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We have developed an interatomic potential suitable for the modeling of silicon in a wide range of
bonding environments. The potential is of the general form developed by Tersoff, with the interac-
tion between a pair of atoms being dependent on the environment of the pair. The atom-atom
potential-energy function is expressed as a sum of - and o-bonding terms, each independently
influenced by the environment. The functional form of the potential and the parameters in the po-
tential were chosen to fit a variety of data on silicon, including the structure and energy of small
clusters of 2—10 atoms, the crystal structures, the elastic constants of the diamond-lattice phase, and
some surface properties. We present the results of using this potential to model small clusters (2—10
atoms), crystal phases, point defects in the diamond lattice, the 2X 1 reconstructions of the Si(100)
and Si(111) surfaces, and the 7 X7 reconstruction of Si(111). Our present potential is compared in
detail to other potentials that have been developed to model the properties of silicon.

I. INTRODUCTION

For obvious technological reasons a great deal of
theoretical research effort has recently been directed to-
ward the study of the structure of atomic arrangements
in systems made up of silicon. The research effort has at-
tacked these problems from several different directions.

Large-scale ab initio calculations for silicon clusters of
up to ten atoms have recently been performed.'~’ These
have provided insight into how the bonding in silicon
changes as the clusters grow larger. It has been found,
for this number of atoms, that compact structures with
many strained bonds are more stable than crystal frag-
ments that have fewer bonds. Hohenberg-Kohn density-
functional-theory (DFT) quantum calculations using the
Kohn-Sham local-density approximation (LDA) have
qualitatively supported these results and even allowed
some dynamical and temperature-dependent properties to
be studied.® Some authors have attempted to use
semiempirical quantum calculations to make order-of-
magnitude predictions of the cluster sizes at which the
low-coordination-number diamond fragments become
more stable than close-packed structures.’ !°

Another approach to the theoretical study of silicon
has been the use of interatomic potential functions to
model bulk and surface properties. Such functions typi-
cally have interactions among pairs and triplets of atoms
(or more complicated terms) and incorporate a number of
adjustable parameters. A set of theoretical and experi-
mental data is then used as a data base for choosing the
parameters in the potential. This approach was first used
for silicon by Keating,!! but his potential was applicable
only for small distortions about the equilibrium diamond
lattice. The first silicon potentials applicable to all intera-
tomic distances were developed by Pearson, Takai, Hali-
cioglu, and Tiller (PTHT) (Refs. 12 and 13) and later by
Stillinger and Weber (SW).'* These authors knew that
simple two-body potentials, typically used in molecular-
dynamics simulations, would be inadequate in producing
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the diamond crystal structure and the random
tetrahedral network structure of the amorphous solid.
They formulated simple three-body terms that stabilized
the diamond structure. The SW potential adequately
modeled the structure of both the crystalline and liquid
phases. Subsequently, other authors applied the SW po-
tential to a wide range of systems, including surfaces,!> !¢
clusters,'’~!° and point defects in crystals.!> These calcu-
lations have shown the SW potential to be useful for qual-
itative studies, but it provides an inadequate description
of undercoordinated or overcoordinated silicon. The
PTHT potential had an incorrect cohesive energy for the
crystal structures but did fit the experimental phase tran-
sition from the diamond structure to the -tin structure
quite well. Several other potential functions have also
been advanced by Tersoff,’°~%? Biswas and Hamann,?>2*
Dodson,?® and Brenner and Garrison.?® (The three Ter-
soff potentials in Refs. 20, 21, and 22 will be referred to as
TERI1, TER2, and TER3, respectively; the two potentials
of Biswas and Hamann in Refs. 23 and 24 will be denoted
BH1 and BH2, respectively.) Most recently a series of
model potentials, termed classical force fields (CFF), have
been proposed by Chelikowsky, Phillips, Kamal, and
Strauss (CPKM) (Refs. 10 and 27) and by Wang and
Messmer.?® In some cases these agree with the ab initio
geometries for the clusters but do not reproduce the ener-
getics very well. The CPKM thermodynamic interatomic
force field (TIFF) seems the most promising of these and
has recently been applied to silicon clusters.?’ It has not
been tested for surface properties or crystal defects.
Khor and Das Sarma®*3! have developed a flexible ana-
lytic potential for silicon that seems promising, unfor-
tunately it uses a slightly different functional form and
parameter set for modeling the surface and bulk crystal
behavior. Another potential has recently been proposed
by Baskes’? that is based upon a modification of the
embedded-atom method.**?* This has proven extremely
powerful in modeling fcc metals but how well it
represents covalent systems has yet to be determined. In
many ways the present work has been inspired by all of
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these earlier attempts and builds upon and uses those
ideas that are deemed most useful from each of these
methods.

There are several reasons why it has proven so difficult
to develop a totally satisfactory potential for silicon.
Clusters of four or more atoms typically have a multitude
of configurations that are local minima on the potential-
energy surface. These involve silicon atoms with high
coordination numbers and strained bond angles. The
penalties caused when an atom forms a strained bond an-
gle are offset by the large number of weak bonds formed.
This suggests that there is no large energy penalty associ-
ated with distortion of the bond angles away from 109°.
This is in contrast to the diamond lattice, where the resis-
tance to distortions of the bond angles is quite large. A
valid potential must therefore incorporate angle depen-
dences that are different for the clusters and the crystal.
In addition, one must deal with the problem of multiple
bonding in the small clusters. If one compares the
cohesive energy per bond (E,) in the small clusters and
the crystal one finds E,(linear trimer)> E,(dimer)
> E,(crystal). This, together with information on the
equilibrium bond lengths in the dimer and crystal, sug-
gests that the dimer and trimer are stabilized by 7 bond-
ing that is not present in the crystal. Ragavachari and
Rohlfing have shown that for silicon clusters, with 2—10
atoms, a variety of hybridizations of the silicon atoms is
present.” Wide variations can even occur in a single clus-
ter. The overall problem of determining a potential for
both silicon bulk and clusters has been summed up by
Tersoff*! as the “polymorphous perversity” of silicon.

In this paper we present a potential that is a generali-
zation of the “Tersoff form,” in which the environment
dependence in the bond energy is incorporated into an in-
terference function included in the two-body potential.
In our potential, the two-body interaction is expressed as
a sum of 7- and o-bonding terms, each of which is in-
dependently influenced by the environment. This is a
flexible approach for developing a potential function that
can fit a wide range of data. The parameters in the po-
tential have been chosen to fit data on both small clusters
and bulk materials. We will present results on the struc-
ture and energetics of clusters, bulk crystals, and surfaces
of silicon. The potential will be used, in the future, in
molecular-dynamics calculations to study cluster dynam-
ics and equilibrium structures, the bulk crystalline, amor-
phous, and liquid phases, as well as the structure and dy-
namics of surface phenomena such as adsorption and
diffusion.

In order to clarify later discussions of the form of the
potential we used, and of our fitting procedure, we list the
main pieces of information that we have used in develop-
ing the functional form of the potential and obtaining the
parameters in the potential.

(1) We have used the available data on equilibrium
cluster geometries and cohesive energies, given by
ab initio calculations, for clusters of 2-10 silicon atoms.
This includes data on the global energy minimum for
each cluster and other local minima as well. Much of the
quantum data we used was from the series of articles by
Ragavachari, Rohlfing, and Logovinsky.!”>% All
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ab initio energies taken from the literature were based on
the restricted Hartree-Fock (RHF) calculations with
correlation energy included by using Mgller-Plesset per-
turbation theory to fourth order (MP4). This method is
size consistent. Size consistency is important if we are to
compare energies of various sized clusters. The 6-31 G*
basis set was used throughout. Ragavachari noted that
80-85 % of the experimental binding energy of Si, and
Si; is obtained at this level of theory. We followed his
procedure of multiplying all ab initio cohesive energies
by 1.2 to obtain a reasonable estimate of the correct
values for the larger clusters. We also performed
ab initio calculations at the unrestricted Hartree-Fock
(UHF) and RHF levels of theory using the 6-31 G* basis
set and MP4 perturbation theory for Si,, Si3;, and Si, clus-
ters to increase the variety of configurations in our
potential-energy data base. (When we needed potential-
energy curves for a range of nuclear positions, rather
than energies at a small number of specific configurations,
we preferred to use UHF/MP4 calculations. Potential-
energy curves obtained by this method behave correctly
in the limit as a cluster is dissociated into one or more
open-shell fragments.)

(2) The static properties of the diamond crystal phase
of silicon, including the cohesive energy, elastic con-
stants, and lattice parameters were used.

(3) We have used the experimental facts that the dia-
mond crystal structure is the most stable phase at low
temperatures and pressures and that at low temperatures,
as the pressure is increased, the first phase transition to
occur is to a B-tin phase. A potential function was con-
sidered acceptable only if it was consistent with these
facts.

(4) The point defect energies of the diamond-lattice in-
terstitials and vacancies were required to be positive rela-
tive to the perfect diamond-lattice energy. This is a spe-
cial case of the previous requirement that the diamond
crystal structure be the most stable phase at low tempera-
tures.

(5) The proposed model for the Si(111) 2X1 recon-
struction that best agrees with experiment is that pro-
posed by Pandey.>® The Pandey structure suggests that 7
bonding is important in the 2X1 reconstruction. The
functional form was adjusted to allow 7 bonding to sta-
blilze this proposed Si(111) 2X1 w-bond-chain recon-
struction.

We hope that by fitting the potential to data on small
clusters we will be including much of the physics that is
important for surface structure and energetics. At least
our potential will have the ability to model undercoordi-
nated and overcoordinated silicon atoms with distorted
bond angles. We believe this will be instrumental in mod-
eling surfaces and defects.

In Sec. II we will describe the actual functional form of
the potential and the fitting procedure. The reasons for
including the various terms will be explained. We will
discuss the separation we have made into 7- and o-
bonding terms. Section III will contain the results of our
model for the clusters, crystals, and surfaces, as well as
extensive comparisons with other potentials used to mod-
el silicon. Section IV will present the future directions
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we wish to take in further testing and applying this po-
tential to both surfaces and clusters.

II. POTENTIAL-ENERGY FUNCTION FOR SILICON

A. General Tersoff form

Tersoff?®?! assumed that the total potential energy of

interaction among a collection of N atoms could be writ-
ten as a sum of environment dependent pair potentials:

v=3 V. (1)

ISi<j=N

The interatomic potential between two atoms was taken
to be of the form

Vi=FcripVe(r)+1;V (r;)] . )

Here V; and ¥V, represent the repulsive and attractive
parts of the potential energy, and f is a cutoff function
for the interaction. The effect of the environment on the
(i,j) bond is included in the I;; factor. This inclusion of
the bonding environment directly into the two-body in-
teraction was proposed by Abell’’ and seems to be a
promising direction for providing flexible and reasonable
potentials for covalent systems. If one assumes this gen-
eral form and places all many-body influences in I;;, then
the most difficult part of the problem involves finding an
appropriate form for this interference.

For V 4 and Vy Tersoff used the two exponential terms
in a Morse potential. The coefficients in these terms are
among the parameters that were chosen to fit his overall
data base. Tersoff noted, from density functional theory
results, that the energy per bond decreases monotonically
with increasing coordination along the progression
dimer — graphite—diamond —simple cubic. The energy
per atom has a minimum for the diamond lattice, which
has fourfold coordination. The desire to reproduce these
trends led him to the two possible functional forms
shown below:

CXP( —é'u/a)-f-exp(—é'j,/a)

(3)

and
_ (1+an§‘(1j)‘l/2n+(1+an§;zi)“l/2n
ij 2 .

4)

Here §;; is a function of the environment of atom i, and
Gji is a function of the environment of atom j. The I;
function is thus a function of the environment of the ij
bond. The parameters in his TER2 potential were chosen
to fit the experimental cohesive energy and bulk modulus
of the diamond lattice and the theoretical relative ener-
gies of some of the other crystal phases. Tersoff pointed
out that the set of parameters he obtained is probably not
optimal for silicon, given the limited search of parameter
space he made. He has since revised the parameters,
while still using the functional form in Eq. (4), in order to
improve the diamond-lattice elastic properties. Unfor-
tunately, the resulting TER3 potential does not provide a
good description of surface properties and clusters. We
shall be making most of our comparisons with the TER2
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potential, since it is more applicable to the global behav-
ior of silicon. We have included some comparisons with
the TER3 potential for properties for which TER3 ob-
tains good results.

The Tersoff form is appealing because of the generality
of the approach and the physical justification for the
chosen form. In the results section of this paper we will
present a comparison of Tersoff’s potential and our po-
tential, but it is worthwhile to mention some of the
shortcomings that motivated the present model.

The TER2 potential was fit to the experimental
cohesive energy, bulk modulus, and density of the dia-
mond crystal phase of silicon. However, the elastic con-
stants are not well modeled, especially the ¢, term,
which is an order of magnitude too small. The predicted
interstitial and vacancy energies are close to theoretical
estimates. This potential fails to predict the experimen-
tally observed transition to the high-pressure -tin crystal
phase. This phase transition has proven difficult to
represent for most of the other models in the literature as
well. We have investigated the structures and energies of
small clusters and found that the TER2 potential gives
structures for large clusters that are in good agreement
with ab initio estimates, but it fails for small clusters
where 7 bonding is important. As we will discuss in the
results section, it seems that the overall structure of the
Tersoff potential-energy surface, for large clusters, is
similar to the ab initio surface, at least with regard to the
position of the minima on the surface. The major prob-
lem for large clusters is that his potential predicts
cohesive energies that are too large.

The poor values for the elastic constants for TER2 are
due to the softness of the bond-angle-bending contribu-
tion to §;;. If the angle-bending contribution were made
larger to correct this, it would drastically change the en-
ergies of the surfaces. It would change the predicted
minimum-energy geometries and overall potential-energy
surface to one similar to the SW surface, which, as we
will show, is qualitatively different from the ab initio po-
tential surface. We have confirmed this by testing
Tersoff's TER3 (Ref. 22) potential on clusters. Even
though TER3 managed to correct the elastic constants,
we find the clusters to be much less well modeled. Some
of the problems in Tersoff’s potential are due to the less
than optimal choice of parameters; yet it is unclear that
even an optimal set could provide good results for all of
the diverse bonding situations, especially small clusters
with extensive 7 bonding.

Tersoff has attempted to obtain a potential for many
diverse types of bonding by fitting to the dimer, graphite,
diamond, and then the higher-coordination hypothetical
phases. We believe that the drastic interpolation between
the dimer and the solid phases is one of the shortcomings
of his potential. We believe that our model will provide a
more accurate interpolation, since it has been fit to more
diverse bonding situations, including the bonding in clus-
ters of silicon atoms.

B. A new potential for silicon

In an attempt to model silicon in all of its diverse
bonding situations, we approached the problem with a
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simple generalizable function. As already stated,
Tersoff’s form of an environment-dependent two-body in-
teraction was our starting point. We assumed a simple
functional form for the potential. The parameters were
chosen to fit data on the clusters and on the bulk phases.
We then introduced changes in the functional form only
when it was clear that there was some bonding situation
for which the potential was deficient.

For each functional form chosen, we first adjusted the
parameters to fit the ab initio cluster energies for
Si,~Si. After fitting the clusters we used the potential
to calculate the properties of the diamond crystal struc-
ture, the values of the interstitial and vacancy energies,
and the relative energies of other crystal phases. If the
potential gave poor results we would modify the parame-
ters to obtain, if possible, better results for the bulk prop-
erties. The new parameters would be tested by applying
the potential to clusters once again. If the potential was
Jjudged to be inadequate we would modify the potential to
increase its complexity and flexibility. The new function-
al form was then subjected to the same procedure of ad-
justment of parameters and testing. By this iterative pro-
cess, the potential function became more flexible and
more complicated.

At each stage of this iterative development of the po-
tential, the type of complication that was introduced was
determined by what we felt to be the major deficiency of
the preceeding form. This involved subjective decisions
of what was important and nonunique choices of how to
make the potential more flexible. Thus the resulting
functional form is in no sense unique. Many aspects of it
have no simple physical interpretation; the basic
justification is that we found it necessary to have some-
thing this complicated to achieve the quality of fit that
was desired. It is entirely possible that some totally
different form might be more simple as well as more ac-
curate. One feature of the resulting potential does have a
simple physical interpretation. We found it useful to
separate the attractive portion of the potential into 7 and
o bonding terms, each of these being independent func-
tions of the environment.

The final potential-energy function we obtained is

V=3 Vi, (5
1<i<j<N

l/U =fc(rlj )[ VR(rU)+IJVﬂ.(rU)+I,7Va(r,j)] ) (6)

where the I;; functions are termed the “interference”
functions. In order to help us define the separation of ¥,
into ¥, and ¥V, we imposed restrictions on the form of
the interference functions. First we demanded that
I7=I7=1 for Si, (no neighbors are present to interfere
with the bonding). We expected 7 bonding to be unim-
portant in the diamond lattice. Hence I;] was construct-
ed such that I;7=0 for the diamond crystalline solid and
for small distortions of that structure. We demanded
that I7=1 for the diamond lattice and small uniform
compressions and dilations of the structure, but not for
other distortions such as shearing. These conditions were
sufficient to allow us to define the various terms in the
potential-energy function.
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For ¥V, and V¢ in Eq. (2), Tersoff used the two ex-
ponential terms obtained from a Morse potential fit to his
overall data base. We prefer to define the separate attrac-
tive and repulsive curves on the basis of quantum-
mechanical calculations of various dimer potential-
energy curves, in the following admittedly heuristic way.

We imagine that the repulsive function Vy represents
Pauli exclusion of overlapping occupied orbitals on the
two atoms of a dimer. The attractive function is made up
of ¥V, and V contributions that represent covalent bond-
ing due to the favorable interaction derived from putting
electrons into bonding ¢ and 7 orbitals. We expect that
a reasonable representation of these three functions
would give V(r) as a positive, monotonically decreasing,
short-ranged function of r and V,(r) and V _(r) as nega-
tive, monotonically increasing, longer-ranged functions of
r. All three contribute to the ground-state dimer
potential-energy surface. Thus, applying (5) and (6) to a
pair of Si atoms, we obtain

Veord(p) =V (r)+V (r+V, (r), @)

where ¥°°"(r) is the ground-state potential-energy func-
tion of a silicon dimer (which is a triplet state). We have
used the assumption, noted above, that the interference
functions are unity for an isolated dimer.

Imagine a silicon dimer with the two nuclei lying along
the z axis. The covalent ¢ bonding in the ground state
arises from putting two electrons with opposite spin in a
bonding o orbital made primarily from the valence p, or-
bitals on each Si, which lie along the internuclear axis.
The 7 bonding arises from having one unpaired electron
in each of two 7 orbitals. One of the 7 orbitals is pri-
marily made of the valence p, orbitals on each atom, and
the other is primarily made of the valence p, orbitals on
each atom. There is an excited state of the silicon dimer,
for which quantum calculations can be performed, in
which this o and 7 bonding are frustrated in the follow-
ing way. Two electrons with the same spin are forced to
be in (necessarily different) p-o orbitals made up of atom-
ic p, orbitals, and two electrons with the same spin are
foced to be in (necessarily different) p- orbitals made up
of atomic p, orbitals. For this state, the interactions
among the various valence electrons lead to interactions
that are analogous to those in the ground state of the di-
mer but that are repulsive rather than attractive. With
this as motivation, we assume that

Vanti(r)_—_ VR(r)—VU(r)_Vﬂ(r) 5 (8)

where V2"i(r) is the potential-energy curve for the excit-
ed state described above. We now combine Egs. (7) and
(8) to obtain

_ Vbond( ry— Vanti( r)
2

V (1) +V_(r) )

and

_ Vbond( r)+ Vanti(r)

Ve(r) >

(10)

Equation (10) is an explicit equation for the repulsive
potential in terms of two well-defined potential-energy
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curves for a silicon dimer. Equation (9) gives the sum of
the o and 7 potentials. The o and 7 functions can be ob-
tained separately by considering the diamond crystal
structure and its isotropic expansions and contractions.
For such structures, we have demanded that /=1 and
I™=0. Thus the energy of such a crystal is

E=2N[Vg(n+V,(r], (11

where r is the near-neighbor distance and N is the num-
ber of atoms in the crystal. This follows from Egs. (5)
and (6) and applies for values of r for which interactions
between only nearest neighbors contribute to the energy.
[The cutoff function f in Eq. (6) will be chosen so that
this range of r includes the equilibrium distance in the
crystal.] We arbitrarily chose V, to be an attractive
function with three parameters:

V.(r)=a,{tanh[a,(r —a;)]—1} . (12)
This gives
_ Vbond(r)_ Vanti(r)

Vo=

5 —a,{tanh[a,(r —a;3)]—1} .

(13)

We choose the three parameters in ¥, so that, when Eq.
(13) is substituted into Eq. (11), the result is consistent
with the cohesive energy, bulk modulus, and bond length
of crystalline silicon. With the three chosen parameters
V. is short ranged (vanishing almost completely at 2.9 A,
see Fig. 1). .

ynd(r) and V"i(r) were obtained by performing
UHF/MP4/6-31G* calculations on the ground state and
the excited state mentioned above. The numerical values
were rescaled by a factor of 1.2 (see discussion above) and
fit to the following functional forms, often referred to as
the extended Rydberg potential:

6
1+ 3 bp'
i=1

yeond(r)=—p, exp(—b,p) (14)

and

Vanti(r)=(b8+b9p+blop2)exp(—b7p) . (15)
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FIG. 1. The two-body potential-energy functions defined in
our potential. The label of these curves are from the subscripts
of the appropriate potentials defined in the text. The bond and
anti curves are the quantum surfaces described by Egs. (14) and
(15). The R and 4 curves are from Egs. (9) and (10), respective-
ly. The 7 curve is the m-bonding part of the attractive interac-
tion defined in Eq. (12). Note that bond is the potential energy
felt by the isolated dimer, and R +o¢ is the potential when no 7
bonding is present (i.e., in the diamond lattice phase of silicon).

In both of the above equations p=r —r,, and r, is the
equilibrium distance for the ground-state energy surface
of the dimer (2.184 A). The values of the parameters in
pbond panti and ¥, are given in Table I and the func-
tions are shown in Fig. 1.

The cutoff function f(r) in Egs. (2) and (6) is taken to
have the same form as Tersoff’s cutoff function:

1, r<R—D (16a)

Fulr)= 4—3sin[+m(r —R)/D],

¢ R—D<r<R+D (16b)
0, r>R+D, (16¢)

TABLE 1. The coefficients for the various functions defined in the present potential. The b
coefficients were fit to the two-body interaction surfaces and the ¢ parameters for the 7 switching func-
tion were chosen arbitrarily. The a and d coefficients were chosen to fit the data on clusters and crys-

tals.

a;=15.211 (}(gz}l/mol) b,=2.8350 .‘:\:; d,=0.005 387
a,=4.0900 A b,=0.7296 A . 3 d,=0.007 894
a;=2.3650 A by=—2.2965 6_4 d,=—0.081615
a,=0.0090 b4=—1.367z fg d,;=—0.083367
as;=0.0100 bs=2.0485 A . 6 d,=0.380043
a,=1.0000 bs=—0.4745 A ds=0.374 569
a;=0.3333 r,=2.184 A d¢=0.054232
ag=0.4521 D,=175.47 kga_ll/mol ¢, =—175.0
a,=-—0.8763 b,=3.4835 A c,=240.0
a,0=1.8387 bg=165.16 (kcal/mol)° . c;=—108.0

a,; =75.3470 by=96.70 (kcal/mol) A . s cs=16.0
a;;=0.3425 b,o=495.73 (kcal/mol) A

013-_—5.0000
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where R =3.60 A and D =0.15 A. This will cut off the
potential just short of the second nearest neighbor in the
diamond lattice.

C. The interference functions

The question arises of how to represent the
environment-dependent terms in the potential, i.e., the in-
terference functions 1™ and I°. We decided to assume
that the degree of interference of one bond with another
should change on the same distance scale as does the at-
tractive bond energy of a Si—Si single bond. It is con-
venient to define a quantity s(r;;) for a pair of atoms a
distance r;; apart, that is a measure of the extent to which
they are bonded. We shall call this the bonding function.
The definition which we use is

1, r<r, (17a)
Ve(r)+V (r)

Ve(r)+V,(r,)’

s(r)=

Selr) rzr,, (17b)

where r, =2.35 A is the distance for the minimum of the

J
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o bond. Thus s(r) changes monotonically and with con-
tinuous slope from 1 to O as r increases from 0 to «. For
clarity of notation we will, from now on, refer to s(r;;) as
s;j- fc is again the cutoff function.

Tersoff chose in his TER1 potential to represent the in-
terference function in terms of his w functions, which are
analogous to our bonding functions s, and cosines of an-
gles between various bonds. Similarly we have chosen to
use the bonding functions and the cosine function. Vari-
ous polynomials and powers of polynomials appear in the
interference functions in ways that are more complicated
than the formulas used by Tersoff. In particular, certain
polynomial terms were chosen to stabilize or destabilize
various bonding topologies such as triangles, tetrahedra,
and squares.

1. The o-bonding interference

The o-bonding interference function is expressed in
terms of two factors, one that involves angles between
bonds and the other that involves a polynomial in the
bonding function. The functional form which we have
chosen is

1 1
- ; S
7
1+Z; S agsaspt X asspsuSuSpsi | 1+Z; > [swP(8jy)+s; P(6;)]
1<k<N 1Sk<I<N 1<k<N
(i#k# ) (i#k*j , (i7#k#j)
i#1#))
[

where ening of the bond when it has neighbors at or near this
. smaller angle. This angle dependence of the o interfer-
Z;= 1<k2<1v(s'k 55 (19)  ence function was needed to make the B-tin structure
(17 k7 j) have a cohesive energy in accordance with experiment,

represents the coordination of the bond (i,j) of interest.
In this notation 6, is the angle at atom j of the triangle
whose vertices are the positions of atoms i, j, and k.

In order to correctly model the elastic constants of the
silicon diamond lattice the P(6) term must have a
minimum at the tetrahedral angle and a second derivative
appropriate to the elastic constants. We initially chose
P(6) to be a quadratic function of cos(6), namely
a [cos(9)+§]2. If a was chosen to give good elastic con-
stants, then it was difficult to obtain a phase transition
from the diamond to SB-tin structures at high pressure, as
well as good relative energies for the other crystal phases.
This form for P(6) also caused the cohesive energies of
the clusters to be too low. We increased the flexibility of
P(8) by making it a sixth-order polynomial and varying
the coefficients subject to the constraint that we still ob-
tain good first and second derivatives at the tetrahedral
angle of 109.47°:

6
P(6)= 3 d,cos"(0) . (20)
n=0

The polynomial P(6) has a second, slightly higher,
minimum at 70°. This second minimum allows less weak-

but an interference function with only the P(8) contribu-
tion would lead to calculated fcc and bcc energies that
are lower than that of the diamond lattice. In addition
the T (tetrahedral) and H (hexagonal) self-interstitials in
the diamond crystal were found to be too stable. We then
included the three-body and four-body polynomial terms,
a,4SikSjx and ass;s;s;S;Sy, which destabilized the de-
fects and the close-packed crystal phases. Once this was
done the defects were modeled adequately and the
cohesive energies of the close-packed crystals were less
stable than diamond but were competing with S tin. A
slight additional destabilization of the close-packed struc-
tures was produced by including the coordination num-

ber dependence, ZZ«" and Z,-T, as factors that affect the
strength of the three-body, four-body, and P(6) terms.
This coordination dependence also decreases the effect of
these terms on some small clusters, where compact struc-

tures are present.

2. w-bonding interference

We assume that 7 bonding occurs when a bond and its
neighboring atoms (if any) are close to a planar
configuration. The largest coordination that is typically
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allowed for the atoms that form 7 bonds is 3. Thus 7
bonding occurs in graphite structures, or in small clusters
that are planar or of low coordination. Quantum calcula-
tions have shown that 7 bonding is important in silicon
clusters with 2—6 atoms. It is also important for some
surface properties, especially Pandey’s proposed 2X1
reconstruction of the Si(111) surface’®3® and possibly the
Si(100) 2 X 1 dimer reconstruction. We expect 7 bonding
to be nonexistent in the diamond-lattice structure, which
is a classic situation of pure ¢ bonding using hybridized
orbitals. We have found that modeling 7 bonding for this
wide range of situations is extremely difficult. We have
had to construct an interference function that is more
complex than was needed for the o bonding.

A way to model 7-bonding interferences is in terms of
deviations from planarity. For any four atoms, we use
the volume of the parallellepiped formed by the four
atoms, divided by the bond lengths that determine the
sides of the parallellepiped:

Uijk,=rij'rj1><r,~k . (21)

Since we desire a harmonic restoring force for small devi-
ations from planarity, we use the square of this volume in
the potential function. Several other polynomial terms
are also included to increase the flexibility of the poten-
tial in describing the small clusters. The final form of the
m-bonding interference function is
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I7=S(Z)S(Zj)exp |— ¥ F;— I F,
1<k<N 1<Sk<I<N
(i#k)) (i#k#j,
i#1#]))

- > Fs
1<k<l<m<N
(i#k#j (22)
iEI#]
iF=m¥*j)

Here S (Z/) is a switching function of the form

1, Z<2 (23a)
S(Z)={c,+c,Z+c3Z%+c,Z3 2<Z<2.5 (23b)
0, 2.5=Z, (23c)

and Z] is the coordination of atom i, excluding atom j,

Z/= 3 sy . (24)
1Sk<N
(i%k#))
This will turn off the ;] term as the number of additional
bonds around either atom i or j goes from 2.0 to 2.5.
This will effectively turn off 7 bonding in the compact
clusters with more than six atoms and in the bulk crystal
phases. The 7 bonding must be completely turned off in
the diamond lattice in order for the separation of ¥, and
V., to be performed in the manner discussed above. The
F,, F,, and F; functions are the three-body, four-body,
and five-body polynomial terms needed to fit the 7 bond-
ing in small clusters:

4 4
Fimaus.s +a9[sik(1 Sig )+ (1—=s5)] 25)
3T AgSy Sk )
1+2,
. ayy[spesy(1—s; (1 =5 )55, (1—=s; (1 =s;)]
Fy=ao(sysysps;) 5
1+2}
2
Vjjki SikSji Si1Sjk Sik Sit SikSjt 26
A Y AN ST I P TR P Y Rl )
rij Ti |17 Figl ™17 jk Fig 1711y Ti 17171
Fs=a 30885018 jmSkiSim SikSjicSimSj1SkiSkm +SitSj1SikS jm SkiSim
+ 8018 1Sim Sk SkiStm T SimSjmSikSj1Skm Sim T Sim S jm SitSjkSkm Stm ) - 27

The ags;.sjc term is a three-body term that represents the
interference with 7 bonding between atoms i and j when
both atoms are bonded to a common neighbor k. The aq
term is present only to stabilize the linear trimer. The
a,, term is similar to the ag except that it represents in-
terference in 7 bonding when atoms i/ and j are both
bonded to two common nearest neighbors. The a,; term
is used to destabilize ring structures. Its effect decreases
rapdily with coordination so that it only acts upon open
rings and not on other planar structures. The a,, term
includes the volume function described above in Eq. (21)
and allows I to favor planar structures. Finally, Fs is a
five-body term that is needed to destabilize certain planar
nonring structures. Its six terms involve simple permuta-
tions of k,I,m.

The most fundamental test of the usefulness of these
terms is simply fitting the clusters with and without each
term to find the set that is necessary in order to obtain
the best overall fit and correct minimum-energy
geometries for the clusters. In fact, many other polyno-
mial terms, not mentioned here, have been tried and have
proven less effective in modeling Si clusters. Of course,
the full justification of this potential can only be under-
stood in light of the attempt to obtain a global fit to many
different bonding situations. It is also important to
remember that this model can be greatly simplified if one
wants to fit only certain situations. The ay, a;, and a3
terms could be eliminated if one were not interested in
representing the small clusters. The ag, a;y, and a,
terms would still be able to represent surface 7 bonding.
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D. Summary

The potential we are proposing for silicon is complete-
ly defined by Egs. (5), (6), (10), and (12)-(27), together
with the parameters in Table I. In the remainder of this
paper, we shall present various results calculated with
this potential and compare them with experimental data
and with results calculated with other potentials that
have been proposed for silicon.

III. RESULTS
A. Silicon clusters

We have attempted to find a potential that would give
correct geometries and binding energies for the global po-
tential energy for clusters of various sizes, have addition-
al minima for geometries where quantum mechanics indi-
cates there are low-energy local minima, and not have
any low-energy local minima that are absent from the
true quantum-mechanical surface. In addition, we want-
ed the potential-energy function to generate correct
curves for the energy as a function of distance as an atom
is removed from a cluster. In other words, we wanted the
overall shape of the multidimensional potential-energy
surface to be correct for low-energy configurations. We
were less concerned about achieving an accurate fit to the
true surface for very high-energy configurations, provid-
ed that the function also generated large values of the en-
ergy for such configurations. We believe that all of these
criteria are important if molecular-dynamics calculations
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of clusters and condensed phases are to be performed. If
experimental cluster fragmentation studies like those per-
formed by Bloomfield, Freeman, and Brown*® are to be
understood in terms of atomic processes, then the various
pathways to dissociation have to be described accurately.
To model this type of fragmentation, a potential should
represent, as well as possible, the total-potential-energy
surface, and not just the global minima.

The quantum-mechanical results for clusters are sum-
marized below and compared with our own and other po-
tentials. The ab initio results are taken from Ragava-
chari and co-workers.!”> We refer to the cluster
geometries with a notation that is, as much as possible,
consistent with Ragavachari’s. To find the energies and
geometries of local and global potential-energy minima
for all of the potentials, we have used both search and
steepest-descent methods from a set of initial con-
figurations. Several initial geometries were chosen for
each cluster, including the geometries corresponding to
the various minima on the quantum potential-energy sur-
face. We have also used the results already obtained for
the minimum energy geometries of the SW potential.!”!®

The present model was compared to Tersoff’s second
potential?! (TER2), the potential of Stillinger and
Weber!* (SW), and the second potential of Biswas and
Hamann** (BH2). Figure 2 shows the (binding
energy)/atom as a function of cluster size. We obtain
good fitting to the energetics of the clusters. Only for Si,
is there a serious discrepancy. For clusters with 5-7
atoms, the transition is occurring in which 7 bonding be-
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=
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FIG. 2. Cohesive energy per atom for small clusters of silicon atoms at their global minimum potential energy and for the bulk
crystal. The symbols denote “correct” (M), present (0), TER2 (0), BH2 (A), SW (A). The “correct” numbers for clusters are the re-
sults obtained from ab initio RHF or UHF quantum-mechanical calculations at the UHF/MP4/6-31G* level, multiplied by 1.2. See
the discussion in the text. They represent the best estimate for the correct energies of clusters. The “correct” number for the crystal

is from experiment (Ref. 15).
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comes less important, and more compact structures be-
come energetically favored. This is difficult to model
correctly and could be part of the problem with our cal-
culated cohesive energy of Si;. Tersoff’s potential has the
correct overall shape of this curve, but it predicts
cohesive energies that are too large and approach the
crystal limit much too quickly. Both the Stillinger-
Weber and Biswas-Hamann potential predict cohesive en-
ergies that are too small.

If a potential-energy function were optimal, there
would be a one-to-one correspondence between the local
minima on its surface and the local minima on the true
quantum-mechanical surface. Moreover, the relative and
absolute energies and the geometries of the corresponding
minima should be in close agreement, especially for the
lowest minima. None of the potential-energy functions,
including our own, satisfied all these conditions for all the
clusters. Various types of discrepancies were observed.
The least important are small quantitative differences be-
tween the minima. The most serious are the absence of
minima on the function surface that are present on the
true surface, or vice versa. Of intermediate, but less seri-
ous, concern is the situation in which a minimum on one
surface with symmetric structure corresponds to a set of
symmetry-related minima on another surface. In Table
IT we show the binding energies of the local minima on
the quantum-mechanical surface and on the surface of
the various potentials. The corresponding structures are
shown in Figs. 3-9.

For Si,, Si;, and Si; we obtain global minima that are
of the same symmetry as the predicted quantum-
mechanical global minima. For Sis, Sis, Sig, and Si,, we
obtain a local minimum that is of the same symmetry as
the quantum global minimum. In addition, for Sig and
Si;y our global minimum is in fact a local minimum on
the quantum surface. For Siy Ragavachari obtains struc-
ture 6a, as his global minimum. We obtain 6d as our glo-

o £
P
M

4e

FIG. 3. Si; and Si, structures referred to in Table II. For Si,
our potential has structure 4a as the global minimum, in agree-
ment with quantum-mechanical results. The TER2 potential
gives 4c as the minimum.
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%

5a 5b (D)
5¢c (C,,) 5d
5e

FIG. 4. Si; structures referred to in Table II. We find 5a as
the global minimum and 5c and 5d as nearby local minima. The
ab initio surface has 5b as the global minimum, and although 5a
is close in energy, it is not a minimum.

Salt-d
N
RA o

FIG. 5. Sig structures referred to in Table II. Our potential
has some low-energy structures that involve 7-bond stabiliza-
tion (6g), but 6d is the global minimum. This is close to the
Jahn-Teller distorted global minimum quantum structure 6a.
Note that BH2 and SW favor the more open structures such as
6f. The fact that we obtain 6g as a low-energy structure indi-
cates that our 7 interference function does not capture all the
essential features of the 7 bonding. Tersoff’s potential also gives
6d as the global minimum.



TABLE II. Binding energies (kcal/mol) of minima on the potential-energy surfaces. A Q represents
a minimum for which we have no reported value of the energy. A * represents a structure that is not a
minimum but for which the ab initio energy is known. The ? for structure 9c shows that there was
some uncertainty as to whether this was a minimum on the quantum surface. In parentheses we have
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summarized the results for the different potentials. The format of this summary is discussed in the text.
At the bottom of the table is a summary of the results for all clusters studied.

Structure Quantum Present SwW TER2 BH2
2 75.5 75.5 50.0 60.5 57.3
(1/1,1,0) (1]1,1,0) (1/1,1,0) (1]1,1,0)
3a 177.6 178.0 99.9 120.9
3b 178.0 186.2 102.3 181.4 125.48
(212,0,0) (2]2,0,0) (212,0,0) (2]1,0,0)
4a 296.3 300.1
4b 187.5 2419 210.2
4c 2240 250.6 153.8 362.0 193.6
e O 283.6 149.8 181.4
(33,0,0) (312,0,1) (3]2,0,1) (3]1,0,1)
5a 361.0
5b 385.2 316.4 2472 391.4 280.4
5¢ 368.4 340.8
5d 336.4 237.5 464.0 281.9
Se 232.3 249.6 287.6
(312,0,2) (312,0,1) (3]1,0,1) (312,0,1)
6a 505.2 322.6 532.0 364.7
6b 505* 438.2
6¢ 443.6
6d 452.1 604.3
6d 362.8 352.7
6e O 326.0 369.5
6g 450.6
(210,2,1) (212,0,0) (211,1,1) (212,0,1)
7a 621.3 549.8 374.4 695.6 459.3
7b 594.9 532.6 650.0 472.7
Te 563.9 547.3 686.0
7d 519.4
Te 507.6 412.6
(4/3,0,1) (4/1,0,1) (4/3,0,0) (4|2,0.0)
8a 760.4
8b 681.9 645.3
8¢ 671.3 736.2
8d 663.3 638.3
8e 666.1 619.0 812.3
8g 668.7
8h 528.9 584.3
(4]3,1,0) (4/0,0,1) (4|12,1,0) (4/0,0,1)
9a 755 690.4 830.4
9¢ 7527 790.8 903.6
9d 667.9
9e¢ 597.2
(22,0,0) (2/0,0,1) (212,0,0) (210,0,1)
10a 893 742.9 534.3 901.1 673.1
10¢ 888 868.7 980.6
10d 787 903.0 999.6
10e 689.9
10g 662.9 776.2
(3]3,0.0) (3]1,0,2) (3/3,0,0) (3]1,0,1)
(24/19,3,2) (24/11,0,7) (24/17,2,3) (24]10,0,6)
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7a 7b
Tc 7d

Te

FIG. 6. Si, structures referred to in Table II. Both Tersoff’s
(TER2) and our potential agree with the quantum results in
identifying 7a as the global minimum and 7b and 7c as low-
energy local minima. For clusters this large, planar structures
are not competitive with the compact structures in our poten-
tial.

bal minimum. Structure 6a can be thought of as a
symmetry-broken 6d, where the top and bottom atoms of
the octahedron have distorted to one side. The = in-
terference function favors planar structures, and we ob-
tain a low-energy, planar local minima for Si¢ that is in-
correct. This demonstrates the difficulty in correctly

8a (Dg,) 8b (Cyy,)

8g 8h

FIG. 7. Sig structures referred to in Table II. SW and BH2
both favor the cube (84), while TER2 and our present model
favor much more compact structures.
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¥

9a 9c
9d 9e

FIG. 8. Si, structures referred to in Table II.

representing some aspects of 7 bonding. Tersoff’s poten-
tial does poorly for Si, and Sis, where it gives a global
minimum that is of the wrong symmetry and is much
more stable than the other local minima. This is not
surprising, since Tersoff did not attempt to model the 7
bonding in silicon. The SW and BH2 potentials have
fewer local minima, and both have global minima, for
most of the clusters, that are of the wrong symmetry. In
fact, the SW and BH2 give very similar results for the
clusters, which is due mainly to the fact that they have

10a 10¢
é 10e
10d

FIG. 9. Sij, structures referred to in Table II. It was found,
for almost all models we tried, that the 10d structure was
favored over 10c. This disagrees with the quantum results
which find 10d to be about 80-100 kcal/mol higher in energy
than 10c¢ and 10a.

10g



similar forms for their three-body potentials. It is seen
that only Tersoff’s and our potential give the wide variety
of local minima that characterize the quantum surface.
This is not too surprising, since both potentials are simi-
lar in form.

To provide a quantitative measure of the extent to
which a potential-energy function has the correct number
and types of local minima, we have devised a rating
scheme of the following form: (mli,j,k). Here m is the
total number of local minima that are known to exist on
the ab initio surface, i is the number of minima on the
surface of a potential function that are of similar
geometry and the same symmetry as minimum on the
ab initio surface, j is the number of minima on the sur-
face of a potential-energy function that are of similar
geometry to a minimum on the ab initio surface but that
have a higher or lower symmetry than the ab initio
minimum; and k is the number of minima found on the
surface of the potential function that do not correspond
to minima on the ab initio surface. (In counting minima,
several minima that are related by symmetry are counted
as a single minimum.) For a cluster with m minima, a
perfect rating for a potential function would be
(m|m,0,0), i.e., all ab initio minima are present with the
right geometry and symmetry, and no spurious minima
are present. In Table II, this rating is given for each po-
tential for each cluster size, and at the bottom the sum-
mary for each potential is given. For clusters from Si, to
Siyg, the ab initio calculations have identified 24 minima.
The present potential generates a surface that has 19 of
them with the right symmetry and approximately the
right geometry, and three with approximately the right
geometry but incorrect symmetry. (Therefore, only two
ab initio minima for these nine clusters are completely
missing from the potential surface.) Meanwhile, only two
spurious minima are present for the nine clusters. By this
rating scheme, the TER2 potential is almost as good as
the present potential in displaying the variety of minima
seen on the ab initio surface, whereas the SW and BH2
potentials have fewer correct minima and more spurious
minima.

When comparing all the various potentials, we see that
the approach involving environment-dependent two-body
potentials (Tersoff’s and ours) seems to represent bonding
in clusters in a more reasonable way. They also tend to
give a different class of local minima from SW and BH2.
Thus we have two qualitatively different types of multidi-
mensional potential-energy surfaces. SW and BH2 would
seem inadequate for MD studies of covalent clusters
based upon these results. Tersoff’s potential breaks down
for small clusters, where = bonding is important.
Tersoff's TER3 potential, in which the bulk behavior is
improved, gives cluster results very similar to the SW and
BH2 potentials.

In addition to the binding energy, the potential should
describe dissociation correctly if it is to be used for
dynamical studies of clusters. We show in Figs. 10-12
some representative dissociation curves for Sij and Siy.
This gives us some confidence that we are correctly mod-
eling not only the minima but also the overall shape of
the surface.
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FIG. 10. The quantum- and potential-energy surfaces are
compared for Si; when a silicon atom approaches a dimer along
the perpendicular bisector. R is the length of the bisector. The
quantum-mechanical  results (UHF/MP4/6-31G*)  are
represented by (O).

B. Crystals

The most stable crystal structure for silicon, at all but
very high pressures, is a diamond lattice. We have al-
ready stated that our potential has been chosen to give
the experimental cohesive energy, bulk modulus, and
density (lattice constant) for this phase. The elastic con-
stants are very sensitive to the angular form of the o in-
terference function I,. The accuracy of the elastic con-
stants (especially c,4) gives a good indication of how well
the model is representing small angular distortion about

0
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S 60
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©
z
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o
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= 1404
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160 K
-180 4
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FIG. 11. The potential energy of the Si; equilateral triangle
as a function of R, the Si-Si distance. The quantum results are
at the UHF/MP4/6-31G* level.
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FIG. 12. The dissociation of Si, by removal of an Si from a
planar rhombus structure. R is the distance from the center of
the equilibrium structure to the silicon that is removed. The
quantum results are at the UHF/MP4/6-31G* level.

the minimum. With the present choice of our potential
parameters we obtain the results in Table III. The elastic
constants are in excellent agreement with experiment.
We also avoid the severe problem with shear displace-
ments found for Tersoff’s potential, caused by the weak
angle dependence of his interference function and indicat-
ed by his low value for c¢4. The Stillinger-Weber poten-
tial models the elastic constants reasonably but gives a
cohesive energy of the crystal that is too low. In his third
potential, Tersoff corrected the c4, elastic constant, but
the range of the validity of this potential is limited to
bulk behavior. For the phonon frequencies at the zone
boundary we find results very similar to those found with
the SW potential. The frequencies calculated using our
potential are 10-15 % higher than experiment, except for
a much larger error for the transverse acoustic (TA)
mode. It should be noted that the present potential was
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not fitted to any phonon-dispersion data. The TER2 po-
tential is in good agreement with experiment except for
the frequency of the TA branch, which is too low. The
TER3 potential produces very good agreement with most
of the experimental frequencies, but gives a TA-branch
frequency that is too high.

Next we consider the potential’s ability to model de-
fects in the diamond lattice. We have calculated the de-
fect energy in a two-step procedure. We determined the
energy of a large unit cell containing one defect, where
the atoms in the cell had been relaxed. We then subtract-
ed the energy of the same number of atoms in a perfect
lattice. The point defects we have evaluated are the
tetrahedral (T') and hexagonal (H) interstitials and the va-
cancy (V). We used a unit cell with 65 atoms for the in-
terstitial and 63 atoms for the vacancy and allowed the
atoms in the cell to relax. Tersoff used a unit cell with
217 atoms (215 for the vacancy). From tests we have per-
formed on the convergence of the defect energy with in-
creasing cell size (decreasing defect concentration) we be-
lieve that our results would not be greatly changed by us-
ing this larger cell. Our results are summarized in Table
IV. There is no good experimental data on defect ener-
gies, although theoretical estimates based on the DFT-
LDA suggest that the defect energies relative to the per-
fect crystal are in the 5-6-eV range for the T interstitial
and 4-5 eV for the H defect.*! "% All the calculated de-
fect energies in Table IV are positive, as is necessary in
order to be consistent with the experimental fact that the
diamond lattice is the most stable crystal structure for sil-
icon. The difference between our results for the T inter-
stitial and the others is most likely due to the weak o-
bonding interference we incorporated for angles near 70°
[see the discussion after Eq. (20)].

Finally, we have applied our potential to various other
crystal phases, comparing the energy versus volume with
experiment, the results of other models, and with the
DFT-LDA results.** ~*7 Real silicon is found to undergo
a phase transition from the diamond to B-tin structure at
high pressure (125 kbar at T=77 K). BH2 and TER2
predict a transition to a simple-cubic structure, while SW
predicts no transition at all. Our potential gives a T =0

TABLE III. Properties of the diamond crystal phase of silicon. The cohesive energy, lattice con-
stant, elastic constants, bulk modulus, and phonon frequencies at the zone boundaries are presented for
the various potentials and compared with the experimental results. The phonon frequencies for the

TER3 potential are from Ref. 22.

Expt. TER3

Parameter (Ref. 38) Present SW TER2 (Ref. 22)
Energy (kcal/molatom) 106.7 107.3 100.1 106.7 106.7
a, (A) . 5.431 5.427 5.431 5.431 5.431
c1l (kcal/mol A’) 23.9 22.1 21.8 17.4 20.5
cl2 9.20 10.1 11.0 12.4 10.9
c44 . 11.4 8.7 8.13 1.44 9.9
B,, (kcal/molA’) 14.1 14.1 14.6 14.1 14.1
LTO(I') (THz) 15.5 17.9 17.8 16.7 16
TO(y) (THz) 13.9 15.4 15.6 15.5 16
LOA(y) (THz) 12.3 13.1 13.0 11.9 12
TA(y) (THz) 4.5 7.0 6.5 2.8 9
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TABLE IV. Point defect energies (eV) in the diamond crystal
phase of silicon. T and H refer to tetrahedral and hexagonal in-
terstitials, respectively.
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TABLE V. Relative energies of various crystal phases at
their minimum in energy. DFT refers to the density functional
theory results of Yin and Cohen (Refs. 45 and 46).

T interstitial  H interstitial Vacancy
Present 0.8 3.0 4.5
TER2 (Ref. 21) 45 3.5 2.8
TER3 (Ref. 22) 3.8 4.7 3.7
BH2 (Ref. 24) 3.6 5.1 3.8
DFT (Refs 41-44) 5-6 4-5 3-4

K transition to a B-tin structure at approximately 250
kbar. The main reason for the discrepancy in the transi-
tion pressure is that the B-tin structure from our model is
10 kcal/mol higher in energy than diamond, whereas the
experimental difference is about 6 kcal/mol. This, in
conjunction with a density for B-tin that is about 12%
too low in our model, gives the large discrepancy in the
pressure. Of all the models that have been presented to
this date, only the PTHT (Ref. 12) and our present poten-
tial are consistent with this phase transition. We have
verified that, for our potential, the B-tin structure is
mechanically stable at low temperatures and high enough
pressures against small distortions in the shape and size
of the unit cell.

Table V compares our present model with the DFT-

AE,.., AE...
Crystal phase DFT (kcal/mol) Present
Diamond 0.0 0.0
B-tin 6.2 9.6
Simple cubic 8.1 9.2
HCP 12.7 16.1
Graphite 16.4 16.0
fee 13.1 11.5
bce 12.2 12.7

LDA results for the various phases. We see that most of
the crystal phases were predicted to be slightly too high
in energy. (Note: AE, = EPhase — pdiamond here fphase
is the energy of a phase at the minimum of its E versus
volume curve.) In a similar manner, all of the phases ex-
cept the diamond crystal were predicted with the present
model to have densities that are consistently about
10-15 % too low. It should be noted that only the B-tin
phase is found experimentally, and these other theoretical
phases should be considered less important in any fitting
procedure. Figure 13 presents the energy versus atomic
volume curves for these phases.
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FIG. 13. Energy vs atomic volume for the various crystal phases calculated using our potential. Note that a common tangent con-
struction implies the phase transition from diamond to B-tin at T =0 K.
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C. Surface properties

The modeling of silicon surfaces is an important test
for our potential. This tests the interpolative ability of
the potential when dealing with both undercoordinated
(relative to the bulk) and overcoordinated silicon. In ad-
dition, 7 bonding is thought to be important for some
surface reconstructions, and it is important to test how
well we are representing the 7 bonding for those situa-
tions. In deriving the functional form and parameters of
our potential function, no surface data were used, except
that the functional form of the w-bonding interference
function was constructed to insure that some 7 bonding
would be present to stabilize the w-bonded-chain recon-
struction of the Si(111) surface. All other calculated
properties of surfaces therefore represent predictions of
our model potential. We present here the results using
our potential on the Si(100) dimer reconstruction, the
Si(111) m7-bond-chain model, the V3XV3 adatom
configurations on Si(111), and the 7 X7 reconstruction of
Si(111).

There has long been disagreement over the experimen-
tal structure of the Si(100) surface. Various experimental
methods such as low-energy electron diffraction and He-
atom diffraction*® have been ineffective in conclusively
determining the structure, and have led to various propo-
sals for the surface cell. Recently Hamers et al.* have
helped to clarify the issue using scanning tunneling mi-
croscopy. They concluded that dimers are the primary
type of reconstruction that contribute to the surface. Far
from defects, the surface forms 2X1 symmetric dimers.
[In the presence of a defect these dimers tend to buckle
and form p(2X2) and ¢ (4X2) structures.]

We have studied the Si(100) 2 X 1 structure by perform-
ing calculations on a system of five layers of 16
atoms/layer, with the layers being perpendicular to the Si
[001] direction. Initially, all the atoms were placed in a
structure corresponding to a perfect crystal, and the ener-
gy was calculated; this gives the energy of a perfect un-
reconstructed surface. Then the structure was distorted
toward that of the 2X1 dimer reconstruction, and the
top three layers were relaxed by steepest-descent energy
minimization, keeping the bottom two layers fixed. The
system adopted a 2X 1 dimer structure, which is a local
minimum (and most likely the global minimum) on the
potential surface for the system. The reconstructed sur-
face had an energy that was 1.60 eV/dimer lower than
that of the perfect unreconstructed surface. We have
summarized the results and compared with other models
in Table VI. Our results are similar to those of DFT-
LDA and of all the other potential functions tested. This
is by far the easiest of the reconstructions to describe
correctly, since most potentials will favor the formation
of new bonds in the dimer structure.

At temperatures below 380°C the Si(111) surface ex-
hibits a (2X 1) reconstruction. The most accepted model
for this reconstruction is the 7-bonded-chain model of
Pandey.*® This reconstruction is a stringent test of our
potential’s ability to model 7-bonding situations. In this
case we use a slab, periodic in two dimensions, having a
perfect 111 surface on both faces and eight layers thick.
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TABLE VI. Si(100) 2X 1 dimer reconstruction. The relaxa-
tion energy per dimer reported here is the energy of the perfect
unreconstructed surface minus the energy of the 2 X 1 structure,
divided by the number of dimers. Ry, is the separation of the
dimers in the equilibrium structure. The Yin and Cohen (YC)
and Pandey references are density functional calculations.

Relaxation energy

R gmer per dimer

Method (A) (eV/dimer)
YC (Ref. 46) 2.25 1.70
Pandey (Ref. 36) 2.22 2.06
SW 2.41 1.68
TER2 2.31 2.40
BH2 2.42 1.73
Present 2.36 1.60

We calculated the surface energy™ of the perfect un-
reconstructed surface by calculating the energy of this
slab, subtracting the energy of the same number of bulk
atoms, and dividing by 2 (since we have two surfaces).
We found the surface energy per unit area of the perfect
unreconstructed surface to be 0.091 eV/A2. The top two
layers of one face of the slab were moved to positions
near the struture of the 7-bonded-chain model of Pandey
and a steepest-descent energy minimization was carried
out, keeping the bottom four layers fixed and allowing
the top four layers to relax. The system settled into a lo-
cal minimum with a structure similar to the Pandey mod-
el. The energy of this slab was 0.021 eV/A? less than the
energy of the unreconstructed slab. Thus the surface en-
ergy. of the 2X1 m-bond-chain reconstruction is 0.070
eV/AZ% This is consistent with the experimental observa-
tion of the spontaneous reconstruction at low tempera-
tures. Northrup and Cohen reported a DFT-LDA ener-
gy of —0.37 eV/atom relative to the perfect surface.’* If
one assumes that they are considering the two top layers,
which have positions that cannot be related to bulk lat-
tice sites, as surface layers, then his figure corresponds to
0.029 eV/A? lower than the perfectly cleaved surface,
which is close to our result.

Table VII compares the results for the present poten-
tial, the TER2 potential, and the DFT. The TER2 poten-
tial has a local minimum at the Pandey structure but pre-
dicts the reconstructed surface to be higher in energy
than the unreconstructed surface, rather than lower. The

TABLE VII. Si(111) 7-chain reconstruction. R, is the
distance between silicon atoms in the 7 bonded chain running
along the top of the surface. NC refers to the density functional
results of Northrup and Cohen. The surface energy shown is
the surface energy of the reconstructed 7 chain minus the sur-
face energy of the perfect Si(111) surface.

R chain Surface Ew chain — E( 1)
Method (A) (eV/A%)
NC (Ref. 54) —0.029
TER2 2.28 +0.010
Present 2.21 —0.021
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TABLE VIIL Si(111) T, and H, adatom geometries and energies. In the notation for the atom-atom
distances, 1 =adatom, 2=first-layer atom, and 3=second-layer atom. Refer to Northrup (Ref. 55) for

further explanation of notation.

T, H,

R s R,_, R, R, E(T,) E(H;)

Method (A) (A) (A) (A) (eV/adatom) (eV/adatom)

Northrup (Ref. 55) 2.49 2.49 2.55 3.05 —0.84 —0.20
SW (Ref. 31) 2.84 2.89 3.28 3.84 +2.16 +1.05
TER2 2.39 2.42 2.40 3.09 —0.20 —0.42
BH2 2.56 2.61 2.51 3.07 +0.89 +0.47
Present 2.38 2.51 2.43 2.64 —0.03 —0.25

BH2 potential does not have a local minimum at the
chain structure. The results for TER2 and BH2 are a
reflection of the fact that these potentials do not correctly
describe 7 bonding. As noted above, the 7 interference
function of the present potential was constructed in such
a way as to insure that 7 bonding would contribute to
stabilizing this surface structure.

Adatoms on the Si(111) 7X 7 surface were observed by
Binning et al.’! and are thought to play an important
role in its reconstruction. The dimer-adatom-stacking-
fault (DAS) model proposed by Takayanagi et al.’? has
become the most generally accepted model for this recon-
struction. A unit cell of the DAS model contains 12 sil-
icon atoms in T, adatom positions. To be confident that
a potential might be useful for studying the 7X7 recon-
struction it should model T, and H, adatom geometries
and energies correctly. These adatom geometries involve
large bond-angle distortions from the ideal tetrahedral
angle. There are two aspects of the adatom energies that
are important for a potential to model correctly. First,
the adatoms need to lower the surface energy (i.e., the en-
ergy that is takes to transfer one atom from a bulk lattice
site to an adatom position should be negative.) Second,
the T, adatom geometry should be lower in energy than
the H, geometry. It has been found by Li et al.>* and
Khor and Das Sarma®! that the SW and TER2 potentials
both predict the H; configuration to be lower in energy
than T,. In this respect, these two potentials are
deficient. The TER?2 potential exhibited a lowering of the
total surface energy for both adatoms’ configurations. Li
et al. showed that, even with the problem of the relative
T, and H; energies, the TER2 potential was very useful
for predicting the energy and vibrational spectra of the
Si(111) 7X7 reconstruction. Our potential does a reason-
able job for both the T, and H; configurations in predict-
ing a lowering of the surface energy (see Table VIII). Un-
fortunately, our potential is similar to Tersoff’s in having
a H; geometry lower in energy. Given the work of Li
et al. and the fact that our potential models the elastic
constants for the diamond lattice very well, we believe
that the present potential would still be extremely useful
in studying the 7 X7 reconstruction. We have performed
preliminary calculations with TersofPs TER3 (Ref. 22)
potential and noticed that the adatoms actually raise, in-
stead of lower, the (111) surface energy. This may
demonstrate a limitation of the functional form that he is
using, in that he is finding it difficult to model both the

surface and bulk properties simultaneously.

The DAS model of the 7X 7 reconstructions of Si(111)
involves the formation of both adatoms and dimer chains.
Experimentally, the 7 X7 surface is a structure formed by
annealing either the 1 X1 or 2X 1 surface at temperatures
as low as 300°C. If the high-temperature 7 X7 surface is
cooled very slowly, with annealing, it remains in this
structure indefinitely. We have performed energy minim-
izations of a 7X7 surface cell containing 249 atoms, 102
of which are reconstructed surface atoms, making up
three layers. The 102 surface atoms were allowed to re-
lax and the 7X7 structure was found to be a local
minimum. The surface energy with the present model
was 0.102 eV/;XZ, which is higher than the 0.091 eV/A?
of a perfect Si(111) surface. This is an upper bound to
our potential’s 7X7 surface energy, since it would de-
crease if more layers were allowed to relax. We did a lim-
ited relaxation of the next layer (the first bulk layer) and
found the surface energy decreased to 0.100 eV/AZ
More extensive calculations were not feasible with our
present computational resources. The fact that a local
minimum is found is encouraging, and shows that this
potential is applicable to studies of the 7X7 reconstruc-
tion or adsorption upon this surface. Experimental rela-
tive surface energies of the 7X7 and perfect Si(111) sur-
faces are not known. Since the 7X 7 structure forms only
at high temperature, it is conceivable that the real 7X7
structure is a local minimum, rather than a global
minimum, on the potential-energy surface, and that it is
higher in energy than the perfect Si(111) surface.

IV. CONCLUSION

The need to model covalent systems in a wide range of
bonding situations is evident. Much effort has recently
been devoted to silicon, and has been applied in two
directions. First, potentials have been developed that at-
tempt to model silicon in as many bonding situations as
possible. Secondly, specific models have been developed
that apply only to limited situations.

We have taken the first approach and used a functional
form, much like Tersoff’s, that includes environment
dependence of the bondings in the two-body potential.
This avoids the problem of expanding the potential in a
series of many-body interactions that become increasing-
ly difficult to represent and promise little hope of conver-
gence. By modeling small clusters we found that a sepa-
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ration of the interactions into 7- and o-bonding terms
was physically reasonable and in practice necessary. The
extra flexibility has allowed the present potential to accu-
rately model a wider range of silicon systems than any
other potential to date. In addition, based upon the type
of local minima on the potential-energy surface, we have
provided evidence that Tersoff’s and our potential are
qualitatively different from the potentials of Stillinger and
Weber and Biswas and Hamann. Our potential goes
beyond the Tersoff(II) potential, in being able to more
effectively represent 7 bonding in small clusters and sur-
faces.

The procedure of using both ab initio cluster informa-
tion and bulk experimental data to determine a potential
should be applicable to a wide range of materials. We be-
lieve the general Tersoff form to be a promising way of
representing many-body interactions for covalent sys-
tems, especially when combined with the separation of
the 7 and o interactions. We believe that many other

BARRY C. BOLDING AND HANS C. ANDERSEN 41

systems, such as carbon, could be modeled just as
effectively as silicon.
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