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Starting with the general stress theorem as the dyadically generalized virial theorem, for metal-
metal interfaces within the jellium approximation, a theorem is derived relating the interface stress,
i.e., the density derivatives of the interfacial energy, to an appropriate integral of the momentum
Aux density (local stress or stress field). This interface stress theorem together with other sum rules
are tested and illustrated by calculations using the gradient expansion method, i.e., the Thomas-
Fermi method with corrections due to (i) exchange and correlation and (ii) gradient expansion both
for the kinetic and the exchange and correlation energy. The results include the electron density,
electric Geld, and stress field across the junction, as well as the interfacial energy, interfacial stress
(with its parallel and perpendicular components), the adhesive force, and linear force constant for
pairs of jellium densities corresponding to all alkali-metal interfaces.

I. INTRODUCTION

Within the electron theory of molecules, clusters, and
solids there is a continued interest in total energies and
related quantities such as equilibrium structure, binding
energies, forces, force constants, elastic constants, etc. In
this connection the well-known Hellmann-Feynman
theorem and the virial theorem as rigorous theorems are
generally of invaluable help.

Recently Nielsen and Martin' generalized the virial
theorem ~3 0=2T + V to the so-called stress theorem—o.0=2T+ V, which may be considered as the dyadic
generalization of the virial theorem. In the following the
basic ideas of this generalization as well as the essential
content of the subsequent papers will be briefly summa-
rized.

(i) While the pressure arises from the change of the to-
tal ground-state energy due to an isotropic homogeneous
scaling of all the nuclei s sites RI (which are given param-
eters within Born-Oppenheimer approximation), i.e.,
Rl A.RI, the stress o. follows similarly from the corre-
sponding energy change due to a more general anisotrop-
ic homogeneous scaling RI ~A,RI.

(ii) While T, the expectation value of the kinetic ener-

gy, arises with the help of the one-particle density matrix
n (r, r') from p I2m with p=(fiIi)t3Idr, the tensor T fol-
lows similarly from the more general expression po p/2m,
where o means the dyadic product.

(iii) While V, the expectation value of the potential en-
ergy, arises with the help of the pair distribution n (r, ;r2)
for pure Coulombic systems from e /r, z, with
r,2=r, —r2, the tensor V follows similarly from the more

general expression (e Ir, z)e, 2O e,2, where e,z=r, 2/r, z.2

The stress theorem contains with trP= —3p, trT=T,
trV= V the virial theorem as a special case. With in-
tegration by parts and with a certain identity the stress
theorem can be reformulated as

d TP= f P(r),

where the negative momentum current density or stress
field P(r) is defined in such a way that it satisfies the local
momentum balance

o(r) = f(r)
Br

with f(r) being the Hellmann-Feynman force density ex-
erted on the positive background (the nuclei). Of course,
due to the fundamental position-momentum uncertainty
of quantum mechanics the stress field cr(r) has no direct
physical meaning, i.e., it can be gauged, but the gauge has
to be left unchanged for the following quantities.

(i) the volume integral f d ro(r), which provides via
the stress theorem with the possibility to calculate
stresses o directly (avoiding differentiations of the total
energy).

(ii) The surface integrals gdSP(r), which provide via
the momentum balance with an alternative possibility of
force calculations.

The advantage of the stress theorem reformulated in
terms of the stress field is its direct applicability to ex-
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tended crystalline systems, which arise from finite sys-
tems through the thermodynamic limit. Then, the bulk
stress follows from the above-described scaling of the
bulk energy (per unit cell) and the stress field is averaged
over the unit cell Qo.

While in Ref. 1 the stress field 0 (r) has been expressed
in terms of many-body wave functions, in Refs. 3—8 con-
sequent use of reduced density matrices has been made
and the somewhat intuitive considerations given in Ref. 1

with respect to the transition from the many-body to the
effective one-particle description (density-functional
theory, Kohn-Sham equation) were formally completed.
In Refs. 9—11 the considerations have been extended
beyond the local-density approximation; i.e., to the densi-
ty gradient dependent exchange and correlation (XC) of
the Kohn-Sham (KS) equation as well as gradient expan-
sion method (GEM) for the kinetic and XC energies.
Furthermore, in Refs. 12 and 13 the generalization to rel-
ativistic systems is given. Other papers dealing with this
subject are Refs. 14—19.

In Ref. 20 the general stress theorem has been specified
for surfaces of half-space crystals and a surface stress
theorem has been derived, where the surface stress arises
from a scaling of the surface energy ' and the integrand
on the right-hand side is now cr(r) 8( ——z)o (r) instead
of only the first term 0 (r) which approaches as z~ —co

(bulk region) to the bulk stress field 0 (r) and vanishes
for z ~+ &x (vacuum region). If applied to half-space jel-
lia the surface virial theorem is decomposed into two
components, a parallel or lateral one and a perpendicular
or vertical one. The corresponding Hellmann-Feynman
relations lead to the rederivation of a theorem found by
Vannimenus and Budd and a new theorem between the
density derivative of the surface energy and the electronic
structure of a quarter-space jellium. Other papers deal-
ing with the concept of surface stress and its applications
are Refs. 24 and 25.

Here the stress theorem is specified for the jellium
model of metal-metal interfaces ("bijellic" interfaces),
especially with zero separation between the background
edges. Such systems are models for metal-metal junc-
tions, the properties of which are of great theoretical in-
terest and have, as is well known, many applications in
technology (electrical contacts, adhesion, thin-film depo-
sition, grain boundary energetics, friction and wear, brit-
tle and ductile fracture, crack propagation, etc.). In anal-

ogy with the attempts to understand surface properties in
terms of the surface stress, ' ' here the concept of the
interface stress is developed, which arises from the inter-
face energy again by an appropriate scaling. Its relation
to a certain integral of the stress field across the junction
is the content of the interface stress theorem obtained in
Ref. 26, mentioned in Ref. 8, and presented in detail in
here, and it generalizes the surface stress theorem men-
tioned above. The corresponding Hellmann-Feynman re-
lations between density derivatives of the interfacial ener-

gy and the electric field across the junction generalize the
above-mentioned Vannimenus-Budd theorem for jellium
surfaces: two such relations appear (because of the two
background densities), and their sum yields a rederivation
of a theorem obtained by Swingler and Inkson.

For the purpose of illustration, numerical calculations
are performed for ten pairs of background densities
which correspond to all interfaces of the alkali metals.
They are based on the gradient expansion method
(GEM), ' which means the Thomas-Fermi method
with corrections due to XC and gradient expansion for
the kinetic and the XC energy, and which has been
developed and applied in Refs. 32-38. In this way, for
each interface of densities n &, nz the following quantities
are calculated: The electron density n(z); the electric
field E(z); 0 i(z) and Oi(z), the components of the stress
field using the results of Ref. 10, and integrals of them;
the interfacial energy 8', density derivatives of it and

and o i, the components of the interfacial stress; four
different but equivalent expressions for the adhesive
force; the force constant. Some of these numbers thus
produced in principle have to coincide because of the
stress theorem, of the Hellmann-Feynman relation, and
of force sum rules. Note that if the theorems or sum
rules are not satisfied, the results are not satisfactory due
to the approximations used in the calculations. However,
when the theorems or the sum rules are well satisfied, we
cannot necessarily conclude that we have obtained a re-
sult very close to the true ones.

The paper is organized as follows. Section II lists the
characteristic quantities of a bijellic interface in terms of
reduced density matrices. Section III presents rigorous
theorems or sum rules. Section IV describes GEM to-
gether with the two versions (variational Ansatz and
linearization of Euler equation) we used in our calcula-
tions. Section V gives the results. Finally, Sec. VI con-
tains conclusions and an outlook.

II. CHARACTERISTIC QUANTITIES
OF A BIJELLIC INTERFACE

Bijellic interfaces with zero separation between the
half-space jellia "1"and "2"are characterized by the fol-
lowing quantities:

(1) A positive background charge density

p(z)=n, 8( —z)+ni8(z), with n, )ni .

(2) A ground-state electron density n (z) with the
asymptotic behavior n (

—~ ) =n, , n (+ ao ) =n 2, and
with the neutrality condition

f dz [p(z) —n (z)]=0 .

(3) An electric field (times ~e~ for convenience)

E(z) =4m e f dz'[p(z') n(z')]—
following from Gauss's law, E'(z)=4ne [p(z) n(z)], —
e =e /4ireo; due to the jump of p(z) at z =0 and
n, ) n (0))n2, the field E (z) has a sharp cusp at the in-
terface, and due to the neutrality condition we have
lim, +„E(z)=0.

(4) A one-particle density matrix n (r, r')
=n(a —a'~z, z'), with a=xe, +ye~ and n( ~0z, )z=n(z),
and n( aa'~z, z') approaching the homogeneous bulk
density matrices n(r —r') of "1"or "2" for z,z'~ —ao

and + Qo, respectively.
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(5) A kinetic energy density
2 dZ2 12 1 2 1 2 1 (4)

t~~(z)= —,'(p„+p «) n(a —a'Iz, z)I.
1

2P7l

t (z) = P, n (OIz, z') I,
1

2'

(2)

(3)

with t(z)=2t}(z)+ti(z).
(6}A pair distribution function n (r, ;r2)=n (a, z Iz„'z2),

with a,2=[(xi —xz) +(yi —y2) ]'~, with the perfect
screening sum rule

1t(z)= p n(r, r)
2m

with p =
—,
' (p' +p ) and p =(R/i) /(8/Br ). The operator

p is symmetrized with respect to the variables of n (r, r').
Note that r'=r is set only after the action of p on
n(r, r'); t(z) can be considered as to consist of "com-
ponents"

X Ei(0,0,z)Ez(0, 0,z}1

4~@
(5)

with E;(x,y, z)=(e /Ir —r;I )(r—r;)/Ir —r;, i =1,2; u(z)
can be considered as to consist of "components"

and with n (a, 2Iz„zz) approaching the homogeneous
bulk pair distributions n (r& 2} of "1" or "2" for
z, 2~ —~ and + ~, respectively. From n (r„rz) follows
the total pair distribution function given by

v{a i2 Izi,'zq }=p(zi )p(zz) p(zi )n (zq)

—n (z i )p(z& )+n (a i2 Iz i,zi } .

(7) A potential energy density

u(z}=-,' f d ri f d rzv(aizIzi'z2)

3 3
2 (z —z )(z —z )1 2

ul(z)= , f d —riltd rz v(a, zIz, ;zz) 4~ ([ai+(z —z, ) ][ai+(z —zz) ]}
aiaz —(z —zi }(z—zz }

ui(z)= ,' fd r,—fd rz v(a12lzi', z2)
44~ ([ai+(z —z, ) ][a,+(z —z, ) ]}

(6)

o. = —n —n +112 ~ ~ 12
' en, 'an2 (8)

with u(z}=2ui(z)+u»(z). The decomposition is chosen
in such a way that the components u ~(z) and ui(z) can be
used for the definition of cri(z) and o~(z) in Eqs. (11) and
(12) according to the general definition of cr(r); see Eq.
(26} in Ref. 5.

(8) An interfacial energy 8' (n i, n z ) with
C' (n„n, )=0 and 8' ( zn0)=8'(n, ), where 8'(n, )

means the surface energy of the half-space jellium "1"
only ("interface" between "1"and vacuum}. Note that
8' (n„nz) arises from EL z (n„n2), the ground-state

energy of a finite bijellic system (with two finite, e.g., cy-
lindrical jellia "1"and "2" in contact characterized by
electron numbers X& and N2, cylinder lengths L1 and L2,
and a common cross-sectional area S) by considering
the diff'ere cne Et L (n, , n }=zE LL(n„nz) —Nis(ni)

Nzs(nz) wi—th s(n) being the bulk energy (per particle)
of the homogeneous jellium and by taking the thermo-
dynamic limit of Ft' t (n&, nz)/S for S~ oo and

00 ~

(9) An interface stress tensor

o "=o ~~'(e„o e„+e 0 e )+o,"e,o e,

with

space jellium "1." Note that the origin of Eqs. (8}and (9}
is the scaling of the interfacial energy per particle, i.e.,
SC' (instead of 8', the interfacial energy per unit area),
according to

1 8 s-C&I-=
S q-„» ~ »=i

or, in detail

cri —— AS@ (A, n„A, n, )»12 —1 ~ 12 —i —i

from which Eqs. (8) and (9) follow.
(10) By an adhesive force and force constant

e(z)=t {z)+u(z), (10)

F(D), F (D)
dF(D)

dD
'

dD

where 6' (n, , n2;D) is the interfacial energy for the half-

space background edges of "1"and "2" separated by a
distance D. In the following only the zero separation
values F=F(0) and A =F'(0) are considered. From
t (z) and u (z) follows an interfacial energy density

cr = —n —n' Bn, Bn2
@12 (9)

and from ti(z), ti{z) and ui(z},ui(z} an interfacial stress
field

and o' (n „n, ) =0; for n2 =0 the interface stress tensor
o' (n, , nz) becomes the surface stress tensor of the half- with

o (z) =o i{z}(e,oe +e~oe~ }+oi(z)e, o e,
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0'~~(z)= [2t~[(z)+v~~(z)]

0 ~(z) = —[2t~(z)+ v~(z)] (12)

can be constructed. The fields e (z) and o'(z) constructed
in this way have no direct physical meaning. They can be
gauged arbitrarily leaving integrals over e(z) and 0(z)
[see the right-hand sides of Eqs. (13) and (14)] as well as
differences of o.~(z) at different positions z unchanged.

12—
n& 6' = dzoj (z),' an,

a 12=—nt 6' = dzo~ (z)
Bn2 o

(14b')

(14b")

as shown also in Appendix A. Their sum obviously gives
Eq. (14b). Note

dz 4t lll2 z +3U lll2 z — dztl12 z

III. RIGOROUS THEOREMS OR SUM RULES

Now the following theorems or sum rules are valid.
(a) It holds that

8' =f dze' (z),

e ' (z) = [e (z) —8( z)n—, e(n
&

)
—8(z)nze(n2 )] .

(13)

as a consequence of Eqs. (11), (12), (14a), and (14b).
(c) The Hellmann-Feynman relations

a@"
dzzE z

Bn1

g@12
dzzE z

't}n
2 0

(16)

(17)

(b) It holds that
~12— 12

o (z) =[a(z)—8( —z)cr(n, )1 8(z—)o (n2 }1]
(14)

connect the derivatives of 6' with the electric field and
follow simply from a generalized Hellmann-Feynman
theorem (for the details, see Appendix B).

(d) As a consequence of Eqs. (9), (16), and (17) it is evi-
dent that

with tT(n)= nde—(n)/dn being the (isotropic) stress of
a homogeneous jellium. Equation (13) connects 6' and
e (z), and may be referred to as the "interface energy
theorem. " Its derivation starts with the many-body
Schrodinger equation and the ground-state energy
E =(P,HP) defined thereby. Integration by parts and
use of the identity given at the end of footnote 2 allows
the rewriting E = J d re (r) which, along with taking the
thermodynamic limit described above, yields Eq. (13).
Equation (14) connects o' and P(z), and is referred to as
"interface stress theorem. " It generalizes dyadically the
interface virial theorem, which follows from Eq. (14) by
taking the trace

12= — Zp ZZE Z

The difference of Eq. (16} and Eq. (17) leads to another
theorem. If its right-hand side is expressed in terms of
P(z), the electrostatic potential (times lel), instead of
E (z) = —P'(z), then the above-mentioned theorem given
by Swingler and Inkson [their Eq. (3)] arises.

(e) The adhesive force in terms of Hellmann-Feynman
relations is given by

F=n, I dz E(z) —p(n, ) (19)

or

3n, ——3n, +2a a 12
' an, Bn2

= J dz[ 2t (z) —v—(z) —8( —z)[ —3p(n, ))

—8(z) [ —3p (nz )]l,

F= —n2 dzE z —p n2

(f) Because of the local momentum balance,

F =oi(0)

(20)

(21)

where p (n) =n de(n)/dn is the bulk pressure of a homo-
geneous jellium. The interface stress theorem (14) can be
proved in a similar manner as the surface stress theorem
in Ref. 20 (for the details, see Appendix A). The com-
ponents of the interface stress theorem (14) are

is also valid (see Appendix C).
(g) Moreover, F can also be expressed rigorously by

bulk quantities of "1"and "2":

(22)

n, —n2 —+1 6 = dzoll (z)
a a 12 12

Bn1 Bn2 oo

(14a)
(h) Finally the force constant is to be found as

F. (0)

a a
n1 n2 g' = J' +"dzo' (z) . (14b)

The weighted sum of Eq. (14b) and two times Eq. (14a)
gives Eq. (15). In addition to the "total" perpendicular
stress theorem (14b), the following "partial" perpendicu-
lar stress theorems hold:

where E(0) means the electric field (times lel) at the in-
terface.

Because the many-body quantities n (a —a'lz, z') and
n (a&2lz&, zz) as ingredients for the calculation of interfa-
cial energy 6' and interfacial stress o' are not available,
the density-functional theory (DFT) will be used in what
follows.
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FIG. 1. Jellium model of the Li-Na interface with (a) density profile, (b) electric field, (c) parallel, and (d) perpendicular component
of the stress field as functions of z, the distance from the interfacial plane. The solid and dotted-dashed lines refer to the Ansatz
method using the gradient XC correction due to Langreth-Mehl and Lau-Kohn, respectively. The dotted line refers to the lineariza-
tion method using the Lau-Kohn correction.

IV. DENSITY-FUNCTIONAL THEORY

DFT rests (for the system under consideration) upon
the existence of a functional 8' [p, n], which arises
within the gradient expansion method (GEM) from

e(z)= — +g[n(z), s(z)], s(z)= —,'[n'(z)] . (24)
1 E (z)

4m'

g(n, s) comprises both the kinetic-energy density t (z) and
the exchange and correlation (XC) part of the potential-
energy density [arising from the XC part of the pair dis-

tribution function nxc(a, z iz, ;z2 ) = n (a, 2 iz, ;z2 )

n(z, )n(z2)].—The first term of e(z) is the Hartree or
electrostatic part of the potential-energy density. Insert-
ing Eq. (24) into Eq. (13) a functional 8' [p, n] arises.
Now, for any given approximation of g (n, s), the electron
density n (z) is obtained from the minimization of
8' [p, n] with respect to the variation of n (z) under the
constraint of fixed p(z) and of the neutrality condition.
Having in this way determined n (z) variationally via an

TABLE II. Density ratios of the alkali-metal interfaces.

Li
Na
K
Rb
Cs

6.765
3.844
1.956
1.669
1.338

3.28
3.96
4.96
5.23
5.63

TABLE I. Alkali metals and densities of their conduction
electrons n (in units of 10 ao ) and the corresponding dimen-

sionless density parameter r, .

Interface

Interface

Li-Na
Li-K
Li-Rb
Li-Cs
Na-K
Na-Rb
Na-Cs
K-Rb
K-Cs
Rb-Cs

n&/n,

0.5682
0.2892
0.2467
0.1977
0.5089
0.4341
0.3480
0.8530
0.6838
0.8016

2(n 1
—n2)/(n 1 + np )

0.5506
1.1027
1.2085
1.3396
0.6509
0.7892
0.9674
0.1587
0.3756
0.2202
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appropriate Ansatz or via an approximate solution of the
Euler equation, the question then arises as how to calcu-
late the stress field o(z) from n(z). This task has been
solved in Ref. 10 (or 11) for the general case of an arbi-
trary background density p(r). In our case, i.e., for p(z)
it takes the form of

1
o II(z)= — ,'E (—z)+[g n—g„+n (n'g, )']„(,),

4m.e
(25)

g„and g, mean the derivatives with respect to n and s.
With this result, i.e., Eqs. (25) and (26) as well as Eq. (24),
all the quantities appearing in the theorerns or sum rules
(13)—(23) can be calculated within the GEM. As shown
in Ref. 10 these sum rules are. exactly satisfied for any
chosen approximation of g(n, s), assuming the corre-
sponding Euler equation has been solved exactly. This
means the violation of the sum rules measures only the
approximations made in solving the Euler equation.

Here, for the purpose of performing the following
GEM calculations the above-mentioned two approaches
are used.

(i) The Ansatz

1ai(z)= ,'F. (z—)+[g ng„+—n(n'g, )' —(n') g, ]„I,I .
4~a

(26)

sinh(Pz)
27)

1 +cosh (Pz)

is described and used in Refs. 32—34 and 38. Here, by
considering the work-function energetics, it is assumed
that aside from the usual quantum-mechanical leakage of
charges from metallic surfaces some charges fiow from
the low-density region (bulk density =n2) to the high-
density side (bulk density =n I ). The parameters a and P
are determined from the minimization of 8' obtained
from Eq. (27) via Eqs. (24) and (13). The g (n, s) has been
specified as follows:

n& n2
n (z)= +1+e~' 1+e

g(n, s)= ne(n)+ e ao
1 (n')

72 Pf

I

+a [2e[—bI ~In''Iln )] 7 i (n ) 2
4r3 (28)

The constants a and b are given by

=2. 144X10 '
16(3n )

i'

b =(9n)' f =0.2618 (for f =0.15) .

e(n), the bulk energy of the homogeneous jellium, is
given by

1.98

1.84 4.40

(b)—
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FIG. 2. Jellium model of the K-Cs interface with (a) density profile, (b) electric field, (c) parallel, and (d) perpendicular component
of the stress field. The units are the same and the solid, dotted-dashed, and dotted lines refer to the same calculational methods as in
Fig. 1.
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4m.
(r, ao)

3 6 3s(n) = +e, (n},
10a2r, ao 4mar, ao

1/3
4 1

CX=
9m 'n

(29)

3

2 4m.

0.0130 0.0349 (n')
2 4/3

S S

(30)

where the correlation energy has been taken from the in-
terpolation of the Ceperley-Alder Quantum Monte Carlo
data due to Vosko et al. The first gradient term (the
correction to the kinetic energy} is due to Kirshnits and
the second gradient term is the XC correction due to
Langreth and Mehl. Also the XC correction of Lau
and Kohn ' (instead of Langreth and Mehl), i.e.,

n (z)—
n&+n2 n&+n2

(31)

is described and used in Refs. 35 and 36. This linearized
Euler equation allows, for an XC correction proportional

has been tried.
(ii) The linearization of the Euler equation under the

assumption

TABLE III. Interfacial energy [according to Eq. (13)] and interface stress [according to Eqs. (8), (9),
and (14)], in units of 10 e /ao. The first and second numbers in each box refer to the Ansatz method
with the Vosko et al. interpolation formula for c,(n) using (i) Langreth and Mehl gradient XC correc-
tion and (ii) the Lau-Kohn gradient XC correction term, respectively. The third number in each box
refers to the linearization method with the same interpolation formula for c(n) and the same gradient
XC correction as in (ii). The missing numbers in the fourth and sixth columns are identical to the cor-
responding numbers given in the columns for o i[' and 0,', respectively.

Interface

Li-Na

Li-K

Li-Rb

Li-Cs

Na-K

Na-Rb

Na-Cs

K-Rb

K-Cs

Rb-Cs

@12

2.27
1.88
1.81

17.65
19.29
18.98

22.70
25.57
25.16

30.00
35.18
34.63

7.56
7.14
7.10

11.10
10.74
10.67

16.63
16.64
16.53

0.40
0.36
0.35

2.11
2.19
1.90

0.69
0.62
0.61

15.60
15.03
15.07

44.29
43.24
43.40

49.96
49.05
49.25

56.74
56.28
56.59

7.65
7.25
7.26

10.20
9.71
9.71

13.54
13.01
13.02

0.20
0.18
0.18

0.91
0.82
0.81

0.27
0.23
0.23

f dz

~ 12(z)
II

15.10

43.69

49.69

57.26

7.29

9.79

.J3.19

0.18

0.82

0.23

13.33
13.16
13.26

26.63
23.95
24.42

27.26
23.47
24.09

26.74
21.10
21.97

0.08
0.12
0.16

—0.90
—1.03
—0.96

—3.08
—3.63
—3.51

—0.21
—0.18
—0.18

—1.20
—1 ~ 10
—1.09
—0.43
—0.39
—0.38

f dz

oi (z)

13.22

23.56

22.76

19.74

0.09

—1.12

—3.90

—0.18

—0.39
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to (n') with a prefactor depending only on the electron

density (in contrast to the Langreth-Mehl prefactor

which contains n', too), an analytic solution. Therefore

here the XC correction of Lau-Kohn has been used only.

e, (n) is taken again from Ref. 40. If for s, (n) the data of
Aguilera-Navarro et al. ' are used, the results are

changed only slightly.
The above-mentioned two approaches have been ap-

plied to ten combinations of n, and n2 values corre-

sponding to all interfaces between the 5 alkali metals,

whose densities n and density parameters r, are given in

Table I.

V. NUMERICAL RESULTS

The results for n(z), E(z), oui(z), and cri(z) obtained
with the methods described above are plotted in Figs. l
and 2 for two illustrating cases of Li-Na (Fig. l) and K-
Cs (Fig. 2) interfaces. The solid and dashed lines refer to

the Ansatz method using the XC gradient correction due
to the Langreth-Mehl and Lau-Kohn corrections, respec-
tively. The dotted line refers to the linearization method
using the Lau-Kohn correction. Note that the jellium
model of an interface has its artificial aspects. Because
the background density is kept fixed, the system is not in

its equilibrium, and this is rejected in the stress field not
being zero. As Figs. l and 2 show, and in agreement with
the general characteristics of the bijellic interfaces men-

tioned in Sec. II, the cusp in the electric field changes
into a kink for the two components of the stress field.
The results of Ansatz and linearization methods both
show that the change of the cusp to the kink occurs for
all the bialkali interfaces with the exception of Li-Cs.
Since the ratio of the bulk density difi'erences of bialkali
interfaces to their corresponding sum (see Table II) is
largest for the Li-Cs interface, the GEM is not expected
to lead to reasonable results in this special case.

Tables III-V show the results for the following: (i) In-

TABLE IV. Density derivatives of the interfacial energy 8" in comparison with the integrated stress

field and the moments of the electric field (in units of 10 e'/ao). The three numbers in each box refer

to the same calculations as in Table III.

Interface

Li-Na

Li-K

Li-Rb

Li-Cs

Na-K

Na-Rb

Na-Cs

K-Rb

K-Cs

Rb-Cs

g@12
"'a
—1.04
—0.91
—1.23

4.11
13.56
12.56

5.24
17.91
16.70

6.47
24.11
22.60

20.64
20.62
20.45

24.51
25.56
25.32

29.18
32.24
31.91

5.12
4.56
4.53

11.42
10.59
10.53

6.41
5.78
5.75

0
ds

oi (z)

—6.41
—6.05
—2.08

—6.06
—1.00

6.41

—5.20
0.33
8.64

—3.47
1.88

11.56

17.53
17.66
19.64

20.69
21.56
23.93

24.55
26.45
29.40

4.85
4.34
4.54

10.73
10.04
10.46

6.11
5.54
5.73

0
n, f dz

zE(z)

7,52
13.57
6.90

37.15
84.42
39.30

44.45
106.01
47.47

54.67
137.51
58.28

41.62
46.85
27.40

51.49
61.73
35.01

64.40
84.06
45.45

8.88
8.06
4.82

20.99
20.36
11.91

11.43
10.55
6.17

g @12
7l p

Bn2

—12.29
—12.25
—12.03

—30.74
—37.13
—56.95

—32.50
—41.38
—40.78

—33.21
—45.22
—44.57

—20.72
—20.74
—20.61

—23.61
—24.53
—24.36

—26.09
—28.61
—28.41

—4.92
—4.38
—4.35

—10.22
—9.50
—9.44

—5.98
—5.39
—5.36

—f "ds
0

12(Z)

—6.91
—7.11

—11~ 13

—20.58
—22.95
—29.96

—22.07
—23.80
—31.39

23027
—22.98
—31.30

—17.61
—17.78
—19.73

—19.79
—20.53
—22.81

—21.47
—22.82
—25.50

—4.65
—4.16
—4.36

—9.53
—8.95
—9.36

—5.68
—5.15
—5.35

n, f dz
0

zE(z)

—4.27
—7.71
—3.92

—10.74
—24.41
—11.36

—10.97
—26.15
—11.71

—10.81
—27.19
—11.52

—21.18
—23.84
—13.94

—22.35
—26.80
—15.19

—22.41
—29.25
—15.81

—7.57
—6.87
—4.11

—14.36
—13.92
—8.14

—9.16
—8.45
—4.95
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terfacial energy 6', calculated with the help of the inter-
face energy theorem (13); (ii) two sides of the stress
theorem [(14a), (14b}, (14b'), (14b")]; (iii) two sides of the
Hellmann-Feynman relations (16) and (17); (iv) adhesive
force F, calculated by means of Eqs. (19)—(22); and (v)
force constant A, calculated via Eq. (23). The three num-
bers in each box refer to the same calculational methods
mentioned in the caption of Table III.

The numbers for cr~I [from Eq. (8)] and J dz o~~ (z)
given in Table III and calculated within the Ansatz
method as well as those for crI [from Eq. (9)] and

f dzo j (z) coincide for any choice of g (n, s) assuming the
minimum is found correctly (see Appendix D). Note that
when the bulk density difference for an interface is rela-
tively large, the interfacial energies given in Table III, in
the case of the Ansatz method employing the Langreth-
Mehl XC correction, differ from the corresponding ones
given in Ref. 34. This is due to their assumption that the
expression exp( b . .—) in. Langreth-Mehl XC correction

only weakly depends on P. The interfacial energies in
Table III are calculated without invoking this assumption
and as a result the above-mentioned sum rules are identi-
cally satisfied. Within the linearization method the stress
theorem is better satisfied the better condition (31) is
fulfilled by the interface under consideration.

With respect to the Hellmann-Feynman relations (see
Table IV) only for the interfaces K-Rb, K-Cs, Rb-Cs a
reasonable agreement is obtained. The same is true for
the four in principle equivalent expressions of adhesive
force, Eqs. (19)—(22) (see Table V). On the other hand,
the most striking disagreement appears for Li-Cs [note
once more that the numbers obtained by using Eq. (22}
can be considered as "exact" ones for the true bulk ener-
gies].

Altogether Tables III-V show that the linearization
method satisfies the sum rules best for the interfaces K-
Rb, K-Cs, and Rb-Cs, but worst for Li-Cs. This is to be
expected because of assumption (31): The third column

TABLE V. Adhesive forces F |,'in units of 10 e'/a&). The three numbers in each box refer to the
same calculational methods as in Table III. The missing numbers for each interface are the same as the
one given.

Interface

Li-Na

Li-K

Li-Rb

Li-Cs

Na-K

Na-Rb

Na-Cs

K-Rb

K-Cs

Rb-Cs

Eq. (19)

—44.94
—46.05
—45.50

—15.70
—20.85
—13.64

—13.37
—19.48
—9.80

—12.37
—19.31
—5.85

2.72
1.89
4.45

3.25
1.95
5.59

2.92
0.82
6.33

11.81
11.82
12.20

11.05
10.97
11.94

11.65
11.65
12.14

Eq. (20)

—46.27
—45.63
—45.80

—14.68
—13.19
—15.21

—10.88
—9.38

—11.70

—6.94
—5.57
—8.18

5.17
5.59
4.34

6.39
6.96
5.42

7.22
7.95
6.07

12.50
12.49
12.20

12.53
12.58
11.94

12.51
12.51
12.14

Eq. (21)

—45.87
—46.84
—48.35

—9.51
—16.46
—21.66

—4.07
—12.63
—18.86

2.08
—8.44

—16.18

5.06
4.12
3.30

6.88
5.21
4.06

8.89
5.98
4.28

12.19
12.20
12.18

12.00
11.92
11.83

12.14
12.14
12.11

Eq. (22)

—44.15

—9.59

—5.33

—0.98

5.87

7.53

8.96

12.27

12.25

12.24

A

Eq. (23)

15.04
15.11
15.00

7.51
7.78
7.69

6.36
6.65
6.57

5.03
5.35
5.27

4.41
4 44
4.41

3.73
3.79
3.76

2.94
3.04
3.01

1.97
1.91
1.90

1.55
1.52
1.51

1.34
1.29
1.28
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of Table II sho~s small numbers for the "good" inter-
faces, but larger numbers for the "bad" ones, and for Li-
Cs the ratio is the largest. A detailed consideration of
Tables III-V with respect to the Ansatz method seems to
indicate that the Ansatz (27} is "good" again for the last
three interfaces, but not as "good" for the others.

Comparing, in Table III, the results for the interfacial
energy 8' obtained for the three calculational methods
mentioned above, one finds a reasonable agreement. The
force constant A even depends less sensitively on these
calculational methods (see Table V).

VI. CONCLUSIONS AND OUTLOOK

Within the only approximately solved many-body
problem, rigorous theorems are a very useful tool. In our
case —jellium model for interfaces between alkali metals
treated within the gradient expansion method —from im-
proved Ansiitze or improved solutions of the Euler equa-
tion a better fulfillment of the interface stress theorem
and other sum rules should be expected. Also, the study
of self-consistent solutions of the corresponding Kohn-
Sham equation in terms of these theorems and rules is of
interest. The inclusion of pseudopotentials similarly, as
this has been done for surfaces, would make the model
more realistic.

Within the jellium model the theorems presented above
should be completed by adding that appropriate moment
of the Hellmann-Feynrnan forces which corresponds to
the "parallel" interface stress theorem (14a), i.e., the
theorem corresponding to formula (18}, as well as the
pendants to Eqs. (14b'), (14b"), (16), and (17): A seini-
infinite interface or two just touching quarter-space jellia
(i.e., an extended interface cleaved perpendicular to the
interface) enter the scene. Also a finite (nonzero) sepa-
ration including the problem of ideal fracture strength
should be of interest to study. Finally, it would be
worthwhile to give the interface stress theorem and relat-
ed sum rules for interfaces between crystals (instead of jel-
lia) and to study to which extent the concept of inter-
face stress is useful.
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thickness 2L [hence A=2@A L, its background density
is given by p& L (a,z) =n 8(L —

lzl )8(A —a },n =N/0]:
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and surface stress field

O'L ~~(z) =crL t~(z) 8(L lzl )cr(ri)
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are introduced and with the help of ne(n)/—dn =cr(n)
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can+1 —8~ = dz cr'~, l(z), (A8)

c} 8L n—C'L = dz crL i(z) .
c}ri 0

(A9)

In the limit of a semi-infinite jellium (L~ ao, n =const),
the surface stress theorem

L (A2)
N, A

N =2mA Ln is the number of electrons, 8& L =E& L /N
is the ground-state energy per particle, ll means the xx (or
yy} component, l corresponds to the zz component, and
a =(x +y )' . In the limit of an extended slab
(N, A ~Do, N/A =const), Eqs. (Al) and (A2) along
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c} 1 dz
o L, ii(z) (A3)
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APPENDIX A: PROOF OF THE INTERFACE
STRESS THEOREM (14}

First the proof of the surface stress theorem is briefly
summarized. We start with the general stress theorem
(Sec. I), which is valid for a finite system with volume 0,
and specialize it to a jellium cylinder with radius A and

n+1 @'=f dz c—r'(z),8
Bn

(A 10)

+ oo8'= f dzcr'i(z}
8rl —L

results, where

(Al 1)

o,
BL

f dz' o L (z')~ f dz' O'I (z'}—L oo

has been assumed [cr'I (z') results from redenoting of
crL (z'+L) due to the shift of the origin from the mid-
dle of the slab to its surface at z =+L, which means
z'=0].

Analogously we derive the interface stress theorem and
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start with two cylindrical slabs of radius A and of
thicknesses 2L, and 2L2, respectively, and with different

background densities n
&

(for —2L, & z & 0 and a &A )

and nz (for 0&z & 2Lz and a &A ), which are just touch-

ing each other (zero separation) with a common interface
of size nA situated at z =0. Thus the background den-

sity is given by

2(L, n, +Lznz )@t —2L &n &e(n, )
—2Lznze(nz )

@1 +@12 +@2
L1,2 L12 L12

holds. The right-hand sides of Eqs. (A14) and (A15) are
also rewritten in the same manner. In the limit of two
semi-infinite jellia (L, z~~, n, z=const) the stress
theorems are

p& t ( az)=[n&8 zt p(z)+nzHpzt (z)]8(A —a)
t

with the abbreviation 8, , (z)=8(z —z&)8(zz —z),
z, &zz. The stress theorem (Sec. I) applied to this case
now reads

@A,L) zN, L1 2

—n1' an,

—ni' an,

n—
z +1 (8'+8' +6 )

atl z

= fdz[o,'~(z)+o~, '(z)+o„(z)],

n, — (6'+8"+@ )
Bn2

= f dz [o~(z)+o z (z) +o~(z) ] .

(A16)

(A17)

=—f d a f dz tr& t ~~(a,z), (A12)—2

t

@A,L( zaL aL
1 N, A

1=—fd a fdzo&t ~(az) (A13)

with N =nA (2L, n, +2Lznz). In the slab limit
(N,A ~ 0N0/A =const), Eqs. (A12) and (A13) take the
form

Finally, subtracting the surface stress theorems (A10) and
(All) for n ~n, , g'~g', o'. . . (z)~o' . . (z. ) with i =1,2,
the interface stress theorem (14) or (14a) and (14b) results,
@ED.

The splitting of the perpendicular interface stress
theorem (14b) into its "components" (14b') and (14b")
can be seen by the following procedure. Instead of a total
scaling of the two jellia "I" and "2" along the z axis
(L

~
~AL, and L, ~ALz ), which leads to Eq. (A13), only

a corresponding partial scaling of the jellium "1" (only
L, ~AL, ) is considered (D =limz &alai, ):

ni n2 N L1
aL1 NA, Lz, n&

@x,t, , =ND @x,z.L,

f dz o t )((z), (A14)
1

/n ) + znz 1,2'

a a a a
' aL. ,

' aI., "'
an

"'
an

1 fdz , ( )z.
2(L, n, +Lznz) 1,2'

(A15)

and the interfacial energy

L2
a," =f dz[eL (z) —8 L p(z)n, E(n, )

1

Hp t (z)nze(nz )]

Next these equations are multiplied by 2(L, n, +Lznz)
and rewritten with the help of

de(n; )
n, — =o(n, ) .

dni

Then surface energies
—L

1=f dz [eL (z) —8 zL L (z)n )e(n, )],
= f dz[eL —

HL zL (z)nze(nz)]
t + 2 7

=DE& &

= (D~x, z.L, (A18)

In the last step the Hellmann-Feynman theorem was
used. Because only the potential-energy operator,

p2
~AL = d "~ p& t

1,2 1,2 1,2 p

2—f d'r/ p~ L (r])f d'rz n(rz) + I"
1,2

12

depends on L„the following relation holds:

&»~,u, L, ) = (D~~,u, L, , &

= fd'rDp~ zL, L, (r)P& t (r), (A19)

where
2

N,AL), (r}=f d,'r'[p& L (r') n& t (—r')]

is the electrostatic potential (times lel ) arising from bac
ground and electron density In the next step the identity

Dp~ zL L (a,z)=8( z)DA, 'p~ t (a, A, 'z)—

are introduced in such a way that

a=8( —z) — z p~ t (a z) (A20)
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is used. Thus

a
N Li @A,L

1 N, A, L2.n2

0
d a dzzp~ c (a,z)E~ t (a,z)e, ,

(A21)
where E& I (r}=—c}P~ t (r)/c}r means the electric
field (times ~e~ }. Now the Hellmann-Feynman force den-
sity p. . . (r)E. . . (r) on the right-hand side of Eq. (A21)
can be replaced by means of the local momentum balance
(Sec. I):

o ~(z) =o(n)+ n f dz' 8( —z')E (z'),

which is a consequence of Eq. (B 1), and

sin(2kFz + . )E(z~ —ao )—
z2

see Refs. 42 and 43. Thus

f dz o'(z)= —f dz zE(z)

results. Combining this with (Al 1) yields

d 8'= f dz zE(z),

(B3)

(B4)

(B5)

(B6)

N L,
~L1 NA, L~, n2

A, L) 2

= —fd a f dzz o&t (r}e,
Br

0= fd'a f dzo~, ,(a,z) .
(A22)

The surface integral arising from integration by parts
does not contribute because of z =0 along the xy plane as
well as o(a,z~ —~)=0 and o(a~~, z)=0. Finally,
Eq. (A22} is divided by mA and the slab limit
(N, A ~~, N/A =const) is taken:

which, by the way, allows the following interpretation as
a generalized Hellmann-Feynman theorem. The surface
energy 6' depends on the background density n, the
characteristic parameter of the system (i.e., of the Hamil-
tonian before the limits A ~ ~ and L~ ac are taken).
The generalization of the Hellmann-Feynman theorem to
such a semi-in6nite system would mean that only the ex-
plicit dependence of 6 on n and not the implicit depen-
dence via n (z) should contribute to d 8'/dn This .expli-
cit dependence of

8'= fdz[e(z) —8( z)e(——00)], e( —~)=ne(n) (B'7)

L a "'
an,

2(L, n, +Lqn2)gt

0= f dz crc j(z} .
co 1,2'

(A23)

on n is contained only in the Hartree part
uH(z)= ,'[E (z)/4m—e ] of the potential-energy density

u (z) of e (z) = t (z)+ u (z). Note that e ( —ao ) does not de-

pend on n explicitly because of uH( —~ ) =0. Thus

Subtracting

de(n, )
2L, n f

— =2L, cr( n, )
dn)

and taking the limit L, 2~ ~ the relation

—n, (6'+6'"+8')= f dz[oI(z)+oI'(z)]' an,

(B8)

and its change due to an explicit change of n has to obey
the equation

d, dE (z) E (z)
dz

dn dn, „~4~e~

On the other hand, the electric field E(z) follows from
the Maxwell equation

E (z) = 4m e [p(z) n(z) ], —p(z) =n 8( —z) (B9)

arises, from which immediately Eq. (14b") follows, if the
surface stress theorem is used once more.

[dE (z) ]'=4n.e dn 8( —z) .

The expression

(B10)

APPENDIX B: PROOF OF THE HELLMANN-FEYNMAN
RELATIONS (16) AND (17)

dE(z) =4nezz8( —z)
dn

(B1 1)

Again a single jellium surface [at z =0 with bulk densi-
ty n for z &0, i.e., p(z) =n 8( —z)] will be considered first.
In this case the local momentum balance (Sec. I) reads

oi(z)=p(z)E(z) .
d
dz

(Bl)

Applying the operation I dz z and replacing crj(z) by
cr](z) =o ~(z}—8( —z)o (n) yields after integration by
parts,

0 s—f dz o'~(z) —zo'~(z)~, „=nf dz zE(z} . (B2)

The second term on the left-hand side does not contribute
because of

is in agreement with Eq. (B10) and leads, when inserted
into Eq. (B8), immediately to Eq. (B6).

For an interface, i.e., p(z) =n, 8( —z)+ n&8(z), the local
momentum balance (Bl) leads with arguments similar to
Eqs. (B2)—(B4) to

dz oz z = —
n& dzzE z (B12)

dz o~ (z) = n2 f dz zE(z) . — (B13)

Comparison with Eqs. (14b') and (14b") immediately
yields Eqs. (16} and (17), which can again be
interpreted —with arguments like Eqs. (B7)—(Bl 1)—as
generalized Hellmann-Feynman theorems.
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Note that in Eq. (B6) there would appear an additional
term of the type [0 00], if one had started with the corre-
sponding term for a finite system. From the above
derivation of Eq. (B6) one should conclude that indeed
the above-mentioned additional term vanishes. An analo-

gous problem and conclusion appears for the jelliurn
model of an interface.

xy plane z =0 contributes,

F&t =fd ao~ L j(a,0). (C3)

Dividing this by nA and taking the limits A~ac and
L, z~ ca, formula (21) for the adhesive force (per unit
area) immediately results.

APPENDIX C: CALCULATION OF FORCES VIA
STRESS FIELD AND SURFACE INTEGRATION

From the local momentum balance (Sec. I) immediate-
ly follows the force on the nucleus "I,"

F, =g„dSo(r), (Cl)

under the assumption that the volume 01 contains that
nucleus (R&eQ~) and no other nuclei. In principle FI
does not depend on the special choice of 01, because

gndSo(r)=0 (C2)

for each volume 0 not containing any nucleus.
The application of this idea to the adhesive force in a

bijellic interface goes as follows. Consider the finite bijel-
lic system of Appendix A and integrate the local momen-

tum balance (Sec. I) over the half-space z (0 containing
the jellium "1." The force exerted on "1"is—as in Eq.
(Cl)—similarly given by a corresponding surface in-
tegral. Because of cr(00 )=0 only the integral along the

APPENDIX D: THE INTERFACE STRESS
THEOREM STUDIED WITHIN THE

ANSI'

ix METHOD

For any function g(n, s) and a(n) and for any pair of
background densities n, and nz the parameters a and P
of the Anscttz (27) follow from

c}C' 50' c}n (z)
dz

c}a 5n (z) c}a
(D 1)

and a corresponding equation for c}/c}P with the interfa-
cial energy 6'" calculated via Eqs. (13) and (24), i.e.,

8' = f dzI —,'[p(z) —n (z)]P(z)+g(n (z),s(z))

—8( —z)n, e(n, ) —8(z)n2a(nz)I .

For convenience the electrostatic or Hartree term has
been expressed here by P(z), the electrostatic potential
(times ~e~) instead of E(z)= —P'(z), the electric field
(times ~e~ ). Now cr~~ as defined by Eq. (8) has to be stud-
ied term by term:

5e ' c}n (z) c}a c}n (z) c}P—
n; + n;—

5n(z) c}a,. '
c}n; BP, '

Bn,

56'
+ c}n (z) + c}p(z)

5n (z), '
c}n, ,

'
c}n;

—n, [8( z)n
&

(—ne& )+8(z)nate'(n&)] + 6a

l

(D2)

The first two terms vanish because of Eq. (Dl). In the
next term we use the expression (27) for n (z):

Thus Eq. (D2) takes the form

o
~~

= f dz I
—[p(z) —n (z)]P(z)+ —,'[p(z) —n (z)]P(z)

c}n(z) cd (z)
n; =n z —a

Bn; c}a
(D3}

+ [g ng„+n (n'g, )'—]„~,~
—8( —z)o (n, )

—8(z)cr(n2) I . (D8)

The term ac}n (z)/c}a does not contribute because of (D 1).
Furthermore, we use

g n; =p(z),ap(z)
Bn,

(D4)

n; n-c. n- =n c n. —o n.
'dn,

(D&)

as well as

5
dz pz n z z = z

5n(z)

and

(D6)

f dz' g (n (z'), s (z') )
5n(z)

=Ig„(n,s) —[n'g, (n, }]'s]„~,
~

. (D7)

In the first line (Hartree term) arises —
—,
' [p(z) —n (z)]P(z)

or equivalently ,'[E (z)/4m. e ].—S—o, in the case of the
Ansatz used in Refs. 32—34, the parallel component of the
interface stress cr~I is identically equal to f dz o~~ (z).
This is also true for any Ansatz n (z), which is a homo-
geneous function of n

&
and n2 and of order 1. Because in

that case, in accordance with Euler's theorem, n (z) obeys
Eq. (03) without the last term, therefore the mentioned
identity holds again. The degree of agreement between
the two sides of this identity measures the extent to
which the minimum of 6' according to Eq. (Dl) has
been really reached.

Within the Ansatz method also 0.
~ is identically equal

to f dz o~ (z): Because of Eqs. (8) and (9), leading to

o ~
=o

~~

—8', and because of (D8) and (26), their

difference is given by
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ot2 —f dz ot (z) =f dz I
—

—,'[p(z) —n (z)]P(z)—[g (—n') g, ]„(,)+8( —z)n, e(n, )+8(z)nze(nz) I (D9)

The right-hand side vanishes because of the analogy of
Eq. (Dl) with respect to (, which takes with Eqs. (D6)
and (D7) and with

fdz zn '(z)(Il(z) = —f dz [p(z) —n (z)]'z((l(z)

=f dz [p(z) n—(z)][/(z)+zP'(z)] .

P n(z)=z n(z)a = a
az

the form

(D10)
(D12)

On the other hand, with the help of the Poisson equation
P"—(z) =4~a [p(z) n—(z)] it can be shown that

2f dz [p(z) n—(z)]zP'(z)= f dz [p(z) n—(z)]P(z) .

f dzI —P(z)+[g„—(n'g, )']„(,)Izn'(z)=0 . (D 1 1)
Thus

(D13)

The integration by parts indeed transforms the left-hand
side of Eq. (Dl 1) into the right-hand side of Eq. (D9).
This is proved in the following. With zp'(z) =0 one finds

zzn' z z =—,'z p z —n z z (D14)

results. Furthermore, with the help of g
' =g„n ' +g, n

'
n
"

it is evident that

f dz zn'(z)[g„—(n'g, )']„(,) = f dz z [g' —n'n "g, —n'(n'g, )']„(,)
= f dz [zg'+(n') g, ]„(,) .

Finally, with g (n, s) =g (n, 0)+sg, (n, 0)+ one arrives at

2 d L2 +L2
dz z g(n (z),s (z)) = — dz g(n (z), s (z))+z [g (n, 0)+sg, (n, 0)+ ]„(,) ~-L} dz —L} }

L2f dz [—g (n, s)~„,()+(8—z)g(n ( L( ),0)+8—(z)g(n (L2),0)]
}

+zs (z)g, (n (z),0)
~

L'+

(D15)

(D16)

In the limit L
& 2 ~ (x)

f dzz g(n(z), s(z))= fdzz[ —g(n, s)~„(,)+8( —z)g(n„0) +8(z)g(nz, 0)]
d
dz

(D17)

results. Note that g(n, O)=ns(n). Thus Eqs. (D17), (D15), (D14), and (Dl 1) make the right-hand side of Eq. (D9) zero,
QED.

The proof uses, via Eqs. (D3) and (D10), the peculiarities (or symmetry properties) of the Ansatz (27).
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