energy-orbit
(Ga,In)As/(Al, In)As, with the light polarized in the z
axis, and calculated with finite [Fig. 14(a)] and with
infinite [Fig. 14(b)] spin-orbit energy. In both cases the
oscillator strength for the optical transition (E,-H

& ),
satisfying the rule hn =0, is larger than the strength for
the transition (E, -H2), satisfying the rule b n %0, whereas

the transition (E&-L, ) is twice as strong as the former
ones. Also, it is interesting to observe the transfer of os-
cillator strength from the transition (E,-H2) to the transi-
tion (E, -L

&
) as a consequence of a finite spin orbit.

On the other hand, the direction of growth has only a
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scribed in Fig. 6. Solid lines in the [100] direction and dotted
lines in the [110]direction. The matrix element, S„for transi-
tion from the first split-off subband to the first conduction sub-

band, is included.
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small effect in the oscillator strength as shown in Fig. 15,
where we have also included the strength S

&
for the tran-

sition (E,-S, ) between the first split-off state to the first
conduction subband. Although this transition occurs at
large values of energy (hE „~1300 meV}, its strength is
comparable to (E, -H&) or (E,-H4}, and, therefore, the
identification of these peaks becomes somewhat dim, cult.

The last point to be addressed is how the piling up of
the heavy-hole excited state below the first light-hole
state, for increasing well width and shown in Fig. 7, may
affect the assignment peaks in the optical spectra of quan-
tum wells. For example, the second peak in the experi-
mental absorption spectra of lattice-matched
(Ga, In)As/(Al, In)As quantum wells above 90 A would, in

principle, be assigned to the forbidden E, -H2 transition
instead of the normally allowed E,-L, transition. First
one must remember that forbidden optical transitions
(b,nAO) in (Ga,A1)As/GaAs quantum wells are only ob-
served in high-quality samples and show considerably
weaker strength than the normally allowed ones (h, n =0).
Second, the forbidden transitions are not resolved in any
of the optical spectra reported in Refs. 4 and 5. Al-
though the valence subbands are ordered in different se-
quences when calculated by the present model
(H„H~, L„L2,L3 H3 ) [see Fig. 16(a)] or for infinite
(6X6 model) spin orbit (H„L„H2,L2,Li,Hi, . . . ) [see
Fig. 16(b)] the transition (Ez-Hz) has a larger energy
difference than the much stronger peak due to the (Ei-
L, ) transition, and therefore the second peak in the spec-
trum must be assigned to the light-hole one.

o -120
E

e -150
K
UJ
ie~ -180

- 210

-240
O.O 1.5 3.0 4.5 6.0 7.5

k (106 cm ')
II

V. FINAL COMMENTS AND CONCLUSIONS

We have presented a general k.p method based on the
8 X 8 Kane type of Hamiltonian, where there exist five pa-
rameters determined from the experimental bulk effective
masses for the conduction, light-hole, heavy-hole, and
split-off branches of any zinc-blende-structure semicon-
ductor with direct or inverted band structure. Our ap-
proach is based in a block-diagonalization procedure
which treats the symmetry terms exactly and the asym-

FIG. 16. Valence-subband structure of a 80-A QW of
lattice-matched (narrow-band-gap and small-spin-orbit energy)
Gao 47Ino 53As/Gao 4,1no,&As, along the [100] direction, calcu-
lated with (a) finite and (b) infinite spin-orbit energy. Notice the
effect of the split-off valence band in changing the ordering of
states at k =0.
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metry terms in perturbation theory. Therefore, this pro-
cedure is exact for materials with diamond structure and
becomes a very good approximation for zinc-blende-
structure materials since they display very small values
for these parameters. We have derived the boundary
conditions for the envelope-function components by re-
quiring the conservation of the current of probability
across the heterointerface. In our procedure, the sub-
band structure and optical matrix elements are in excel-
lent agreement with the ones obtained by the sophisticat-
ed tight-binding method developed by Chang and Schul-
man. ' Therefore, one can assume that the Bloch wave
functions in both approaches are quite similar. Thus, the
boundary conditions of Eq. (13) are appropriated to de-
scribe the motion of particles in layered systems. Our
method is more general and simpler than the method de-
scribed in Ref. 20 since there is no approximation in our
block-diagonalization procedure. Also, in the present
formalism, the degenerate states are explicitly separated,
and, in consequence, their numerical calculations become
easier.

The overall accuracy in our method, as well as in the
TB method, depend on the number of basis functions
used. In the Fig. 17 we show the change in the subbaad
structure of quantum wells for different number of func-
tions in each kind of particle and spin component. With
15 functions our k p results converge to the TB results of
Chang and Schulman calculated with 20 functions.
Bauer and Ando have reported that, for the 4X4 Lut-
tinger Hamiltonian, it is necessary to have 30 functions to
reach virtually exact results. We have observed that, to
get a good convergence for the energy values at k =0 it is
necessary to have only a few wave functions (approxi-
mately eight functions); however, the good description of
dispersions at large values of k~~ and also at high subband
index requires at least 15 functions.

Finally, special features such as a good knowledge of
band offset and precise values for full bulk effective
masses, band gaps, and spin-orbit energies are indispens-
able ingredients for an accurate description of electronic
properties in the heterostructures. For some materials
they are difficult to find and all reports are welcome.

0
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FIG. 17. The effect of the number of basis functions used to
calculate the valence-subband structure of the quantum well de-
scribed in Fig. 12. The dependence on the number of functions
(5, 7, 10, and 12) is more pronounced at large values of k~~ and
high subband indices. Above five functions, the dispersion of
the 0& subband becomes virtually exact.
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