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First-principles calculations of electronic structure in random hcp alloys:
A Ru-Re example
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The electronic structure in random hcp transition-metal alloys is determined by means of the
first-principles scalar-relativistic tight-binding linear muffin-tin orbitals method combined with the
coherent-potential approximation. As an example, we have calculated electronic properties of the
Ru,_,Re, system which exhibits a non-rigid-band behavior and has the hcp structure in the whole

concentration range.

Although the hexagonal-close-packed (hcp) structure is
the most common one among the transition-metal alloys,1
the bulk of the theoretical investigations in the past was
restricted to cubic structures. The reason for it is a more
complex structure of these materials due to two atoms
per unit cell as well as the deviations from the ideal ¢ /a
lattice-constant ratio imposing certain structural aniso-
tropies.

Regarding pure hcp metals, a number of band-
structure calculations have been published (see, e.g., Ref.
2 and references therein). The results of the full-potential
linear augmented-plane-wave (FLAPW) method? indicate
that the non-muffin-tin terms in potential have a relative-
ly small effect on the energy bands and the densities of
states: in particular, the band structures obtained agree
well with the linear muffin-tin orbitals (LMTO) calcula-
tions of Jepsen et al.> A comparison of the calculated
electronic properties with available experimental data®°
indicates that the local-density approximation (LDA)
provides their proper description.

The time thus seems to be ripe for a next step, namely,
for a first-principles determination of the electronic struc-
ture of random hcp alloys. To our knowledge, no such
calculations exist in the literature. It is the main purpose
of the present paper to fill in this gap and to investigate
the concentration dependence of the electronic properties
of hcp random transition-metal alloys within the
coherent-potential approximation (CPA).

We shall employ the recently developed CPA generali-
zation’ of the tight-binding linear muffin-tin orbitals
(TB-LMTO) method,*® which has been successfully used
in a number of transition-metal alloys with one atom per

4

unit cell, namely, in fcc and bcc random alloys.'o™ 13

Here we extend this approach to the case of two atoms
per unit cell and apply it to the hcp transition-metal al-
loys.

Analogously as in Ref. 7, the starting point of our
analysis is the Hamiltonian of an 4,_, B, alloy in the or-
thogonal LMTO representation given by

Hgy rer-=CriOrrdrr + AR Sk o ARE >
Skerr =[S U=¥SO gL v -

Here R labels atomic positions and L =(I,m ),l <2, is the
orbital index. The quantities Xg;, X=C,A,y, are the
potential parameters’ ° which describe the scattering
properties of LDA potentials in atomic (Wigner-Seitz)
spheres centered at R. The potential parameters are
closely related to the potential functions P%z), which
may be well approximated by the expression P%(z)
=(z—C)/[A+y(z—C)]. In the language of scattering
theory, the functions P%z) are proportional to cotangents
of the corresponding phase shifts. In disordered alloys,
the quantities X, take randomly two different values X2
(Q=4 or B). The quantity S}, g, represents the
(analytically known®°) canonical structure constant ma-
trix characterizing the hcp lattice geometry independent-
ly of the occupation of the lattice sites by atoms. The S7
is the structure constant matrix in the orthogonal repre-
sentation.®° In case of pure metals, the above Hamiltoni-
an describes the electronic structure with an accuracy
comparable to other first-principles methods.

In random alloys, the Hamiltonian (1) exhibits both di-
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agonal and off-diagonal disorder, so that the CPA averag-
ing of the resolvent G(z)=(z—H)~! cannot be done
without additional approximations in the orthogonal
LMTO representation. It was shown in Ref. 7 how to
overcome this difficulty: we transform the resolvent from
the orthogonal LMTO representation corresponding to
the Hamiltonian (1) to a suitably chosen nonrandom
LMTO representation a. This makes it possible to work
with random, but site-diagonal potential function P%(z)
and with a nonrandom structure constant matrix S rath-
er than with the Hamiltonian (1) also possessing the off-
diagonal randomness. The usual CPA averaging pro-
cedure may be now applied to an auxiliary resolvent
g%z)=[P%z)—S*]"! related uniquely to G(z). In the
last but nontrivial step’ we transform the
configurationally averaged resolvent {g%z)) back to the
original, orthogonal LMTO representation. The auxili-
ary LMTO representation « is conveniently chosen to be
the most localized representation’~® @ =p with a nonran-
dom structure constant matrix

SP=5%1—-B8S%"1, Q)

where Bg,; =(B,,B,,B,) characterizes this representation.

The above procedure can also be applied to the hcp al-
loys. Here the following aspects are worth mentioning.

(i) In the hcp structure with two atoms per unit cell
and with s, p, and d, orbitals at each site the problem has
the dimension 18X 18 instead of 9X9 common for lat-
tices with one atom per unit cell. The structure constant
matrix in the Bloch representation is expressed as’

SErur (K)=3 explik- TS w4+t > 3)
T

where T runs over all lattice translations and U and U’
are the sites in the primitive cell. The screened structure
constant matrix SﬁL,R,L, of the hcp lattice with a given
¢ /a ratio was determined directly by performing the ma-
trix inversion (2) for a cluster of 93 atoms. Test calcula-
tions have shown that using a 39-atom cluster for the
determination of SﬁL’R,L' gives nearly identical results
and even a 19-atom cluster yields also a reasonable
description of the electronic structure. The resulting
small spatial extent of S? in the real space’ allows us to
perform the Bloch transform (3) by the direct summation,
without Ewald procedure.

(i) In cubic lattices and for /<2 the site-diagonal
quantities are diagonal also with respect to the orbital in-
dex L. In the hcp structure, due to a lower symmetry,
the site-diagonal quantities are nondiagonal with respect
to the orbital index and, consequently, the solution of the
CPA equations is more involved. The problem can be
simplified for transition metals by solving the CPA equa-
tions for the d states only, while the broad s and p bands
can be safely treated in the virtual-crystal approximation
(VCA). In case of fcc and bec transition-metal alloys we
have found that this approximation causes only negligible
deviations in comparison with the full treatment. In the
hcp structure, the d-d block is diagonal with respect to
the orbital index and there are three different values of
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matrix elements D;: D, =D ,_
D
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We have applied the above formalism (with the s and p
states being treated within the VCA) to the substitution-
ally disordered hcp Ru,_, Re, system, which exists in the
whole concentration range and exhibits a non-rigid-band
behavior so that a proper treatment of its electronic
structure requires the use of the CPA. The experimental
c/a ratios of Ru and Re are similar, being 1.583 and
1.615, respectively. For a random alloy Ru,_,Re, we
have used the value (c/a)y,,=(1—x)(c/alg,
+x(c/a)g.. In the electronic structure calculations, the
relativistic shifts were included, but the spin-orbit cou-
pling was neglected. For the Brillouin-zone integration,
we took 405 k points in an irreducible wedge. The in-
tegration method employed takes advantage of using the
energy variable with a small imaginary part thereby
smoothing out the integrand and speeding up the CPA
iterations; the desired quantities as density of states
(DOS) and spectral densities were found by the numerical
analytical continuation back to the real energy axis'* at
the end of the CPA calculations. The energy resolution
for energy-dependent quantities, e.g., the local DOS, was
0.01 Ry, and the CPA equations converged in all cases.
As the input for the calculations, we used the potential
parameters of pure Ru and Re, evaluated at their equilib-
rium lattice constants.!> As discussed in detail in Ref. 11,
the correctness of this choice is supported by two facts.

(i) Within the LMTO method, the potential parameters
of different elements are related to a common energy
zero, and the atomic spheres with radii equal to those of
pure species remain approximately neutral also in a ran-
dom alloy. This makes it possible to properly align the
potential parameters on the energy scale and thus to
achieve an approximate charge self-consistency. This is a
great advantage in comparison with the Korringa-Kohn-
Rostoker—-CPA (KKR-CPA) method, where the misfit of
constituents muffin-tin zeros and differently charged
muffin-tin spheres prevent one from relating the phase
shifts correctly on the energy scale, and either self-
consistent calculations or empirical adjustments are inev-
itable.

(i) The present choice of potential parameters implicit-
ly assumes some sort of structural disorder due to
different radii of atomic spheres, which leads to a trimo-
dal (Ru-Ru, Ru-Re, and Re-Re) distribution of atomic
distances, the Ru-Ru and Re-Re distances being essen-
tially the same as in pure metals.!! This picture of
structural disorder is also supported by experiment.'® In
the tight-binding language, it means that the correspond-
ing hoppings preserve their values from pure metals.
Thus, the effect of lattice relaxations is also included in
an approximate manner.!! In the present case of Ru-Re
alloys, this effect is rather small as the Wigner-Seitz radii
of Ru and Re differ by only about 3%.

The band structure of Ru crystal along chosen high-
symmetry directions in the irreducible hcp Brillouin zone
is presented in Fig. 1. Overall band dispersion shapes
agree well with those calculated by the augmented-
plane-wave (APW) (Ref. 4) or FLAPW (Ref. 2) methods,
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Scalar-relativistic band structure of
hcp Ruthentum, c/a=1.587
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FIG. 1. Energy bands of hcp Ru along the high-symmetry
directions in the Brillouin zone for the experimental c /a ratio.
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FIG. 2. The total (solid line) and the local densities of d
states on the Ru atoms (dashed line) and on the Re atoms (dot-
ted line) for Ru,_,Re, random alloys. The concentrations x
are assigned to the corresponding curves. The Fermi levels are
indicated by vertical lines.
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by the pseudopotential approach,® and by the LMTO
method.® The concentration dependences of the total
DOS and of the local d DOS on Ru and Re atoms in a
random Ru, _, Re, alloy are shown in Fig. 2. The Ru-Re
system exhibits a non-negligible off-diagonal disorder:
Wgre /Wr, = 1.35 (w is the bandwidth). In contrast with
the empirical TB-CPA approach, the present method al-
lows to include it properly.” The d-level difference
8=Cx<—CR'=0.125 Ry characterizing the diagonal dis-
order is rather large, but the ratio &/(w)
[(w)=(1—x)wg, +xwg.], which is a measure of the
strength of disorder, is smaller than that found in strong-
ly disordered fcc Ag-Pd or Cu-Ni random alloys. The
Fermi level E of the alloys lies inside the d bands as Ru
and Re are located in the middle of the transition-metal
periods.

A characteristic feature of Ru and Re DOS are well-
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FIG. 3. The spectral density functions A(k,E) for equally
spaced k vectors along the 4 -I'—M line in the irreducible hcp
Brillouin zone for Rug soReyso random alloy. The top curve
corresponds to point A, the middle curve to point I, and the
bottom curve to point M. The position of the Fermi level Ef is
indicated by the vertical line (Er=0.005 Ry).



10 462

separated peaks above Ep, which differ in their widths
and positions. Consequently, the unoccupied states
above Ep in random alloys are influenced by disorder
more significantly than occupied states below E, which
is also reflected in the pronounced differences between
the Ru and Re local densities of states for the states
above the Ep. It will be interesting to test these con-
clusions in future on experiment using, e.g., the photo-
emission techniques applied to occuppied and empty (in-
version photoemission) states. Note also an increase in
the alloy bandwidth and a very slight increase in the Fer-
mi level with increasing Re content.

The most detailed information on the electronic struc-
ture can be obtained from the Bloch spectral densities

Ak,E)x—(1/7)Im ¥ (k,L|{G(E+i0))|k,L) ,
L

where (G(E+i0)) denotes the configurational averag-
ing. The spectral density for Ruy sRej s random alloys is
plotted in Fig. 3 along chosen high-symmetry directions
in the hcp Brillouin zone. Significant deviations of the
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peak shapes from the Lorentzian form are clearly visible
at energies above E.. This again indicates that the effect
of disorder is stronger above the E than below E, as al-
ready seen in the DOS.

We have presented the first ab initio calculations of the
electronic properties of random hcp transition-metal al-
loys. Using the first-principles TB-LMTO-CPA method’
extended to the case of two atoms per unit cell, it was
possible to properly treat the electronic structure of non-
rigid-band hcp alloys, which was illustrated on the
Ru,_, Re, system. The present approach may be im-
proved by taking into account the spin-orbit coupling,
which may be especially important for atoms from the 5d
period.
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