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Disorder, screening, and quantum Hall oscillations
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The density of states (DOS) of electrons in two-dimensional (2D) quantum wells and the broaden-

ing of Landau levels (LL's) is evaluated. The electrons are assumed to interact with screened,

charged impurities located at random in the material. The random location of the impurities leads

to a disordered environment seen by the electrons. The screening of the impurities by the 2D elec-

tron gas is evaluated in a simple Thomas-Fermi model which depends on the DOS at the Fermi sur-

face, n (EF). The DOS and screening are evaluated iteratively at each magnetic field value. We find

that the self-consistent evaluation of the DOS and screening leads to broadening of the LL's and

n (EF) that oscillates with B. The oscillating LL widths and n (EF) are compared with the data of
Heitmann et al. , Englert et al. , Wang et al. , and Smith et al. and reproduce all the observed values

quite well. The chief adjustable parameter is the impurity concentration.

I. INTRODUCTION

Electrons confined to two dimensions (2D) display in-

triguing physical properties and have important device
applications. ' Typically, the electrons are confined to
a plane (the x-y plane) at the interface between two ma-
terials (e.g. , GaAs/Al„Gai „As)or in multiple quantum
wells (MQW's) formed by one material sandwiched be-
tween two others (e.g., InAs between GaSb). A magnetic
field 8 is applied perpendicular to the x-y plane along the
z axis. The material at or near the interface is doped (see
Fig. 1). The impurities donate electrons which go to the
interface to form a 2D electron gas (2D EG). The elec-
trons interact with the remaining charged impurities
which create a disordered environment.

Initial interest was chiefly in electron conductivity and
localization. In the now-famous integer quantum Hall
effect (IQHE), von Klitzing et al. showed that the con-
ductivity in the plane, o„,rather than being a simple
linear function of B, had plateaus of constant value,
o„~=(elfi)i, where i is an integer (i =. . . , 3,2, 1). The
plateaus in 0 occur when the Fermi energy EF passes
between the Landau levels (LL's) and through localized
states, which do not contribute to the conductivity. The
IQHE depends entirely on the existence of a substantial
density of localized states between the LL's.

Recently, there has been much interest in properties
such as cyclotron resonance and thermodynamic
properties' ' which depend on the total density of
states (DOS) of the 2D EG. This includes both localized
and extended states. These measurements show that the
disorder, due to impurities' or to spatial inhomo-
geneities, ' broadens the LL's significantly. They confirm
that there is a large DOS between the LL's. Recent mea-
surements ' ' also display clearly that the broaden-
ing of the LL's oscillates with 8. Essentially, the elec-
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FIG. 1. (a) Schematic diagram of a 2D EG confined in a 2D
quantum well, e.g., InAs sandwiched between GaSb. The dots
represent impurities. (b) 2D EG confined to the interface be-
tween GaAs and Al„Gal „As. The impurities are separated
from the 2D EG by a spacer of pure material of thickness S.

trons in the 2D EG screen the charge of the impurities
and therefore reduce the disorder. The effectiveness of
the screening depends upon the DOS at the Fermi sur-
face, n(EF). The magnitude of the disorder and the
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broadening of the LL's caused by the impurities oscillates
with oscillations in n (EF ) as EF sweeps through the LL's
when B is increased. We call this quantum Hall os-
cillations.

In a previous paper we showed that a substantial
DOS between LL's can be obtained using nonperturba-
tive methods for electrons interacting with disorder hav-

ing a finite correlation length L. In the model con-
sidered, the disorder was represented by the variance
W(r r')—=( V(r) V(r')) of the disorder potential V(r)
seen by the electrons. The variance was modeled by a
Gaussian,

W(r —r')=( e

in which the correlation length I. and magnitude (L are
parameters. We found that the observed' broadening
could be reproduced with L =100 A and (L =80 meV .
The origin of the disorder was not specified in the model,
but LL broadening is generally believed to be due chiefly
to charged impurities. ' A model' which includes dis-
order due to sample inhomogeneities also predicts a sub-
stantial DOS between LL's.

The purpose of the present paper is to combine the pre-
vious DOS expression with a model of impurity screen-
ing to obtain a self-consistent model of LL broadening
due to screened impurities. We use a simple Thomas-
Fermi (TF) model of the screening and identify the TF
screening length with the correlation length L of the dis-
order. We consider both a three-dimensional (3D) and a
2D model of the screening. We find that for a two-
dimensional electron system (2D ES) having a "width"
a =100 A or greater, the 2D model reduces to the 3D
model and both give similar results. The DOS, n (E), de-
pends upon L and )L. The variance (1) (L and gL ) de-

pends upon n (EF). The n (E), I., and (L are evaluated
iteratively until consistent. We compare the consistent
values of n (EF ) and the LL width directly with observed
values from four experiments. ' "" Some results for the
3D model have been presented previously.

In Sec. II we discuss the DOS of the 2D EG interacting
with disorder. In Sec. III we sketch the conventional 3D
Thomas-Fermi model and develop a 2D TF model which
is a simple extension, to quantum wells having a finite
width, of the 2D model discussed by Ando et al. Com-
parison is made with experiment in Sec. IV and the mod-
el and results are discussed in Sec. V.

n (E)=n„„g5(E E„),— (3)

where niL=nofito, = I/m1 =eBIM is the density of
electrons that can be accommodated in a single LL. Here
1 is the cyclotron orbit radius, typically 1 —100 A. The
LL s are depicted in Fig. 2. In the presence of impurities,
the potential V(r) seen by the electrons fluctuates from
place to place due to fluctuations in the impurity concen-
tration. Thus the total electron energy [E=T+V(r)]
fluctuates and not all electrons have the same energy.
This broadens the LL's.

We assume the impurities are equally likely to be any-
where in the doped region [e.g. , in a 3D model
p(R, ) =N/V= nz], where nI is the impurity concentra-
tion and a is the MQW width [see Fig. 1(a)]. We set the
average of V(r) to zero [( V(r)) =0] so that the electron
energies remain centered at the LL energies. The vari-
ance or second moment,

W(r r') = ( V(r) V (r') )—

=nz dRvr —R, vr' —R, (4)

As in the IQHE, the electron-electron interaction may
be ignored when evaluating the DOS, although it is in-
cluded implicitly when screening is incorporated. We
consider a single electron interacting with a disordered
potential V(r)=g, u(r —R,. ) where u(r) is a screened
electron-impurity ion potential. The impurity ions are
randomly located (at R, ) creating fluctuations in V(r)
The Hamiltonian for this single electron in the x-y plane
and a perpendicular magnetic field B=V X A is'

H =Ho+ V(r)= (p+e A) + V(r) .
1

2&i

When B =0 and V(r) =0, the DOS per unit area for both
spin states is a constant, n (E)=no= m/irirt . In a mag-
netic field B and V(r)=0, the electrons are confined to
LL's having energy E„=Sinai,(n + —,

'
) where ai, =eB/m is

the cyclotron frequency (we use rationalized SI units).
The DOS is

II. DISORDER AND DENSITY OF STATES

An electron confined in the x-y plane in a MQW is an
interesting example of a particle in a disordered environ-
rnent. The DOS of the electrons may be evaluated us-
ing several techniques developed for disordered systems.
In the Born approximation, ' ' ' a perturbative
method, the DOS is elliptical around each LL and is zero
between LL's. More exact methods yield a Gaussian
DOS for the lowest LL, as do path-integral methods.
We use a path-integral technique developed ' previ-
ously for electrons in disordered, bulk materials. Bro-
derix et al. discuss all these methods and the approxi-
mations in them carefully.

El

NO DISORDER DISOR DER

FIG. 2. The Landau levels for no disorder and broadened by
disorder according to Eq. (6). The magnetic field B and electron
density n, in the figure is selected so that three LL's are coni-
pletely filled (filling factor equals 6).
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sets the magnitude of the fiuctuations in V(r). We model
this by the Gaussian (1). We assume all higher moments
of V(r) are zero (all skewness is equal to 0},which leads
to a DOS which is symmetric about the LL energies.

The derivation of the DOS for the above model using
path-integral methods has been presented previously.
The resulting LL width I is

W(0)
lim
L-o nL

(10)

which suggests that (L -L as L ~0. In the WN limit,
the LL width in (5) reduces to the contact-potential re-
sult,

I wN=(t x/4= (
nocto, W(0) .

(5)
III. DISORDER AND SCREENING

where x =%co, /EL=2eBL /A and EL=A /2mL is the
kinetic energy of an electron localized within the correla-
tion length L. The resulting DOS is a sum of Gaussians
centered at each LL energy,

In the preceding section, we set out the DOS, n (E), of
electrons in a disordered environment caused by random-
ly located, charged impurities. The disorder was de-
scribed entirely by the variance W(r r'—) in the impurity
potential. This variance was modeled by the Gaussian
function (1) have screening length L and magnitude gL as
free parameters. Our goal here is to evaluate W(r r'}-
for random impurities screened by the 2D EG and so es-
tablish gL and L. We use a simple TF model of the
screening.

We wish to compare with experiments which have
different geometries and locations of the impurities. For
example, the 2D EG in practice has a width, typically '
of a =80-200 A. When the width is larger than the
screening length (q, ') we find a simple 3D TF model is
appropriate. That is, if we begin with a 2D model, as dis-
cussed, for example, by Ando et al. , then for a )q,

'

the variance calculated using the 2D model reduces to
the 3D result. In the samples used by Wang et al. ' and
Smith et al. ,

" the impurities are separated from the 2D
EG by a spacer of pure material of height S=200—500
A. When S &)q, ', we find that the correlation length L
depends on S (i.e., on how far the impurities are from the
2D EG) and becomes independent of q, '. In this case a
2D model taking account of the nature of the heterojunc-
tion is more realistic. We now evaluate W(r r') for the—
3D and 2D cases.

(E —E„)—
2I

n (E)=n„L(2n.l' )
'r g exp (6)

The DOS in (6) is depicted in Fig. 2. Previously, we
found (6) agreed well with the DOS observed by Eisen-
stein et +al. ' in GaAs/Ga„A1, „Asheterostructures if
L =100 A and gL =80 (meV) . Using m =0.06m„the
LL separation is %co, =6 meV at 8 =3 T. The DOS (5)
and (6) is the same as obtained by Gerhardts for n =0.

In the ground state, the lowest LL's are occupied up to
the Fermi energy EF given by

E
n, =I dEn(E), (7)

0

where n, =N/A is the electron density. From (6), the
electron density that can be occupied in a single LL
remains at nLL =no%to, =eB/M We defin. e a filling fac-
tor vF as 3

n, n, h
vF =2i—:2 = =n, 2~l 2

nLL eB
(8)

A. Three-dimensional model

We picture wide quantum wells in which the impurities
are distributed at random, both within the quantum well
and in the material on each side. A 3D model assumes
that the electrons respond equally in all directions. The
variance W(r r') for three dimens—ions has been evalu-
ated by Halperin and Lax. We sketch the argument to
contrast the 2D models.

We begin with Poisson*s equation,

for the electric potential P(r) seen by an electron at r due
to an external charge density p,„,(r). In (11)p;„d(r)is the
charge density induced in the EG by P(r). We consider a
single (external) charged impurity at the origin,
p,„,(r) =Ze5(r). In the TF approximation,= W(0)5(r —r') .

When vF =2 we can accommodate all the electrons in the
lowest LL. When vF =2,4, 6, . . . the LL's are completely
filled and EF lies between two LL's [where n (E) is small].
The case vF =6 is depicted in Fig. 2. When
v~ = 1,3, 5, . . . , the highest occupied LL is half-filled and
EF lies at the center of that LL where n(E) is a max-
imum. The nL„in n (E) depends upon B. Thus, from (7),
E~ will decrease as 8 is increased and we expect n (EF ) to
oscillate as EF sweeps down through the LL's. Since the
screening length is proportional to n (EF ), we expect the
screening length to oscillate with B. When we identify
the correlation length L with the screening length, we ex-
pect I in (5) to oscillate with B. This leads to the ob-
served oscillation of I discussed in Sec. IV.

The white-noise (WN) limit of W(r r), in which—
L =0, is interesting,

The WN variance has zero range and may be obtained
from (4) for a potential which has zero range (a contact
potential). Comparing (1}and (9) we have

p;„d(r)= —e [N„(E p eP(r)) Nv(E ——(M)—]—
v= —e e(t((r) = en&(EF—)P(r),
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Poisson's equation becomes

Ze 1
(12)

where

where N„is the 3D electron number density and ni (EF)
is the 3D DOS at EI;. Introducing the Fourier transform

B. T~o-dimensional screening

Screening for 2D heterostructures in the TF approxi-
mation has been discussed by Ando et al. We general-
ize their treatment to consider a 2D EG having a small
but finite width a. We seek a 2D electron-impurity ion
interaction v (r), where r =x,y is now a 2D variable lying
in the plane of the 2D EG, from which we may calculate
a 2D variance W(r —r'). We begin again with Poisson's
equation (11) for the electric potential P(z) seen by the
electrons and write the 3D number density in it as

2 2

Q, = nv(EF)= n(EF)
a E'

(13) Ni, (r,z)=n, (r)f(z) .

is the Thomas-Fermi wave vector (inverse of the TF
screening length). In the last part of (13) we have used

nv(EF) =a 'n (EF) to relate the 3D to the 2D DOS (see
Fig. 1). The potential v (r) = eP(r—) due to the impurity
1s

3 2
q ~q g

Ze 1

(2n) e q +Q,
Ze e

—Q r

4&E' f'

(14)

This v (r) may be thought of as an electron-impurity ion
potential. The variance due to X such impurities distri-
buted uniformly throughout volume V with density
p(R, ) =nr =N/V is

W ( r r') = n I—I—d R, v ( r —R; )v ( r ' —R; )

, e'q" "n, lv(q)~'
d

(2n )

Here z lies perpendicular to the plane, n, (r) is the number
density per unit area in the plane, and f (z) is the density
along z perpendicular to the plane. We take f (z) as fixed
and unresponsive to any external charge. Possible
models are f (z) =5(z), f (z) = ,'I2 z e—', and

f (z) =(m /2a)sin(sn /a). We simply take f (z) as uniform
along z [f(z)=1/a, —a z 0], or

f(z)= —[8(z+a)—8(z)] .1

a
(19)

the induced charge is now

p;„d(r,z) = —e [n, (E I2 eP(r—,z) )—n, (E —p—)]f(z)

We found we could not get good agreement with experi-
ment taking a =0 [f(z) =5(z)].

In Poisson's equation, (11),

—V P(r, z)= —[p,„,(r,z)+p;„d(r,z)],1

Ze i
—g, l~

—~'

27K nr e
4~a

From (15) the Fourier component of the variance is

(15)

en (—EF)P(r,z)f (z) . (20)

To obtain a 2D variance, we seek a 2D electric potential
P(r) independent of z. We choose to define this as

W(q)=n~v(q) =nI
2

Ze 2
1

(q2+Q2)2

Comparing (15) with the Gaussian variance (1) it is nat-
ural to identify Q, with the correlation length L and (L
with the magnitude in (15). That is,

—1/2
2

n(EF)L=Q, '= (17)

and
2

Ze
gL =2m.

4m'

Equations (17} and (18) combined with the DOS results
(5), (6), and (7) for n (EF ) constitute the 3D model. Clear-
ly L and gL are proportional to n (EF } ' . We therefore
expect L and I =(Lx/(4+x) to oscillate with 8 as EF
sweeps through the LL's. We find Q,

' = 100 A ', which
is less than a =200 A for the samples used by Heitmann
et a/. The 3D model is implemented in Sec. IV.

P(r) = f dz P(r, z)f (z) . (21)

For a constant f (z), as in (19), P(r) is simply an average
of P(r, z) over the width of the 2D EG. We replace P(r, z)
in (20) by P(r), i.e.,

p;„d(r,z) = en (EF—)P(r)f (z) . (22)

Equation (22) makes it clear that the 2D EG charge den-
sity cannot respond along the z axis but is fixed at f (z).
Poisson's equation is then

VP(r, z)+ 2q,f (z—)P(r) =—p,„,(r,z),

where

(23)

is the 2D screening length discussed, for example, by
Ando er al. To solve (23) we introduce the Fourier
transforms,
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dk I( -r+kz)P(r, z) =f f e'q'"+""P(q, k),
(2m)

P(r) =f 2
e'q'P(q),d q i r

(2n. )

f(z)= f e'"'f(k) .

The definition of P(r) in (21) becomes

P(q)= f f( —k)P(q, k) .

Substituting (24) into Poisson's equation, we obtain

(q +k )P(q, k)+2q, f(k)P(q}=—p,„,(q, k) .

(24)

(25}

(26)

Given v (r) we may be evaluate a variance W(r —r') due
to impurities substituted at random positions (R;,Z;).
From (4) this is

W(r —r')=nI f dZ, f d R, v (r —R; )v (r' —R, )

d2
=n f dZ, f e'q'" "'v'(q) e

(2ir)

(32)

In the last line above we have carried out the average
over the impurity positions R; parallel to the plane. As
noted the impurities may be separated a distance S from
the 2D EG within a doped region of width D [see Fig.
1(b)]. In this case the integral in (32) is

The chief difference between (26) and the 3D result (12) is
the mixed appearance of P(q, k) and P(q) in (26}.

To obtain an equation for P(q) only, we divide (26) by
(q +k ), multiply it by f (

—k), and integrate over k.
Using (25) this gives

and

—2qZ S+D —2qZ,

W(r r'}= — e'q'" ' 'W(q)
d2

(2n )

( 1 2qD)—
2q

(33)

P(q)+ —F (q)P(q) =P,„,(q), (27)
with

where

dk f (
—k)f (k)F q

—=2q
q +k

=f dz fdz' f (z)f (z)e

1 dk f( ")P t(q k)
ch ( )=—

Introducing the dielectric function e(q) = [1+(q, /
q)F(q)], Eq. (27) takes the familiar form

P(q)= P,„,(q) .
eq

(28)

F(q) = (e q'+qa —1),2

(qa)2

(29)

and to a single charge impurity a height Z; above the 2D

EG, p,„,(r, z)=Zefi(r)6(z —Z;) [p,„,(q, k)=Ze e '] for
which

Z

f(iq)
2E' 2g

QZ
—qa )

2&a 2
(30)

Substituting these results into (28), the 2D electron-
impurity potential [v (q)= —eP(q)] is

The 2D electron-impurity ion potential is v (q) = —eP(q).
To proceed, we specialize to a constant charge density

along z given by (19) for which

f (k)= (1—e'"'),
ka

2

Ze
W(q) =nI

2Ea

e
—2qs

( 1 2qD}(1 ——qa)2

q [e(q)]
(34)

The variance (34) clearly depends on several lengths; the
2D screening length q, ', the width of the 2D EG, S, and
on D. Typically in GaAs/Al„Ga, „Asquantum wells,
we find q,

' oscillates about the value q, '-45 A. To
identify the correlation length we consider limits of
W(q). We find that the size of D turns out to be not very
important in W(q) in establishing L and we can choose
D = 00 or D =0. In the limits below, we take D = ~, for
example.

C. Limits of the 2D variance

We now explore limits of the variance (34).

I. Wide 2D EG (a » q, ') and no spacer IS=0 ($« q, ')J
In this case F(q)~2/aq, (1—e q')~1, q e(q)

~(q +2q, /a) =(q +Q, ), and (34) reduces to

W(q)=n, b22 1 1

2q (q2+Q2)2
(35)

2. Narrow 2D EG (a «q, ') and no spaeer ($=0)
In this limit F(q)~1, q e(q) ~q (q+q, ) ~

(1—e q')2~(aq), and (34}becomes

where b =(Ze l2ea) Fora »q, ' we .thereforerecover
essentially the 3D model in which Q, is the scaling or
correlation length, L -Q, ' [n(eF)] '-. The W(q) in
(35} differs slightly from (16} because (35) is two dimen-
sional and we have not allowed the 2D EG to respond
along the z direction.

v(q)=— Ze (1—e ')e ',
( }

—qz, (31)
2ea q e(q)

W(q)=nrb a 2 1 l

2q (q+q, )
(36)
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Introducing the dimensionless variable x =
q /q„ the

variance is
ing simple models for the correlation length L in (1).

q,

nba
( )

i f dx ~q~'

(2'�)'
1

2x (1+x)
(37) For no spacer,

I. No spaeer (S=O)

' 1/2
and it is natural to identify the correlation length as

L-q, ' —[n, (EF)]

In this limit, L is the 2D screening length q, '.
(38)

3. Wide spaeer (S»q, ')

and

—2qS

W(q}=nib a
(q+q, )

(39)

b2 2 —2q, Sx

W(r)= f dx Jo(q, rx)
4qrq, o ( 1+x)~

where Jo(ax)=(2m. )
' J d8e' "" is the zeroth-order

Bessel function. When S is large, only small x contrib-
utes to the integral [(1+x}=1]and

nrem a 1
(40)

8qrSq, [1+(r/2S) ]'
W(r)=

In this limit

L-S . (41)

Thus for large S »q, ', the correlation length becomes
independent of q,

' and depends upon how far the impur-
ities are separated from the 2D EG. For S))q, ', but
a »q, ', we get the same result (40) except for a factor of
4

Finally, to establish gi we could use the above limits.
However, we choose gz so that the "volume" of the vari-
ance given by the Gaussian (1) is the same as the
"volume" given by the full W(r r') in (—34). That is,

gL f d re " = fd r W(r)=W(q=0),

which using (34) gives

1
W(q =0)=

m.L

2
nrD Ze'
L 2e

1

2
(42)

This has the advantage that gl is independent of S and a
and is the same for all the above limits. The important
parameter in gL is the product nID and the important
functional dependence is q, . Thus gr can depend on
the screening length q,

' even for large S when L does
not.

D. Models for 2D screening

Given the 2D Thomas-Fermi expression (33) for
W(r r') and the above limits, w—e proposed the follow-

In this limit the value of a is not critical and we take
a «q, '. The W(q) is the same as (36) except for e
i.e.,

L= q, +
2q,

(43)

For a narrow 2D EG (a~0), (43) becomes L~q, '

which is the screening length discussed by Ando et al.
for a =0. For a wide 2D EG (a »q, '), (43) is
L~(a/2q, )' =Q, ' which is the 3D TF screening
length. For the quantum wells considered here a ~ 100 A
and weland q, '-45 A.

2. Spaeer (SXO)

For a spacer,

'(S2+ g
—2)1/2 —1 &L='

(S+q, )', q, '&a.
(44)

(45)

For short screening lengths q, '&(S, L~S and L be-
comes independent of q, . In all cases, we have deter-
mined gL, , using (42), as

'2
nrD e2

4,=, 2, +Co (46)

A constant value go was added to reflect contributions to
gL from other disorder. The go also helps to stabilize the
iterative solution by preventing g'L from vanishing during
the iterations. The (L in (46) has the correct (white-
noise) limit (10) for L ~0.

IV. COMPARISON WITH EXPERIMENT

Properties of MQW's such as cyclotron resonance and
magnetocapacitance depend on the total density of states.
Specifically, the linewidth, I „ofthe cyclotron resonance
observed by Englert et al. and by Heitmann et al. is
proportional to the width I" of the LL's. From heat
capacity measurements, Wang et al. ' and Smith et al. "
have extracted I and the density of states at the Fermi
surface, n (EF), respectively. In this section we evaluate
I and n (EF) using the DOS and screening models of
Secs. II and III for direct comparison with these four
measurements. The input parameters characterizing the
samples in each case, such as electron density n„2DEG
width a, and the impurity concentration nr, that we have
used are listed in Table I. The parameters with an aster-
isk are not fixed by experiment but were adjusted here to
get the best agreement with experiment.

As noted in Sec. II, the width of the LL's is given by
(5) and the DOS is given by (6), in which
nLL =norw, =e8/M is the density of electrons that can
be accommodated in a single LL. The electrons fill the
lowest LL's up to the Fermi energy EF given by (7).
Clearly, EF depends upon 8 since the density accommo-
dated in a single LL, nLL, is proportional to 8. In Sec.
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60

40-

I6 O8 6
I I 1 & I

that shown in Fig. 5 but plotted on a different scale.
Clearly the calculated and observed I"s agree well. Since
the impurities are separated from the 2D EG by a spacer
in the samples used by Wang et al. , a simple bulk 3D
model may not be appropriate.

B. 20 models

20

Here we combine Eqs. (4)—(6) for the DOS with the 2D
Thomas-Fermi values for L and gL derived in Sec. III B.
We begin with an arbitrary value of the LL width I and
evaluate the following equations:

10
I

24-

r
8 s

2 2.5 3
(TI/2)

3.5 (E —E )~

2I

nLLn(E)=, g exp(2~r')'" „=,
E

n, = n EdE for EF
0
2 e 2

q, = n(E~), Q, =
26 QE'

n (EF)

L =L(S,qs, Q, )

(S +Q, )
' (Figs. 9 and 10)

4

(qz +Q, )'~ (Figs. 11 and 12),

(6')

(7')

(23')(13')

(44')

(43')

p VOO

I

(T I/2)2
nrD

CL=
~L q,

2
Ze
26

+Co (46')

FIG. 5. Upper half: LL width I vs &B calculated using the
3D Thomas-Fermi model. As B~O, I &&B. Lower half: Cy-
clotron resonance width observed by Heitmann et al. (Ref. 8).

width of the 2D EG, a =200 A, used by Heitmann et al.
Also, the impurities are probably distributed at random
through the 2D EG making a bulk, 3D model reasonable.

In Fig. 6 we compare the 30 model I with the I ex-
tracted by Wang et al. ' from their measurements of the
speci6c heat. Our calculated I in Fig. 6 is the same as

2
12 ~

x 2eBL
(5')' 4+x'

Equations (5')—(7'), (13'), (23'), (43'), (44'), and (46') were
evaluated iteratively until consistent. For samples having
a spacer (samples of Wang et al. ' and Smith et al. "),
we used Eq. (44') for L [Eq. (44)]. When there was no
spacer (samples of Englert et al. and Heitmann et al. )

we used Eq. (43') for L [Eq. (43)]. The resulting con-
sistent values of q,

' for the samples used by Wang et al. ,
are shown in Fig. 7. There we see that q,

' oscillates

IO
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FIG. 6. Upper box: Width of the LL's, I, calculated using
the Gaussian DOS (6) and the 3D screening model, Eqs. (17)
and (18). Lower box: I extracted from C& data by Wang et al.
(Ref. 17).

e (r)

FIG. 7. The 2D Thomas-Fermi screening length q,
' ob-

tained from self-consistent solution of the 2D Thomas-Fermi
model for samples used by Wang et al. (Ref. 17).
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FIG. 8. As Fig. 7 for the correlation length, I., using S =200
A.

region. When multiplied by D =40 A, the product nID
we have used is 15 times smaller than the value quoted by
Wang et al.

The DOS at EF observed by Smith et al. and our eval-
uated n (EF ) for their sample geometry are compared in

Fig. 10. For 8~0 we expect n (Ez)~no=m/M2. As
B increases the LL's separate, EF sweeps down through
the LL's, and n (EF) oscillates with 8 Th. e amplitude of
the oscillations in n (E~) will increase with 8 as the LL s
separate. These general features are seen in Fig. 10 and
the calculated n (E~) reproduces the observed value well.
The important free parameter is again the product Dnr
and this was adjusted to get the correct amplitude of
n (EF )/no.

In Fig. 11, we compare the cyclotron linewidth ob-
served by Englert et al. with our calculated LL width I'.
For samples used by Englert et al. , D and nI were not
specified so that the product Dnr is again an adjustable
parameter. We assumed a =100 A. With these values of
Dni and a, the 2D TF model with the DOS (6) repro-

0

with the magnetic field and is generally less than 100 A.
The corresponding values of the correlation length L,
given by (44), are shown in Fig. 8. Clearly, when there is
a spacer, L is dictated chiefly by the spacer thickness, S.

In Fig. 9 we compare I for the 2D model with that ex-
tracted from the heat capacity by Wang et al. ' The
sample characteristics we have used in the calculation are
set out in Table I. From Fig. 9 we see that the calculated
I agrees well in magnitude and in amplitude of the oscil-
lations with the observed I . The calculated I appears to
have a minimum value of I =2.2 meV. The impurity
density we have used is ni=2X10' cm ' in the doped

8-
7-

5.
e 4-

C

2
4l
C 0-

6 4

I I a

2 5 4 5

5

VF

I6 10 8
I l t I 1

a
E

0
0 6

B (T)

~ lQ-

6
C

0 i I

2
I ~ s I ~ I

4 6 8 IO

chX
LaJ
O

0 I

I I

2 5 4
8 (T)

FIG. 9. Width of the LL's, I", calculated using the Gaussian
DOS and the 2D screening model, Eqs. (5')-(7'), (13'), (23'),
(43'), (44'), and (46'), compared with the I obtained from heat
capacity data by Wang et al. (Ref. 17).

FIG. 10. The DOS at EF, n(EF), compared with that ob-
served by Smith et al. (Ref. 11).
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impurity ion potentials U(r —R;) having a finite range.
This allows us to relate L to the screening length. This
would not be possible had we considered a contact
electron-impurity ion potential which leads to the white-
noise variance (L =0) given by (9). The present evalua-
tion of the DOS using path integrals is a generalization of
the self-consistent Born approximation (SCBA), for con-
tact potentials in two ways. Firstly, a nonperturbative
n (E) which is finite at all E is obtained. Secondly, n (E)
for potentials having a finite and variable range (finite L)
is obtained. The importance of using a finite-range po-
tential has recently been stressed by Ando and Muraya-
ma. The Thomas-Fermi model is clearly an
oversimplification, particularly in a magnetic field. How-
ever, it has a length, the screening length, which we can
identify with L. The magnitude (L can also be related to
the variance calculated in the TF model. We find I.= 100
A which is not small on atomic dimensions.

The comparison with the cyclotron resonance width
observed by Heitmann et aI. in QW's having a width
a =200 A is especially interesting. In this case we find a
is approximately twice the screening length and the 2D
and 3D TF models give the same value for I., the 3D TF
screening length L =Q, '. Only (L, given by (18) and

(46), differs. For this QW, the good agreement with ex-

0 5 10 15 20
8 (T)

FIG. 11. The width of the LL's, I, compared with the cyclo-
tron resonance linewidth I & observed by Englert et al. (Ref. 6).

l f I

i6 e e

duces the oscillations in the observed linewidth I, .
Finally, in Fig. 12 we compare the 2D model I ob-

tained using (43) for L with that observed by Heitmann
et al. Again the product Dnz is an adjustable parameter.
Clearly, Figs. 5 and 12 are very similar showing that the
3D and 2D models give similar results for samples in
which a &&q, '. Typically, we find q, '-45 A so that
indeed a &&q,

' in these samples. Then the chief
difference between the 2D and 3D models is that the 2D
EG cannot respond along the z direction in the 2D mod-
el. The similarity of Figs. 5 and 12 suggests that this re-
striction does not affect the final results greatly.

50 ~

5
30

20

io-
2.5
(y I/2)

s

3.5

V. DISCUSSION

From the comparison with four separate experiments
in Figs. (9)—(12), we see that the present model of the
DOS and TF screening describes 2D quantum wells quite
accurately. This appears to confirm the basic interpreta-
tion that the oscillations in the LL widths are due to
oscillations in the screening of the disorder by the elec-
trons in the 2D EG. The present model is quite simple
but has some essential features. Firstly, the DOS is eval-
uated nonperturbatively. Thus the DOS n(E) for large
values of (E E„)can be obtained. The—DOS can there-
fore be finite for all E and does not vanish between LL's.
Secondly, n(E) is evaluated for arbitrary correlation
length I. of the disorder. This corresponds to electron-

I

pl/2)

FIG. 12. The LL width, I, calculated using the 20 Thomas-
Fermi model compared with the cyclotron resonance linewidth

I c observed by Heitmann et al. (Ref. 8).
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periment in Figs. 5 and 12 is independent of the details of
the screening model. A large value of go was required in

the 2D model.
The chief free parameter in the screening model is the

impurity concentration ni (or the product nJD in the 2D
model) appearing in gi . The results were sensitive to ni.
If a very large value of ni is selected, gL and I will be

large and n (E) will go to a constant and oscillations in
n (EF ) and L will be damped. If a small value is selected,
I' will decrease and n (E) will vanish between LL's lead-
ing to large amplitude oscillations in L and n (EF ). There
is therefore an optimum value of ni leading to realistic
oscillations. Generally, quite large values of ni were
needed to obtain good agreement with experiment. How-
ever, in the one case in which nID was given by experi-
ment, ' our optimum model value was less than the ob-
served value. The 2D model appears to be most ap-
propriate for samples having a spacer of pure material
separating the impurities from the 2D EG. For a )Q,
and no spacer, the 3D model is most appropriate. In all
cases we found it important to retain a finite value of the
QW width.

To obtain the Gaussian DOS (6) we made approxima-
tions. Particularly, we took ' the long-time limit of the
electron propagator which means n (E) is valid for the
lowest-lying Landau levels only. This approximation
probably masks difficulties that appear with the DOS for

higher LL's. These questions are carefully discussed by
Broderix et al.

Finally, we have worked here via a Gaussian model of
the variance. This is restrictive and perhaps not neces-
sary. It would be interesting to evaluate the DOS using
the TF model variance (34) directly, perhaps numerically.
The variance (34) contains much more information than
the Gaussian variance (1). Including higher moments of
V(r) could also change the shape of n (E). For example,
numerical calculations of the DOS suggest that n(E)
need not be symmetric around the LL's. The TF model
of e(q) is valid only in the long-wavelength limit

(q «2kF). This limit is fulfilled if L &2kF-QvFll„
which is valid for the present materials, especially those
with large spacers. Experiments in which the 2D EG
width a or the spacer width were varied systematically
would also be interesting to test the model.
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