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Surface statistical thermodynamics and magnetic susceptibility in the infinite-barrier model
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The effects of a planar bounding surface on the statistical thermodynamics of a semi-infinite

solid-state electron gas in a magnetic field normal to the surface are examined. The boundary con-
dition of specular reflection for an infinite-barrier model is employed. Contributions proportional
to surface area are determined for particle number N„grand thermodynamic potential 8'„ internal

energy E„magnetization M„and specific heat C, . Surface Landau diamagnetic effects are studied
in all regimes of magnetic field strength: Low monotonic magnetic field effects and surface de
Haas-van Alphen oscillations are treated at low to intermediate field strengths. We also examine
the surface statistical thermodynamic functions in the quantum high-field limit (all electrons in the
lowest Landau level). All are analyzed in the degenerate regime, including finite-temperature
corrections to the exact zero-temperature results. Nondegenerate quantum magnetic-field effects in

N„W„E„M„and C, are also treated in this study.

I. INTRODUCTION

This work is undertaken to determine the statistical
thermodynamics and magnetic susceptibility of a bound-
ed, semi-infinite, solid-state plasma in a quantizing mag-
netic field. In particular, we examine surface-related
features for specular reflection of electrons at a planar
boundary whose "infinite" potential barrier is much
larger than the Fermi thermal energy. Wang and
O' Connell' have recently focused attention on the role of
boundaries in Landau diamagnetism, a problem of histor-
ical significance which was first examined by Teller, who
calculated the magnetic-field-induced current of an elec-
tron gas along an impenetrable wall [infinite-barrier mod-
el (IBM)]. This calculation was reexamined by Ohtaka
and Moriya and Jancovici. Another approach to the
study of surface effects in Landau diamagnetism by exam-
ining the thermodynamic potential for an electron gas
contained in a hard-wall enclosure (IBM) has an equally
long history, ' beginning with the work of Papa-
petrou. " ' A survey of these various approaches to the
IBM model is given in Refs. 14—31. A physically
different model, in which the hard wall is replaced by a
harmonic confinement potential, was first analyzed by
Darwin. This mode1 has been investigated and elaborat-
ed from various points of view; a representative sampling
of the literature may be found in Refs. 6—10. Another

important aspect of this problem occurs for confining po-
tentials which are smoothly variable, so that a semiclassi-
cal expansion in powers of A', the thermal wavelength, or
an equivalent parameter can be used. Such calculations
were apparently first surveyed by Saenz and O' Rourke
and subsequently extended by Jennings and Bhaduri,
and by Wang and O' Connell. '

In this paper, we employ the infinite-barrier model for
the planar surface bounding a semi-infinite solid-state
plasma, and treat all regimes of normal magnetic field
strength, including surface de Haas —van Alphen oscilla-
tory phenomena for low and intermediate magnetic fields
along with monotonic magnetic field effects in the degen-
erate case, as well as the quantum strong-field limit (in
which only the lowest Landau state is occupied). Finite-
temperature effects are discussed below the degeneracy
temperature as well as above, and nondegenerate quan-
tum magnetic field effects are also examined. In general,
we consider quantum effects which may be large, as in
the case where the Landau-level separation exceeds the
Fermi energy, as well as the weak-field case. We present
useful closed-form representations for the surface contri-
butions to the grand potential S;, internal energy F.„
magnetization M„and specific heat C„as well as the
particle number N, (where the subscript s denotes an
areal density at the surface) in a comprehensive treat-
ment.
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II. GENERAL FORMULATION AND APPLICATION
TO THK NONDKGENKRATE CASK

In earlier work pertaining to the thermodynamic
Green's function of a bounded semi-infinite solid-state

plasma in a magnetic field H=Hz normal to the planar
surface, the quantum-mechanical grand-canonical-
ensemble-averaged expression for the density p(z) (un-
correlated) was found to be

fo(co); +s ds (I)' fun, cosh(@@HER)
p(z)=

&&2
dc@

&
. e ', [1—exp( —2mz /iri s)] .

(2ir )i~ 0 fi ~+ s—2'& s ' sinh(fico, s /2)

Here fo(co) is the temperature-dependent Fermi distribu-
tion, 1/P is the thermal energy ks T, g is chemical poten-
tial, co, is the cyclotron frequency, po is the Bohr magne-
ton, m is the electron effective mass, and z is depth into
the medium from an origin at the surface. The s integra-
tion is along the standard inverse —Laplace-transform
contour. The total number N is readily obtained by in-
tegrating with respect to z:

N=A zp z =NyV+N, A,
0

where Vis the volume of the medium and A is its surface
area. Using (1), the volume density is

Nv
1

(2ii)

f0(co) ds m irido, cosh(p~s)
X dQ)
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e
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(6b)

The specific heat for fixed geometry V, A is readily ob-
tained as

BE
BT „

and the magnetization M is given by

M=@
BH

Thus, integration of Eqs. (6a) and (6b) using Eq (2) y.ields
surface thermodynamic relations, after separation of the
corresponding well-known bulk thermodynamic rela-
tions. For the surface density of the grand potential 8'„
we have

and the equivalent surface density is obtained from the z
integration:

f (coo) ds cosh(p~s )
N, =— 8 Pl f1'

Sm 0 fP 2n.i ' sinh(i)'ice, s/2)

(holding /3 fixed) . (9)

Our problem is to evaluate 8', explicitly by performing
the g' integral of Eq. (9), and then determine the surface
density of internal energy E, in accordance with

It is advantageous to note that the analytical structure of
the surface density N, is identical to the analytical struc-
ture of the two-dimensional density expression p(2D):

N, = —
—,'p(2D), (5)

(6a)

and

in regard to functional dependence on chemical potential.
[Of course, the chemical potential involved in N, is deter-
mined by the bulk density, unlike that of p(2D), which is
deterinined by the sheet density. ] The integrals
representing p(2D) have been exhaustively analyzed,
and this provides a wealth of information concerning N,
and related quantities.

The expression for total number, as given by Eq. (2),
has well-known thermodynamic relations to the grand
potential W (logarithm of the grand partition function)
and internal energy E in accordance with

(10)

and finally we shall examine the surface density of mag-
netization M, in the form

BW',
M, =P-'

BH
(12)

Having the relation N, = —
—,'p(2D) we can in fact simply

transcribe results from Ref. 36 to this analysis, just multi-
plying by the factor (

——').
We shall focus attention of the zero-temperature limit

first, since the finite-temperature result for any of the 2D
integrals G (P; g) at hand may be obtained from the exact
relation

and to use this to obtain the surface density of specific
heat C, from

BE,
'B T
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G(P;g) = J du ( d—fo!du)G(P~ ~; g~u),
0

(13)

where G(P~~;g) is the zero-temperature limit. This
formula is especially convenient for low-temperature
corrections in the degenerate case, since standard approx-
imation procedures yield

cc $2 Gn, f
G(P;g)=G(P ~;g)+ g a„(kT)'"

n =1

e ~~m fico, cosh( poHP )

N, =—
Sirfi2 sinh(fiick, P/2)

(IS)

resentation is not useful above the degeneracy tempera-
ture, in which case it is more convenient to employ Eq.
(4), noting that fo(co)~e~~e ~, and evaluate the co and s
integrations as Laplace transform and inverse Laplace
transform with the result (nondegenerate case)

where

1a„= 2—,„z(2n),

(14a)

(14b)

%e shall illustrate the procedures outlined above, ex-
ploiting the simplicity of the nondegenerate case. Em-
ploying Eq. (9) with Eq. (15), we obtain W,. as

e'~m fici, cosh(iMOHP)
8',. =—

Sirfi2 sinh(A'co, P/2)

and z(2n) denotes the Riemann zeta function. This rep- and using Eq. (10) for E„we have

e&(mco, cosh()MOHP)cosh(fico, P/2)
S~. h(f P 2)

'" ' " h(f P/2)
L

Diff'erentiation of E, with respect to temperature T gives C, [Eq. (11))as

mao, gsinh(poHP) (fico, cosh(Piu~)cosh(Pfico, /2)
C, = —ksP e~~ —(p ), +

Sirfi sinh(pfico, /2) 2 stnh2(pfi~ /2)

cosh(P)LcoH) fi~, sinh(PiuoH)cosh(Pfizer, /2)—(p, )' . +(p )
sinh(pfi~, /2) 2 sinh (piii~, /2)

fico, iLcoHsinh(PpoH)cosh(Pfico, /2)+ (fico, /2)cosh(PpoH)sinh(Pfizer, /2)
+

2 sinh (Pfim, /2)

%co cosh(PAcu, /2 )
cosh(PpoH )cosh(Piiico, /2 )fico,'

sinh (Pfizer, /2)

and M, is obtained using Eq. (12) as

e~~m co, /H cosh(PpoH) e~~m co, sinh(PiuoH) me@, cosh(PpoH) Plies,
cosh(Pfizer, /2 )

p Sire sinh(pfico, /2) Sufi sinh(pfico, /2) Sufi sinhz(pfico, /2)

(17)

(18)

(19)

It is noteworthy that the classical limit A~O is devoid
of magnetic field effects, with N, = —m exp(pg)/
(4irfi P)= W„E,= —m exp(Pg)/(4mfi P ) =E, /P; C,
= —kiigm exp(Pg)/(4irfi ), and M, =0. It is clear that
equipartition is not applicable to E, (especially with X,
negative); on the other hand, the Bohr —van Leeuwen
theorem is satisfied by M, =0 for the classical limit, since
the quantum magnetic field parameters vanish. Although
classical magnetic field parameters need not vanish, they
produce no magnetization for the geometry considered.

III. SURFACE THERMODYNAMICS
BELOW THE DEGENERACY TEMPERATURE

As indicated above, it su%ces to consider the zero-
temperature limit. In this, we need only transcribe re-
sults from Ref. 36, multiplying by the factor —

—,'. We
shall cite exact results, as well as three cases of special in-

me@,
(n++n )

Sa

is exact, and results for cases (A), (B), and (C) are given
by

ffl CO .X'"'= — '
(2n +1)S (20a)

terest: (A) spin splitting equal to Landau-level separation
(iLc~ =co, /2), (B) zero spin (poH =0), and (C) low mag-
netic field (g»co, ) (fill). Of course, the quantum
strong-field limit, in which only the lowest Landau level
is occupied (co, & g), is incorporated into the exact result.
For lower fields (j&co, ), de Haas —van Alphen (dHvA)
oscillations are also in the exact result, and we will exhib-
it such structure.

For X, we find the following zero-temperature results:
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me@'n'
4~

(20b)
For the magnetic moment M, at zero temperature, we
note that

(c) nt 0
4m

(20c)
2W,

M, = gX,
H

(25)

where n+= [g/u), +poH/co, + —,'JI and [xJI designates
the maximum integer less than or equal to x (Fig. 1). The
average of n + is given by

(21)

and we obtain M, as follows:

men,
M, = — [g(n+ + n )+2poH (n+ n—)

8mH

co,—(n+ + n )], (26)

and n'=n+ =n for zero spin (case B). For W, at
T =0, we obtain

M,'"'= — [g(2n +1) 2r—u, n (n +n+ )], (26a)
Sm.H

pnt N~
W, = — [2n+(g+poH)+2n (g—poH)

ro,—(n+ +n )], (22)

M,' '= — [gn' —
ru, (n') ],

4m.H

Pl~(c)
4'

(26b)

(26c)

W,' '= — [2gn' —ro, (n') ],
8m

W(c) — P~ [(2+( ~)2]
8m

For E, we find it convenient to note that

E =—
S

a a 2~
2m

'
()co, r)()uoH } Pnt ro,

and thus for E, at T =0 we find

W,'"'= — [ g(2n +1) ru,—n (n +1)], (22a)

(22b)

(22c)

(23)

sin(27rny) .

All the results presented here involve the staircase
"step" function [x J I which is obviously oscillatory in the
dHvA sense about its average value. To make this expli-
cit, we note that introducing x =y +—,', we have

[y+ —,'Jr=y —[y] „, where [y], is the periodic linear
sawtooth function [y]~,=y in the fundamental interval

y &
—,', with periodic extension outside, as shown in

Fig. 2. The dHvA oscillations are evident in this closed-
form solution, but further confirmation may be had by
exhibiting [y], in terms of a Fourier sine series:

ao
( 1)n+)

[y]„,= g (27)
~n

E, = — [ro, ( n + + n )
—2)(toH ( n + n}]—,

m
E,'"'= — [n (n +1)],

8m'

(24}

(24a)

Considering the specific heat, it is necessary to examine
nonzero temperature. We employ Eq. (13) and its low-

mao,E(B) ~ (n~)2
8~

" (24b)

E,'"= [0'—(~W}']— (24c)

0
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FIG. 1. The maximum-integer step function ([xJI) designat-
ing the maximum integer less than or equal to x.

FIG. 2. The periodic linear sawtooth function [y]~,„=y iu

the fundamental interval —
—,
' ~y ~

—,', with periodic extension

outside.
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temperature expansion Eq. (14) (retaining only the lead-
ing term for TAO). While Eq. (13) is exact, it is unwiel-

dy. On the other hand, Eq. (14}is restricted in validity to
cases for which the function G(P—+ 0()', g) is nonsingular
and nonrapidly varying. This is clearly not true for the
steplike behavior of [x J I, when g crosses a Landau level.
In view of this, we exclude such cases from consideration,
and treat only the quantum strong-field limit and the low
magnetic field limit. In the quantum strong-field limit, all
the dependence of E, on g occurs through n ~, and bar-
ring Landau-level crossings, E, is constant with nz, so
that BE,/B)~0 and the temperature-correction terms in

Eq. (14) are null for E„whence C, =BE,/BT~O in this
case. This is to say that at high fields, C, ~O, unless we
admit thermal excitations across Landau levels. The
low-field limit has monotonic magnetic field dependence
for E„since even at higher magnetic fields, an averaging
procedure gives (dropping spin for the moment)

O
s

Css 1

p
O
O

O

I

O

I

2.C 3.0 5.0 7.Q

(28)

with which we obtain (pc~0)
7tl NE(B) ~ (ns)2 E(C)

S 8 S 8
(29)

FIG. 3. dHvA oscillatory part of the surface speci6c heat
C((sd)H„„) {plotted as TC,' ') vs g/Iil(o, for density p=10)6 cm
m =0.0665m, .

CLF, k 2 2 i +& dt e
C, =

—,'k~p m
P —i~+s 2'irt t sin(mt)

+ 1 isss+s

P —inn+S 2)ri t Sin(~t)
(30}

Thus, the low-field result, which does not in fact involve
the field, extends to somewhat higher fields in an average
sense. Since the applicable result is independent of mag-
netic field strength, what we have is the zero-field limit.
It yields C, as

formation concerning temperature dependence and
specific heat associated with the dHvA oscillatory com-
ponent of E, due to thermal excitation of electrons across
Landau levels. Proceeding from the exact integral repre-
sentation for E, given in Ref. 36, Eq. (7), we have (ignor-
ing spin):

mro, ; +s ds e&& cosh(ra, s/2}
(6() i— +s 2sn sin(ns/P) sin)ss(n, s/2)

(31)

An alternative procedure may be employed to yield in- and

2
(B) c dS

16 2~i
kq

sin( n.skB T)

2rkB Ts cos(mskB T) cosh(co, s/2)

sin (mskBT) sinh (ro, s/2)
(32)

It is the contribution to the s integral from the isolated second-order poles at S„=2nin/(o, wh.ich yields the
temperature-dependent dHvA oscillatory part of C,' ' in the form

2

n

(33a)

where

(ro, /2)'f'(s) =( —1)"e'~ B4 2 cos(&s IP}—2rkB Ts
sin(2rskB T) sin (2rs Ip)

2

2~k 2 T P) + 2k3 T2 ( /P} + 2k3 T2 3( /P)
sin (mrs/P) sin (2rs/P)

(33b)
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This dHvA oscillatory result for the surface specific heat
C,' ' is illustrated in Fig. 3, where TC,' ' is plotted
as a function of g/irido, for density p = 10' cm,
m =0.0665m, .

IV. DISCUSSION AND CONCLUSIONS

We have presented a comprehensive determination of
the surface statistical thermodynamic functions and mag-
netic susceptibility of a semi-infinite Landau-quantized
electron gas subject to the boundary condition of specular
reflection at its surface. In this, we found useful closed-
form representations for the surface contributions to the
grand potential 8'„ interna1 energy E„magnetization
M„and specific heat C, . Our work was focused on em-

ploying the analytic relation for the surface contribution
to number N, [Eq. (5)]

N, = —18(2D),

in terms of the 2D density expression p(2D) as a function
of the actual bulk chemical potential: This has enabled
us to bring to bear extensive earlier analysis of p(2D)
upon the evaluation of X, . It is to be noted that the neg-
ative sign in Eq. (5) for N, reflects the expulsion of elec-
tron density from the surface region by the boundary
condition requiring that the wave function vanish at
z =0. This feature permeates all of the surface thermo-
dynamic functions for the specular reflection boundary
condition, and one may expect moderation of it only as
the perfect specularity requirement is relaxed.

The brief historical survey in the Introduction points

up much important earlier work on the subject.
Nonetheless, our closed-form analytic evaluations offer
some new, useful representations for W„E„M„and C„
as well as X, . %'e have examined nondegenerate quan-
turn magnetic field effects in all these quantities, present-
ing explicit results. The Bohr —Van Leeuwen theorem is
seen to be satisfied by M, ~O in the classical limit for
magnetic field normal to the surface, with the vanishing
of the quantum magnetic field parameters. Our investiga-
tion of surface thermodynamics below the degeneracy
temperature includes surface de Haas —van Alphen oscil-
latory phenomena for low-intermediate magnetic fields,
along with monotonic magnetic field effects. Further-
more, we have treated the quantum strong-field limit in
which only the lowest Landau state is occupied. In this
case, quantum effects are large, with Landau-level separa-
tion exceeding Fermi energy. Moreover, we have also
discussed finite-temperature efi'ects below the degeneracy
temperature, as well as above. In all cases, our analysis
yields explicit results in terms of the closed-form expres-
sions presented above for 8'„E„M„and C„as well as
N, . Finally, we have presented numerical results that il-
lustrate the utility of these highly tractable expressions in
Fig. 3, illustrating the dHvA oscillatory structure of the
surface specific heat C,'~~'H„~i (denoted by C,' ' in Fig. 3)
in its dependence on g/%co, .
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