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The relativistic corrections to the band-structure calculation have been implemented in the or-

thogonalized linear combinations of atomic orbitals method. A two-step process is suggested such

that the scalar-relativistic effects due to the spin-independent mass-velocity and Darwin terms are

treated Srst. Spin-orbit interaction is then included on the basis of the spin-polarized band struc-

tures. All other higher-order corrections are ignored. Test calculations on scalar-relativistic

corrections are demonstrated in the elemental methods Ni, Nb, and Ce with increasing atomic mass

numbers. The results are in very good agreement with the established results using other band

methods. The full relativistic band structure is calculated for ferromagnetic Fe. It is shown that the

efFect of spin-orbit interaction in Fe is of considerable importance compared with the scalar-

relativistic correction.

I. INTRODUCTION

The linear combination of atomic orbitals (LCAO}
method has been a popular method to study the band
structure of solids since its use in the first realistic calcu-
lation with Li in 1966.' Over the years, the method has
been systematically refined and improved, and has been
applied to a variety of condensed-matter systems for their
electronic structures. In 1975, an orthogonalized ver-
sion of the method, or the orthogonalized linear com-
binations of atomic orbitals (OLCAO) method, was in-

troduced such that the core states in the basis expansion
were completely eliminated from the final secular equa-
tion, resulting in a much reduced matrix dimension. The
method is particularly appearing for complicated systems
with a large number of atoms in the unit cell or with
heavy atoms with large cores. The OLCAO method has
been successfully applied to complex crystals and amor-
phous solids. In recent years, introduction of efficient
self-consistent schemes. extension to f-electron sys-
tems, ' implementation of spin-polarized version, ""
development of first-principles total-energy calcula-
tions, ' and timely application to high-temperature super-
conductors' ' have made the OLCAO method one of
the premier methods in the modern band theory of solids.
However, in many systems with complex crystal struc-
tures and with heavy atoms in which the OLCAO
method is supposed to be most competitive, relativistic
effects become very important and cannot be totally ig-
nored. While corr ctions to the relativistic effects in oth-
er methods of band-structure calculation such as the
Korringa-Kohn-Rostoker (KKR), ' APW, ' linear
augmented-plane-wave (LAPW), ' linear muffin-tin orbit-
als (LMTO), ' ' etc. method are quite standard, at least
at the scalar-relativistic (SR) level, such corrections have
not been fully explored with the OLCAO method. Rela-
tivistic molecular calculations with LCAO method using
numerical basis have been developed quite some time
ago. Wang and Callaway have studied the spin-orbit in-
teraction in ferromagnetic Ni and Fe using the linear

II. FORMALISM
ON SCALAR-RELATIVISTIC CORRECTION

We start with the Dirac equation for a relativistic elec-
tron in a solid and split the electronic wave function into
the "large" and "small" components:

ca epg, +(mc E —eg)$„=0, —

ctr e pf„—(mc +E +eg}$„=0. (lb)

In the equations above, a. stands for Pauli spin matrices,
p the momentum operator, and P is the scalar potential
experienced by the electron. We assume that there is no

combination of Gaussian-type orbitals (LCGO)
method, "' but not with the full relativistic corrections.
It is therefore desirable to add the full relativistic correc-
tions to the OLCAO method which is sufficiently efficient
to be applicable to complex systems with heavy elements
such as the high-temperature superconducting oxides' or
the rare-earth-iron —boron permanent magnets.

In this paper, we describe an implementation of relativ-
istic corrections to the OLCAO method and present test
results on the well-studied bench mark systems to assess
the accuracy of the relativistic OLCAO method. We fol-
low the usual approach of separating the SR effects from
the spin-orbit coupling. The SR effect is treated as addi-
tional corrective terms to the potential, while the spin-
orbit coupling matrix elements are added to the spin-
polarized Hamiltonian matrix before diagonalization in a
manner similar to the work of Koelling and Harmon.

The organization of this paper is as follows. The for-
malism for SR correction is outlined in Sec. II. This SR
correction is then applied to three elemental metals, Ni,
Nb, and Ce, with increasing atomic mass numbers and
correspondingly increasing relativistic effects. The re-
sults are discussed in Sec. III. In Sec. IV, addition of
spin-orbit coupling with application to ferromagnetic Fe
is described. A brief conclusion is presented in the last
section.
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and by taking the approximation

1 E'+eP
1+[(E'+ e P ) /2mc ] 2mc

the Dirac equation can be simplified to the form
r

(E'+eP)P=
p4 eA'

2m Sm c Sm c
p — — Vs VP

external magnetic field applied. The ratio of "large"
component g„ to the "small" component t/r„can be es-

timated to be 2c/u, where u is the velocity of the electron.
Since the velocity of light c is much larger than v, one
needs to only concentrate on the "large" component in-
volving two component spinors with up spin a and down
spin P.

If we define the energy E'=E —mc with the rest ener-

gy taken out, Eq. ( la) takes the form

(E'+ eP)P„= —(cr.P)K (a"P)f„1

the spin-orbit coupling for further treatment. This sepa-
ration of spin-dependent and spin-independent parts of
relativistic corrections is extremely convenient in terms
of real calculations. In the SR framework, the symmetry
of the Hamiltonian is not changed and the effect of both
mass-velocity and Darwin terms can be absorbed as
corrections to the one-electron potential of the
Schrodinger equation. This change in the effective crys-
tal potential is the same for both spin components so the
SR correction can be applied to the paramagnetic bands
as well as the spin-polarized bands. In general, the spin-
orbit coupling parameters are smaller than the SR shifts
by typically an order of magnitude and the efFect is im-

portant only in small regions of k space where certain
band degeneracy exists. In the ordinary band-structure
calculations, it is customary to consider only the SR
efFect and ignore the spin-orbit interactions unless
specifically desired.

In the OLCAO method, it is quite straightforward to
calculate the matrix elements of the mass-velocity and
Darwin terms. For the mass-velocity term, we may write

eR
o eVQXp

4m 2c~
(3) p =(p +p, +p*}'(p +p +p*}

where we have dropped the subscript u for the "large"
component of the wave function for convenience. In
comparison with the nonrelativistic Schrodinger equa-
tion, there are three additional terms to the Hamiltonian
on the right-hand side of (3} which are called the mass-
velocity, Darwin, and spin-orbit coupHng terms, respec-
tively. Note that the Pauli matrices o are involved only
in the spin-orbit interaction term. This means that the
first two corrective terms have no off-diagonal matrix ele-
ments between the two components of the spinor. They
do not mix the spin components and thus behave like a
scalar. The term "scalar-relativistic correction" is used if
we take into account only the first two terms and leave

I

where the atomic wave functions P are expanded in terms
of Gaussian-type orbitals which, in general, take the form

n lm(2) (6)

In this case, it is convenient to use a generalized formula
for the overlap integral between two Gaussian orbitals as
shown by Lafon:

where p„,p, and p, are substituted by the corresponding
differentiation operators. It is easy to carry out the
differentiation operation between Bloch sums:

g( —ik R„)P;(r—R„r,)—1

N

S„~l,~& „2&2~2(at, az, A, B)=fx„"'y„"z„'exp( a~ A)x—g ygzs exp( azB)d—~

=S„,„2(a&,az, A„, B„}Sil, 1(2a&, azA~, B~)S, 2(a~, az, A„B,)

where
r

Pl 2

S„~ „z(a„az, A„,B„)=exp(—h AB„)g AD „"' "'g „BD„"
"

E„&+„z(P)
rl . 1. r2 ."2

(8)

and

13=a,+az, h =a,az/p,

D =(a, A+ azB) /P, AB„=B„—A„,
E (P)=N P (n 1+)lz

T

1 if n=0
X„=m' 0 if n is odd (10}

(n —1)!!/2"~ if n is even .
Using these formulas, differentiations with respect to the
Cartesian coordinates x, y and z can be easily carried out

V(r)=+V„(r —R„),

ZA
V„(r)=— exp( —ar )+gC;exp( P;r ) . (12)—

and the contribution to the matrix element from the
mass-velocity term between atomic orbitals can be evalu-
ated in terms of generalized overlap integrals.

For the Darwin term, we need the second derivatives
of the crystal potential. In the direct-space OLCAO for-
malism, the crystal potential is generally expressed as a
superposition of the atomiclike potentials which are cast
into some linear combinations of Gaussian functions:
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V„(r)=——+ Vc,„,(r)+ V„,„(r) .
Z
r

(13)

The second-order derivative of the Coulomb part is equal
to the electron charge density according to Poisson's
equation:

V' Vc,„,(r)= 4~p—(r) . (14)

The second derivative of the V„obviously also consists
of linear combination of Gaussian-type functions, but of
higher order. With the help of a generalized formula for
the three-center integrals of Gaussian functions, there is
no difficulty in calculating the contribution from the
Darwin term analytically. However, a more convenient
numerical procedure may be adopted. One simply calcu-
lates the Darwin correction as a function of r and linearly
fit to a set of Gaussian functions with the same exponen-
tials as in the crystal potential itself. The correction then
appears as a modification of the coefficients C, in (12).

Sometimes a problem arises when the accuracy of the
numerical potential is not satisfactory, especially in the
region near the nuclei. Repeated differentiation of V~ in

the Darwin term may magnify the numerical inaccuracy.
In this case, one may separate the total one-electron po-
tential into Coulomb and exchange parts:

central-cell atom in the OLCAO method are good esti-
mates to the energy levels of the corresponding atomic
orbitals, a preliminary estimate for the relativistic effects
in an individual atom can be obtained by inspecting the
diagonal Hamiltonian matrix elements. There are two
general trends in the shifting of the energy levels in atoms
due to relativistic effect. First, the shift is much larger
for atoms of larger Z; second, within the same atom, the
differences between relativistic and nonrelativistic energy
levels are usually getting less and less from inner shells to
the outmost ones and then become larger and larger for
higher excited states as the energy is increased. These
features in atoms had been discussed by Koelling and
McDonald with typical results tabulated. Our calcula-
tion shows that not only are both of these tendencies well
kept, but also the magnitudes of these shifts are in close
agreement with the estimates of Ref. 27 for the corre-
sponding neutral atoms.

The band structures of Ni and Nb are calculated self-
consistently using the OLCAO method. For Ce, the pre-
viously published band' in which the OLCAO method
was extended to the f-electron system is used. SR correc-
tions according to the above-outlined steps are calculated
and applied to respective band structures. In Figs. 1 —3,

In the local density theory, the exchange part is also a
function of charge density p. We may use charge density
function instead of the potential function in the evalua-
tion of the Darwin term. The Darwin correction due to
V,„,h(r) is generally less than that of Vc,„~(r). The site-
decomposed charge density function is available from the
self-consistent scheme; it can also be calculated directly
from the Bloch functions; or it may also be approximated
by the atomic charge density since in the core region, the
charge density of a free atom and that in a solid are the
same. In the core region where the relativistic effect is
the most important, the nuclei Coulomb part of (13) dom-
inates. The contribution to the Darwin term from the
nuclear charge Z is a 5 function of the form

0
Ol

CC

W

-10
r

%AVE VECTOR
W K

z—V V ——=4nZ5(r) .
r

(15)

At the nucleus, only s electrons experience this interac-
tion which has a positive sign. This means that for s elec-
trons, the effect of Darwin correction results in an in-
crease in energy and therefore leads to a direct competi-
tion with the mass-velocity term which is always nega-
tive.

III. APPLICATION
OF SCALAR-RELATIVISTIC CORRECTION

At the present stage, calculation of relativistic effects in
metals is generally limited to the SR level. We have cal-
culated the SR energy bands of elemental metals Ni, Nb,
and Ce as a test for our method. The selection of these
three metals as prototypes is quite obvious. 3d, 4d, and
4f electronic orbitals are, respectively, involved in these
three crystals with an increasing atomic mass number.
Since the diagonal Hamiltonian matrix elements of the

6'

e5

~4

M p'
a

0'
—10 —5

ENERGY (eV)

FIG. 1. Band structure (a) and DOS (b) of fcc Ni. Dashed
line, nonrelativistic result; solid line, with scalar-relativistic
correction.
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FIG. 2. Band structure (a) and DOS (b) of bcc Nb. Dashed
line, nonrelativistic result; solid line, with scalar-relativistic
correction.

0 ~ ~ ~ ~ ~ ~ T ~ ~ I ~ \ ~ F ~ ~ I ~ ~ I W ~ T ~ ~ ~
/ ~ 0 f T ~ ~ f ~ ~

—5.0 -2.5 0.0 2.5 5.0

ENERGY (eV)

FIG. 3. Band structure (a) and DOS {b) of fcc Ce. Dashed
line, nonrelativistic result; solid line, with scalar-relativistic
correction.

we display the band structures and the densities of states
(DOS} of paramagnetic fcc Ni, bcc Nb, and fcc y-Ce, re-
spectively. The dotted lines are for the nonrelativistic re-
sults and the solid lines are for the SR results. In all
three cases, the energy shifts are due to the combined
e8'ects of the mass-velocity and Darwin terms. It is clear
that the general tendencies of the energy shifts in a free
atom are retained, although the shifts vary in the
different regions of the Brillouin zone (BZ}. At the I
point, the center of the BZ, the relativistic shift in energy
for the lowest s band is the largest, the downward shift in
energy due to SR correction is about 0.43 eV for Ni, 0.94
eV for Nb, and 1.63 eV for Ce, and so the Z dependence
of the relativistic shift is well established.

The above results should be compared with existing
relativistic band-structure calculations using other
methods. Kim, Harmon, and Lynch, in studying the op-
tical properties of Nb, have presented the nonrelativistic
and SR band structures of Nb using the KKR method.
Their results are almost identical to ours for both cases
for bands throughout the entire BZ. The entire separa-
tion between I, and I 25. is 5.3 eV for the nonrelativistic
case and 6.3 eV for the SR case. The latter number is in
excellent agreement with the value of 6.4 eV obtained by

Elyashar and Koelling using the self-consistent relativ-
istic APW method. For Ni, our nonrelativistic band
structure is in very good agreement with that of Moruzzi
et al. 0 using the self-consistent augmented-spherical-
wave (ASW} method. However, our relativistic energy
band for Ni is in much better agreement with the recent
angle-resolved UV photoelectron spectroscopic measure-
ment. ' For example, experimental estimation for the en-
ergies from I,~I 25 and I

&

—+I &2 are 7.5 and 8.3 eV, re-
spectively. Our scalar-relativistic band gives 7.2 and 8.2
eV for these two energy di8erences. The nonrelativistic
calculation of Moruzzi et al. gave 6.8 and 7.8 eV for the
same energy separations. In the case of Ce, the scalar-
relativistic band is in good agreement with that of Pick-
ett, Freeman, and Koelling.

The DOS's for the three metals are shown in part (b) of
Figs. 1 —3. As is evident, the relativistic eA'ect in Ni is al-
most negligible since the biggest shift in energy is at the
bottom of the s band at I where the state has a very low
DOS. The di6'erence between relativistic and nonrela-
tivistic DOS becomes appreciable in the case of Nb, espe-
cially in the range of higher binding energy. In the case
of Ce, the difference becomes very large. For example,
the peak at —1.2 eV has been shifted to —1.9 eV and be-
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comes much more broadened. An extra peak at —2. 3 eV
has appeared which was not present in the nonrelativistic
calculation. Since electrons near the Fermi surface move
at relatively low speeds, the relativistic effects are expect-
ed to be less appreciable near Fermi energy. This can be
clearly seen from the energy band and DOS diagrams for
Ni and Nb. For Ce, there is a considerable shift of 4f
bands near the Fermi level.

IV. FULL RELATIVISTIC CORRECTION
AND APPLICATION TO FERROMAGNETIC Fe

To consider the full relativistic correction, the spin-
orbit coupling term in Eq. (3) must be considered. Al-

though the correction due to spin-orbit coupling is in

general smaller than the SR corrections, it may play an
important role in certain cases. A prime example is the
anisotropy in magnetization in permanent magnets. Only
through spin-orbit coupling can the local spin moments
be related to the orbital moments in determining the
magnetic anisotropy energy. Magneto-optical Kerr effect
is another example which can be understood only if the
electronic structures with both spin-orbit interaction and
exchange splitting are explicitly considered.

There are different approaches to treat spin-orbit cou-
pling, depending on the system under study and the phys-
ical process involved. For optical processes in cubic
semiconductors, one tends to concentrate on the states at
the band edges of the spectrum. A calculation at high
symmetrical points of the BZ using perturbation theory
for the degenerate case usually serves the purpose. How-
ever, we would like to have a general and yet convenient
scheme to treat the problem of spin-orbit coupling in the
framework of the OLCAO method. The general ap-
proach is similar to that adapted by other methods,
namely, a spin-polarized band structure is established
first, and the spin-orbit interaction is added on as a
correction to the spin-polarized Hamiltonian. This ap-
proach is more general and can be equally well suited for
the systems with strong or weak exchange splittings.

The spin-polarized band-structure calculation provides
two Hamiltonian matrices, one for spin-up band (minori-
ty spin band), the other for spin-down band (majority
spin band). In the absence of spin-orbit interaction, these
two matrices are diagonalized separately to yield spin-up
and spin-down bands. When the spin-orbit coupling term
is included in the Hamiltonian, not only are the original
up and down matrices modified, they are also coupled to-
gether such that the matrix size is doubled. The pro-
cedure can be represented schematically as follows:

U 0 U'

0 D 5 D' (16)

where U (U') and D (D') are the original (corrected)
Hamiltonian matrices for spin-up and spin-down states,
respectively, 0 is a zero matrix, and b, is the coupling
matrix. We shall assume that SR corrections have al-

ready been included in U and D as described in Sec. II. A
similar idea was employed by Misemer in a cluster-type
approach.

To obtain explicit expressions for 5 and to make
corrections for U and D, we need to evaluate the matrix
elements of the spin-orbit coupling term between spin-
polarized Bloch bases. If we follow a first-principles type
of approach, as was done by Wang and Callaway"' in
their study of ferromagnetic Ni and Fe, a large number of
integrals involving the derivative of the crystal potential
and the Gaussian-like orbitals in the basis expansion
must be evaluated. Such an approach appears to be not
very practical for complex systems such as the Nd2Fe, 4B
hard magnet which we eventually will be interested in.
Hence we follow a simpler approach in which the
strength of this coupling is treated as a parameter. These
parameters are obtained either from experiments, or from
atomic calculations. In fact, the spin-orbit interaction is
rather short ranged and to a good approximation, can be
considered to confine within the central-cell atom. Under
this assumption, the matrix elements between Bloch bases
are reduced to the matrix elements between atomic orbit-
als and the calculation is essentially reduced to a calcula-
tion at the atomic level.

In the parametrization form, wg write the spin-orbit
coupling term as

gl. s =g( j' —I' —s') /2 (17)

where g is the spin-orbit coupling parameter. j, I, and s
are the total, orbital, and spin quantum numbers for the
atom. g is given by the expression

(18}

~I, m ) ~s, m, }=g (I,s,j,m ~l, m, s, m, )~l, s,j,mj }
J, m

J

(19)

where the transformation coefficients
(I,s,j,m„~l, m, s, m, } are obtained from the inverse
transformation of the well-known Clebsch-Gordan
coefficients for two angular momenta coupling. The
matrix elements of (17) between the coupling wave func-
tions then become trivial, because the coupling wave
functions are simultaneous eigenfunction of total, orbital,
and spin angular momentum operators and we have

g(l s) =g[j(j+1)—I(1+1)—3]/2. (20)

Equation (20) provides us with all that is needed for the

where V is the atomic potential and P„&(r}are the atomic
orbitals. The parameters g can be obtained from the
atomic self-consistent field calculations such as those by
Herman and Skillman and utilized in our band-
structure calculation. The matrix elements of (17) be-
tween atomic wave functions are quite simple. Due to
the spin polarization, the atomic wave functions are
direct products ~a, I, m) ~s, m, ) where ~a, I, m ) denotes
the spatial parts and ~s, m, ) and spin part of the wave
function (with m, =+—,'). The angular quantum numbers

I, m are explicitly written out while all other indices are
absorbed in the collective index a. These direct product
wave functions can be transformed into coupling wave
functions:
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matrix elements of (16). Diagonalization of (16) together
with the overlap matrix which is not changed for both up
and down spin leads to the new Bloch functions including
spin-orbit coupling. There is no difficulty in classifying
the new Bloch states by their symmetric properties if
needed.

%e have applied the above procedure to the case of
band structure of ferromagnetic Fe. In Fig. 4, we present
the self-consistent spin-polarized band structure and the
total DOS of bcc Fe in which only the SR correction has
been included. %e have obtained a spin moment of
2.15pz per Fe site which is in good agreement with exper-
iment. Like fcc Ni discussed in Sec. III, the effect of SR
correction is quite small. This can be seen more clearly
from the spin projected DOS shown in Fig. 5. The SR re-
sult (solid line) and the nonrelativistic result (dashed line)
are almost identical. The full relativistic band including
spin-orbit interaction is shown in Fig. 6(a). In this calcu-
lation, we have used the value of 0.037 eV for the param-
eter g for the Fe 3d electrons, same as from the atomic
self-consistent field calculation. Our result is very simi-
lar to that of Wang and Callaway using a first-principles
approach for the spin-orbit interaction parameter, al-

~++I

Q

tQ

N
O

M

M
O
A

ENERGY (eV)

FIG. 5. Spin-projected total DOS of Fe. Upper panel, major-

ity spin; lower panel, minority spin. Dashed line corresponds to
the nonrelativistic calculation.

though they did not include the SR effects in their calcu-
lation. Note also that some of the accidental degenera-
cies in the Fe band have been removed by the spin-orbit
interaction. In Fig. 6(b), we compare the total DOS of Fe
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FIG. 4. (a) Spin-polarized band structure for bcc Fe with

scalar-relativistic correction. Solid line, majority spin; dashed
line, minority spin. (b) Total DOS for bcc Fe with scalar-
relativistic correction.

FIG. 6. (a) Full relativistic band structure of Fe including
spin-orbit coupling; (b) Total DOS of Fe. Solid line, full relativ-
istic result; dashed line, scalar-relativistic result,
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with the without spin-orbital coupling. Although the
difference cannot be considered to be substantial, it is ac-
tually larger than the difference between the nonrelativis-
tic and the SR correction alone. We note that additional
structures have appears at —1.0, —1.2, —1.6, and —2.7
eV. Such structures may be too small to be detected ex-
perimentally. Hence, at least in the 3d metals, the spin-
orbit interaction is probably of equal importance to the
scalar-relativistic effect. The same may not be true for
crystals involving heavier elements.

The method for spin-orbit coupling correction has also
been applied to a much more complicated system
Nd2Fe, 4B to estimate the local orbital moments in this
crystal. Although the SR effect was not considered in
that study because the spin-polarized band structure was
not calculated self-consistently, the results are quite sa-
tisfactory and are reported elsewhere.

netic Fe show that our relativistic results are very satis-
factory and in good agreement with similar calculations
using other methods. The correction procedure is quite
simple and is divided into two steps. The SR correction
is carried out first and then the spin-orbit coupling is in-
troduced in a general form on the basis of spin-polarized
band structure. The additional computation required for
the relativistic correction, either in the SR case (mass-
velocity term and Darwin term) or with the spin-orbit
coupling, is not unduly excessive or cumbersome. There-
fore this method can be easily extended to other more
complicated systems where other methods may not be as
convenient. It is hoped that our method will lead to a
serious calculation on the magnetic anisotropy energy in
high performance magnet and to the study of magneto-
optical properties of magnetic materials with large Kerr
rotation angles.
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