
PHYSICAL REVIEW B VOLUME 41, NUMBER 15 15 MAY 1990-II

Josephson superlattices and low-amplitude gap solitons
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We have examined the amplitude dependence of the transmission properties in the natural gap of
a finite Josephson transmission line and in the first artificial gap of a finite Josephson superlattice.
We show that the nonlinear transmission response of both systems exhibits gap-soliton-mediated bi-

stability and hysteresis and can approach unity, once the amplitude of the incoming wave is greater
than a certain threshold which is frequency dependent and also decreases with the length of the sys-

tem. Our computer experiments on the dynamics of wave transmission, which show how the sys-

tems would behave in practice, are in good agreement with our calculations and the theoretical pre-
dictions in the literature for other kinds of superlattices. We have observed that the modulational

instability in the Benjamin-Feir sense which may appear in some computer experiments is eliminat-

ed if one considers weak dissipative systems.

I. INTRODUCTION

The superconducting Josephson transmission line'
has proven to be one of the most successful testing
grounds for nonlinear wave theory. It is a physical sys-
tern where soliton properties are most accessible for
direct experimental investigations. Furthermore, the use
of Josephson transmission lines (JTL) for information
processing and storage is quite attractive, and one expects
more interesting applications in the near future in light of
the recent discoveries of the new high-T, superconduc-
tors.

On the other hand, the nonlinear properties of super-
lattices are fascinating, because such periodic structures
exhibit a rich variety of collective properties not shared
by their constituents. One interesting example is provid-
ed in optics by the propagation of electromagnetic radia-
tion through multilayer structures, normal to the inter-
faces. In the linear regime, the propagation of waves
through the superlattice is described by a dispersive rela-
tion which contains gaps also called stop gaps. The en-
velope of any wave whose frequency lies in a stop gap or
forbidden band undergoes an exponential decay with dis-
tance down the structure, and the transmissivity of a su-
perlattice of finite length is exponentially small. In the
nonlinear regime, where the refractive index depends on
the field intensity (Kerr effect), if such a periodic struc-
ture is illuminated with radiation in the stop gap, increas-
ing power can switch it from a state with low transmis-
sivity to a state with transmissivity of unity: the struc-
ture exhibits bistability, as first investigated by Winful
et al. , outside the gap. This stable or multistable behav-
ior was recently studied by Chen and Mills, ' Mills and
Trullinger, and other authors' ' in terms of gap soli-
tons. In a finite system, a gap soliton is in fact a non-
linear standing wave with a slowly varying envelope
which approaches a solitonlike hyperbolic-secant shape if
the periodic structure is infinitely extended.

The recent literature' has focused on optical superlat-
tices, but another way of completing and extending our

knowledge of the nonlinear properties of periodic struc-
tures is to analyze other kinds of superlattices. A period-
ic sequence of JTL which constitutes a one-dimensional
Josephson superlattice (JSL) is an attractive system,
since, as mentioned above, its basic constituent, the JTL,
offers remarkable possibilities for testing various solitonic
properties. Particularly, its model equation, the famous
Sine-Gordon equation, may be reduced in the low-
amplitude limit to the nonlinear Klein-Gordon equation
and, as studied by Newell, ' coherent forms of energy can
tunnel without loss to the interior of natural gap regions
where the linear theory does not allow propagation. In
the following we will use the term "natural gap" to
characterize a gap which is inherent to the normal struc-
ture of the model equation of one JTL section, and the
term "artificial gap" for gaps which result from the
periodic structure of the JSL.

The aim of this paper is to present and discuss the re-
sults and novel features which emerge from our study of
the nonlinear response of a JTL and a JSL in the low-
amplitude limit.

There are two basic purposes of this paper. First, we
present the amplitude dependence of the transmission
properties in the gap of a single JTL section and then of a
JSL. Second, we present the results of computer experi-
ments on the dynamics of wave transmission through the
gaps of the systems considered. The major advantages of
such numerical simulations are threefold. They allow to
check the calculated transmittance curves with condi-
tions close to those of real experiments. They are useful
for probing the gap-soliton characteristics, which to our
knowledge have not been examined in the dynamical re-
gime. They are of potential interest for future experi-
ments on real superlattices.

The outline of this paper is as follows. In Sec. II we
consider the transmission properties of a single JTL of
finite length in the low-amplitude limit. Then the results
are applied to the determination of the transmittance of a
JSL. In Sec. III our theoretical results are used to calcu-
late numerically the gap transmittance for both systems.
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Then, these results are discussed and compared with

those of our computer experiments on the dynamics of
wave transmission through the natural gap of a JTL and
the artificial gap of a JSL, which we present in the second
part of this section. Section IV is devoted to concluding
remarks.

II. BASIC TRANSMISSION PROPERTIES

A. Properties of a JTL section

av as
ax at

as av= —C —Iosing,
ax at

(2.1a)

(2.1b)

=KV, (2.1c)

where K is a constant which depends on the unit flux
quantum. Introducing the transformations

To the lowest order of approximation, the lossless JTL
may be modeled' by the continuous electrical transmis-
sion line structure represented in Fig. 1. Here, the fol-
lowing quantities are defined per unit length dx: L is the
inductance, C the capacitance, I =sosing is the Joseph-
son tunneling supercurrent, Ip being its maximum value,
which depends on the material and the geometry of the
junction. (() is the phase diS'erence between the macro-
scopic quantum-mechanical wave functions. Applying
Kirchhoff's laws to the model of Fig. 1 gives

a (x,~)
v(x, r)= (2.4b)

In the small-amplitude limit P=eP with e «1, Eq. (2.3)
becomes a nonlinear Klein-Gordon equation:

0„—cob,.+4—
—,'(()'=O . (2.5)

+4 exp[j( —k x car)]I —+ c.c., (2.6)

where 0+ and 0 are, respectively, the slow-varying am-
plitudes of the forward and backward propagating waves;
k+ and k are their corresponding propagation con-
stants; c.c. denotes the complex conjugate; and j=&—1.
Substituting Eq. (2.6) in Eq. (2.5) and neglecting third
harmonics, i.e., rapid terms in e* ', we obtain the ex-
pressions of k+ and k in the section:

As is well known, Eq. (2.5) can be reduced to a nonlinear
Schrodinger equation with envelope soliton solu-
tions. ' ' ' Note that an equation similar to (2.5), but
with different coefficients, has been recently used to inves-

tigate bistability during transmission through a linear-
nondispersive —nonlinear-dispersive interface. '

Now, we use the nonlinear characteristic-matrix ap-
proach' to calculate the transmission properties of a JTL
of the finite length X. Then we use the results to deter-
mine the transmittance for a combination of JTL sec-
tions, and especially for a JSL.

The solution of Eq. (2.5) for the phase may be ex-

pressed as a superposition of forward and backward
propagation waves of angular frequency co:

p(x, ~)= {%+exp[ j (k+x —cur)]

coot =r, v (x, t) = V(x, t)/Vo, i (x, t)=I(x, t)/Io,

(2.2a)

1/2

k+ 1 ~2 1+ I+'I'+(q
Cp 2

(2.7a)

with

V() ="(/Io/KC, c() =1/KLI(), tvo=KIO/C (2.2b) Cp

' 1/2

'—1+ + iq 'i'
2

(2.7b)

yields the well-known Sine-Gordon equation

(t „—cog„„+sing=O . (2.3)

2 a (x, r)
i (x, r) = —co ax

(2.4a)
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From Eqs. (2.1) the corresponding expressions for current
and voltage along the JTL are thus given by

(2.8a)

At this point, we remark that in the linear approxima-
tion (when one neglects

~

4+
~

and ~%'
~

), the wave num-
bers k+ and k given by (2.7) are imaginary in the natu
ral stop gap, i.e., when tv & 1; accordingly, the waves are
exponentially decaying. By contrast, from (2.7) we see
that for co & 1 in the nonlinear regime (for nonzero

~

4+
~

and ~% ~) the wave numbers can remain real, and it is
then possible to observe transmission in a frequency band
which is forbidden in the linear regime as represented on
Fig. 2.

By use of Eq. (2.6) and Eqs. (2.4a) and (2.4b), the com-
plex amplitude of the voltage and the current at a given
point x in the section may be expressed by

r

U

=M„
X

v(x) ~ dx ~ V(x+dx) where the matrix M has the form

with: I G
—Io dx sin (tt ( x )

FIG. l. Equivalent continuous electrical transmission line
model for the lossless Josephson transmission line (JTL).

co exp( jk+x) to exp( —jk x)
2 +cok+exp( jk+x) —cok exp( —jk x)
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angular fr+wncy
with

p&;„(x,r}={%~+;„+Vh„}exp[j(kox —coo)]+c c. (2.12)

Natural
linear
stop gap

linear
dispersion
curve

nonlinear
dispersion
curve

p, (x, r }=%,exp[j ( kox —cow)]+ c.c. . (2.13)

Let us focus now on the boundary conditions at the in-
terfaces of the JTL and the linear lines. We consider a
monochromatic wave with angular frequency co and am-
plitude 0, transmitted in the output medium:

I

kg wove vector

Let us consider two points x, and x2 in the JTL section.
Making use of Eq. (2.8), one can express the voltage and
the current at x =x

&
and x =x2:

FIG. 2. Representations of the linear and nonlinear disper-
sion curves of the JTL: a wave with the angular frequency cog

which lies in the natural gap (co(1) can be transmitted if we
take account of the nonlinearity.

The complex amplitude of the voltage and current at
x =x

&
(output of the JTL: see Fig. 3) can be expressed in

two difFerent forms by means of Eqs. (2.4a) and (2.4b).

(i) In the linear output medium:

v (x, )= —jco%,exp( jkox, ),
i (x

&
) = jco—ko+, exp(jkox, ) .

(2.14a)

(2.14b)

(ii) In the JTL section:

v (x, }= —jco[%+exp(jk+x, )+4 exp( —jk x, )],
(2.15a)

i (x, )= jco[k+—%+exp( jk+x, ) k4 e—xp( jk x, )]—.

xl
=M

1

=Mx
t x=x

2

(2.9a)

(2.9b)

(2.15b)

If we match the solution inside the JTL to the transmit-
ted wave, we obtain the expression of the amplitude 4*
and the wave vector k* of the forward and backward
waves through the nonlinear section:

l x=x
2

(2.10a}

Eliminating 4+ and 4 from Eq. (2.9a} and Eq. (2.9b),
we can relate the electrical quantities at x =x& and
X =X2'.

k +ko4+ = +,exp[j(ko —k+ )x
& ],

k+ —ko
+,exp[j(ko+k )x) ],k++k

(2.16a)

(2.16b)

with

M=M M-'—x2—xl (2.10b)

ay„„ =v(x, ~),a7.
(2.11)

where M is the characteristic matrix or transfer matrix to
the JTL section of length X=x, —xz. The knowledge of
this matrix M and the boundary conditions at x =x

&
and

x =x2 allow us to characterize the transmission proper-
ties of such a section.

In order to define the transmission coeScients at the
interfaces and to perform numerical simulations with
conditions close to those of real experiments, each end of
the JTL section is now connected, respectively, (Fig. 3) to
an input linear transmission line (I) and an output linear
transmission line (III). The values of L and C for these
linear lines are identical to those of the JTL section (II).
The characteristic velocity is thus cp, and the lines are
nondispersive: cu=cpkp. In order to obtain the same ex-
pression for the voltage and the current along the whole
system (I+II+III) given by Eqs. (2.4a) and (2.4b), one
may define a "pseudophase" P~;„ in the linear medium:

[0+(k +k+)elill 0
0

+4 (ko —k )e ' '] (2.17a)

[q+(k —k+)elin 2k 0
0

+4 (ko+k )e '] (2.17b)

We then define the JTL transmittance and voltage-
transfer function, given by, respectively,

ITI'=lq i'd+I' «» (2.18)

(2.19}

with k+ and k given by Eqs. {2.7}. Therefore, to have
the explicit form of M (characteristic matrix for the JTL
section), one first has to solve two coupled nonlinear
equations with respect to 4+ and 4 for a given output
amplitude O', . We thus obtain the expressions of the
voltage and current at x =x2 (see Fig. 3). If we match
the solution inside the structure to the input wave at
x =xz, we obtain the expression of the amplitude %'&*;„of

the incident and reflected wave in the linear input medi-
um:
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Xg

point A

I

ia
I

i(x3,z)

'(15)~- '(Its)~-- 'Nll~--
zc

j I

current v(x3,z) linear transmission
generator line: input (I)

nonlinear transmission
line: JTL (II)

I

I

I
linear transmission
line: output (ill)

FIG. 3. Electrical model used to simulate the dynamics of waves through the JTL (II). This JTL is connected to two linear
transmission lines (I) and (III) matched on their characteristic impedance Z, .

These two basic quantities will be calculated in terms of
an input parameter which will be defined in Sec. III A.

B. Properties of a JSI.

tively, by

IT I IU(xl)I" (xhr+y)l

(2.21a)

(2.21b)

N
M'= gM, (c;), (2.20)

where M, is given by Eq. (2.10), with co replaced by c;,
(xz, x, ) replaced by (x;,x;,), and (k, k ) replaced by
(k;+, k; ). One can iterate the process presented previ-
ously for one section to calculate the set of (%,—,k,.—+) for
i =1,2, . . . , N. The knowledge of the characteristic ma-
trix M' yields the relations between the transmittance
and incident amplitudes, i.e., the transmittance and the
voltage-transfer function, which are now defined, respec-

One may extend the previous approach to any se-
quence with a number N of JTL sections (see Fig. 4) and
specifically to a periodic sequence, i.e., a JSL. Both ends
of this JSL are connected to the input (I) and the output
(III) linear transmission line, each having the same
characteristic velocity ep.

If the ith section has a characteristic velocity c; and is
limited by x, and x;+„ the characteristic matrix M' for
the composite system can be expressed as follows:

One notices that, for a set of given values (4,+—
, k,

+—
), we

can numerically calculate the shape of the spatial en-
velope of the voltage along the x axis by use of Eq. (2.4b).

We study a specific JSL which is constituted by a se-
quence of JTL sections where the characteristic velocities
are alternatively cp, and cp2, such that

2 2

2 P 2 P
~01

1
& ~02 (2.22)

Here cp = 1/LEIp and a is the modulation of the charac-
teristic velocity cp. This modulation of the characteristic
velocity results in an opening of forbidden frequency
band or artftcial gaps in the dispersion curve. As previ-
ously mentioned, we now use the term artificial to de-
scribe a gap which is due to the artificial modulation of
one characteristic parameter co in Eq. (2.5). In the linear
approximation of this equation, the linear dispersion
curve can be calculated by writing the continuity for
P(x, r) and its first derivative at the interface of each sec-
tion. Under these conditions, one obtains

characteristic velocity

02 02 01

I
I I I

input: linear
transmission
line (I)

Josephson superlattice (JSL)
(II')

output: linear
transmission
line (III)

FI~. 4. Description of a JSL (II') which is built with a sequence of JTL sections with alternate characteristic velocities col and co2 ~

Fach period of the superlattice consists of two alternate sections. This superlattice (II') is connected to the same linea«ransmi»ion
lines (I) and (III) as in Fig. 3.
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cos(kd) =cos(X, )cos(X2 )

X) X2+ sin(X )sin(X ),
2 X, X,

with

X, = [(1+a)(co —1)]'= d

2cp

Xz = [(1—a)(co —1)]'= d

2cp

(2.23)

III. NUMERICAL STUDY AND DISCUSSION

Using the approach developed in Sec. II, we are now in
position to calculate the transmittance and the voltage-
transfer function for the JTL and the JSL. Then, we dis-
cuss and compare these results with those of our comput-
er experiments on the dynamics of wave transmission in
both systems, which are presented in Sec. III B and Sec.
III D.

A. JTL transmission parameters

From the implicit linear dispersion relation (2.23), the po-
sitions of the gaps correspond to the wave vectors
k =n mid (where d is the period of the superlattice and n

is a positive integer) as represented in Fig. (5). As in the
case of one single JTL section, the nonlinear effects tend
to "bring down" the dispersion curve (see inset, Fig. 5).
Strictly speaking, one has a nonlinear dispersion curve
which is lower than the linear dispersion curve. Accord-
ingly, if the system is excited by a sinusoidal wave with a
frequency just below the upper edge of the 6rst gap, and
if the wave amplitude is increased, it can be totally
transmitted through the JSL. As we shall now see in the
next section, above a certain threshold, the same type of
behavior, showing bistability and hysteresis, will be ob-
served for a single JTL section and a JSL.

In order to calculate the transmittance, we assume that
the transmitted amplitude +, at the output of the JTL
section is given. By an iterative convergent method, one
can calculate qi-+ and k —,which are given by Eqs. (2.7)
and (2.16), inside the JTL section. Then, knowing these
quantities in the nonlinear JTL, we calculate the ampli-
tudes of the forward and the backward propagating
waves qi~—;„in the linear transmission line (I) using Eqs.
(2.17). We can then find the current and the voltage at
any point of the system using Eqs. (2.4), (2.6), and (2.12),
and also ~T~ and ~T„~ . The linear transmission lines (I)
and (III) are respectively matched on their characteristic
impedance Z, = 1/cp in order to cancel multiple
refiexions (see Fig. 3). We can now calculate the input
parameter P„o, which is the amplitude of the pseudo-
phase P „at point A:

p„=pzoexp[j (kox3 —cor)]+c.c. (3.la)

I I I I
J

I I I I
i

I I I 1

The input current I„ is related to P„by Eq. (2.4), one
obtains

I„=—jcok ok a oexp [j ( k ox 3 for) +c.c— (3.1b)

,

~(L) third gap Writing the Kirchhoff laws at x =x 3 yields the relation
between u (x 3, ~), i (x3, r), and the input parameter P „o:

~i (x3,7)+u(x3, ~)/Zc
~

(3.2)

second gap

1.5

first gap

0.05 0.1
Wave vectar

0.15

FIG. 5. Linear dispersion curve of a JSL showing the open-
ing of stop gaps for k =nm/d with n=1,2,3, d=20 (period of
the superlattice), co=4.4721, and a=0.4 (modulation of the
characteristic velocity co). Inset: details of the first gap: A
wave with the angular frequency co~ which lies in the linear
artificial gap (L) can be transmitted in the nonlinear case (NL).

We have carried out calculations of the transmissivity
of a single section of length X,=60 in normalized units
for different angular frequencies (co=0.99, 0.98, and 0.97
in units of the natural gap frequency) in the natural linear
gap, using the results obtained in Sec. II. In Figs. 6(a)
and 6(b), the voltage-transfer function ~T„~ and the
transmittance

~ T~ are plotted versus the input parameter
P„o defined by Eq. (3.2). Both curves exhibit bistability
and hysteresis. We sha11 now discuss in detail the case
~=0.99 for

~ T~ in Fig. 6(b). Namely, for weak values of
P„o, ~T~ is very small (10 ); if we increase P„o, ~T~

remains practically constant until we reach a threshold
(point P, ). Then the system jumps to P2, where

~ T~ =0.65. If now Pzo is decreased,
~ T~ continues to in-

crease, reaches the value 1, and then decreases to point
Qz, after which it jumps discontinuously to point Q, ,
which corresponds to a nontransmitting state. We re-
mark (Fig. 7) that for a JTL of given length, the threshold
value decreases when co increases (in the linear gap).
Moreover, as represented in Fig. 8, the threshold value
decreases when the length of the JTL increases. Note



10 392 41ARDA~ AND M REMOISSENET

I I I I I I I I
I

I I I I
I

I I I I

n.

B. Dynamics of wave trave transmissionave tr ion through a JTL

that for a length &
is no mor

.
a11er than 32

ore significant b
, the threshold

b lo
lho hh e JTL sectio

We nownow present the
ments on t"

t e results of ou
the dynamics of

our computer ex
cs o wave transm

r e L sectio
mission in t

cal simulat'
Th

a ions are close
n itions of our nu

'd 1 h'aunc a sinuso'
c rical transm'

previously Eq. 3.1~ calculated
tc corres ond

h o hth JTL section.

0.5—

~=0.9- ~=0.9
+=0.99

S

pomts-ta1
e curvestate (U)

I

*
I
I
I
I
I

I
I ~ P

I

0.5— I

I

I

I
' +

I
I

I

I
I

I
I
I

stateI(R)
P I I I ~ ~ ~

0 0.2 0.4
I I I I I I I I I I

o.e 0.8

I I I II
I

I I I
I

I I I II
I

I I I I
I

I I I I

I I I I
I

I I I II
I

I I I I I I I I

+: e

I
I

I I I I

: experhnen

P I I I I

0 0.2 o.eO.e0.4

FIG. 7. Tran

@co

1

p

co =4.4721

t
e existence o

requencies in
iy

h hid
requency co.

value, which d'c epends on

Thee numerical simulation
unge-Kutta meth d, o

e o threec

each poi

', U, , obtaine
-or er differ

gdb rii h hoff laws at

en d
er to have

). Th e unit length b,x w
'

a yg x, which actually

0.5 I I I I I I I II
I

I I I I
I

I I I II I I
I

I I I I

0.5—

0.2

Qg
I

0 0.4

(b)

I I I I I I I

O.e 0.8

N 0.4—

0
A
NI

0.3—

FIG. 6. Re r

kO

Representation (aa) of the volta e-
e transmittance

~
T~ vs the in ut

nction

are or a JTL of 1o,=60 unit cells

1e gap. Th t te (R
cy

1 d

correspond I

ig. 9.
i ing experi-

O.2 I I I I I I I I I I I

eo eo so
Length of the JTL

FIG. 8. De s dependence of
racteristic v — 721

g
. 721, and for co=0.99



JOSEPHSON SUPERLATTICES AND LOW-AMPLITUDE GAP SOLITONS 10 393

I I I I
I

I I I I
I

I I

0.5—
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(III)

0
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0

0
N

~ W

cj

IlIIl Il

nnnn,
0
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Ef I Ij IN Ij

corresponds to one electrical unit cell, is assumed to be

unity. In order to avoid the numerical discretization
effects, the spatial period A, must be larger than hx
(A, ;„=10 unit cells).

The voltage-transfer function
~ T, ~

= [v (x z ) /U (x, ) ] is

now determined by measuring the amplitudes of v (x, }

and U (x2) for different values of P„o. The corresponding
points are plotted on Fig. 6(a) and compared to the
transmissivity curve previously calculated for co=0.99.
There is good agreement between the measured and cal-
culated threshold values, but once the system has
switched, one observes a slight systematic shift ( —15%}
between the measured points and the calculated curve.

We attribute this shift to the fact that the low-amplitude
approximation [sine expansion in (2.5)] is no longer valid
inside the JTL once it has switched.

In Figs. 9(a) and 9(b), we have represented the dynami-
cal behavior of the system, i.e., snapshots of the wave
configuration at different times for co =0.99. These
figures correspond respectively to the state (R ) and state
(U) of Fig. 6(a). In the low-amplitude (linear) regime
(state R), one observes an exponentially decreasing wave
in the JTL section (II); accordingly, in the input line (I),
one has a standing wave system because the incoming
linear wave is practically totally reflected. In the output
line (III), the transmitted wave has a very small ampli-
tude (which corresponds to a transmittance T~ =10 ).

In the nonlinear regime (state U), the incident wave in
(I} is totally transmitted in (III};note the weak parasitic
modulation, which corresponds to a slight mismatching
of line (III} on the load impedance. In the JTL section
(II), one has a nonlinear standing wave which looks like
breathing at frequency co. Indeed, such a breathing
standing wave could be expected because it is a typical
mode in the finite JTL section, " ' ' which is known to
oscillate at a characteristic frequency in the natural gap
(0 & co & 1). It becomes the familiar breather soliton for
an infinite JTL. In fact, although we have here a finite
line, this stationary breather mode which appears as soon
as the system has switched up to Pz, i.e., to a similar
transmitting state, may be called a gap soliton.

C. JSL transmission parameters

—05— input
linear
line

100

JTL
section

output
linear
line

I

800

We now consider the JSL (II') described in Sec. IIB,
which contains a number N of JTL sections. The JSL is
intercalated between the linear transmission lines (I) and
(III). As for a single JTL section, we assume that the

I I I I
I

I I I I
I

I I

0
Cf

0

0
N

~W

4

(b)
I

I

I

I

I

I

I

I

I

I

I

I
I

state (U)-

0.15—I

0
R input

linear
line

output
linear
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JTL
section

I I I I I I I I I I I I 0.1—
100 200

FIG. 9. Snapshots of the wave dynamics at different times in
two cases: (a) the nontransmitting state with a decaying en-
velope in (II), (b) the transmitting state with a stationary gap
soliton in (II). The system is a 60-unit cell JTL, connecting to
two linear lines of length 100 unit cells, respectively matched on
their characteristic impedance. The characteristics of the JTL
are the same as for Fig. 6.
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FIG. 10. Threshold values vs the length of the JSL of charac-
teristic velocity co=4.4721, with modulation a =0.4, period
d=20 unit cells, and for an angular frequency in the first
artificial gap co = 1.284.
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transmitted amplitude wave +, at the output is fixed. Us-

ing the method presented in Sec. III A, we calculate for
the JSL the quantities 4& and k +—

, , which correspond, re-

spectively, to the amplitudes of the forward and the back-
ward waves, and their corresponding wave vectors of the
previous section (at the interface with the output line III).
Then we iterate this process from the Nth section to the
first section of the JSL. Thus, we can calculate the ampli-
tude of the forward and the backward propagating waves

4&;„ in the linear transmission line (I), and also the input
parameter P„o, which is defined in the same way as in

Sec. III A). Then, calculating the coefficient
l
T'l and

iT„'l defined by Eqs. (2.21a) and (2.21b) for different
values of (I) „o, one can observe the existence of a thresh-
old for these two quantities which depends on the length
of the JSL (Fig. 10).

We have carried out calculations of the transmissivity
of a JSL of period d =20 unit cells, modulation a =0.4,
length X2= 16. d =320 cells, and for a frequency
co= 1.284, which lies just below the upper edge of the first
artificial gap (k =~/d). In Figs. 11(a) and 11(b), the
voltage-transfer function lT„'l and the transmittance

l
T'l are plotted versus the input parameter P„o defined

by Eq. (3.2). As for a single JTL section, these curves ex-
hibit bistability and hysteresis: however, the voltage-
transfer function

l
T„'

l as a function of P„o (P'i'
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FIG. 11. Representation (a) of the voltage-transfer function
i
T„'i, (b) of the transmittance

i
T'i vs the input parameter $„0

for a JSL of length X2= 16. d= 320 unit cells, with d the period
of the JSL (20 unit cells). The characteristic velocity is
co=4.4721 and the modulation a=0.4. The frequency lies just
below the upper edge of the first artificial gap, co=1.284. The
states (R') and (U') correspond, respectively, to nontransmit-
ting and totally transmitting states.
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FIG. 12. Representation of the maximum voltage vs x along
the linear (I) and nonlinear (II') lines: (a) for state (R'), (b) for
state ( U') defined in Fig. 11 and determined from our computer
experiments.
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~P2' ~Q2' ~Q", }which is represented in Fig. 11(a}may
be greater than unity (point Q z'). It is due to the fact that
the characteristic velocities co& and eoz which enter in the
calculations are not the same in the alternate sections of
the JSL. In other terms, the voltage at the input of the
nonlinear line (x =x2) includes the refiected wave. We
note that the system can switch down directly from Qz'

to Q &'. The hysteresis cycle for
~

T'
~

versus
(P', +Pz—~Q2~QI) in Fig. 11(b) presents a behavior
similar to that presented in Fig. 6(b) for the single JTL
section.

cl 0.5

I I I
)

I I I I
I

I I I I
I

I I I 1

state (S')

(I) (Ir)

D. Dynamics of wave transmission through a JSL

We now present the results of our computer experi-
ments on the dynamics of wave transmission in the first
artificial gap of the JSL. The conditions of these experi-
ments are the same as for the single JTL section. Ac-
cording to Eqs. (2.22), the JSL is realized by modulating
spatially the inductances, namely, they have the values
L(i+a). A sinusoidal wave of frequency co=1.284 is
launched at the input of the linear transmission line (I),
and we measure the experimental voltage-transfer func-
tion

~
T„'~ and compare these points to the transmission

curve calculated in Sec. III C. We obtain better agree-
ment between the calculated and experimental values for
~T„'~ [see Fig. 11(a)] than for the JTL section, because
the range of the amplitudes is closer to the low-amplitude
limit implied by Eq. (2.5).

For the sake of clarity, we have represented in Figs.
12(a) and 12(b} the spatial envelope of the voltage in each
section of the JSL (for co=1.284). In these figures, we
discuss our results, which correspond, respectively, to the
states (R') and (U') of Fig. 11(a). We note here that, in
each section of the JSL, the combination of the forward
and the backward waves (respectively, 4,+ and 4, ) gives
a resonant mode. So, in order to study the transmission
properties of this JSL, we have to focus on the general en-
velope, i.e., the envelope of each partial envelope, in the
total nonlinear transmission line (II'). In the low-
amplitude regime (state R'), this general envelope under-
goes an exponential decay in (II'), which corresponds to a
nontransmitted state ( ~

T„'
~

= 10 ). The behavior in the
input (I) and output (III) line is the same as for a single
JTL section: there exist a standing wave because the in-
coming linear wave is practically totally reflected. In the
nonlinear regime (state U ), the incident wave in (I) is to-
tally transmitted in (III), and the voltage-transfer func-
tion

~ T„~ is unity.
At this point, one must remark that in the stationary

(time harmonic) regime, the model equation (2.5) may be
reduced to an equation which is similar to that used by
Chen and Mills in their theoretical analysis of transmis-
sion properties of optical superlattices. Namely, they de-
scribed the general envelope or gap soliton in terms of
Jacobi elliptic functions. Here, although we are examin-
ing a different kind of superlattice, we have verified that
our numerical experiments on the wave dynamics are in
good agreement with the theoretical results of Chen and
Mills. Indeed, if we further increase the input parameter
$&0, we reach state (S'), where we can see one and half

0 i i s s I i s s s I i i i s I s s s s I

0 100 800 300 400

FIG. 13. Maximum voltage vs x along the system for the
state (S') corresponding to Fig. 11. Note the appearance of a
second period of elliptic function for the general envelope in the
JSL (II').

periods of a Jacobi elliptic function, just before the sys-
tem switches from point P3 to point P4 (see Fig. 13).
Each resonant point (

~

T'~ = 1) corresponds to an integral
number of periods of a Jacobi elliptic function.

As for the single JTL section, snapshots of the gap-
soliton wave form at different times are represented in
Fig. 14 for co=1.284 and for the state (U'} where the
transmissivity is unity. The so-called gap soliton is a sta-

I I I l
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I I I I
I

I I I I
I
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—0.5 —input
- linear

I I- section ',

I i « i I i i » I i » i I

100 200 300 400
X

FIG. 14. Snapshots at different times of the voltage along the
lines (I)+(II') showing an oscillating structure in the JSL (II'),
for the state of total transmissivity ( U') of Fig. 11. For the sake
of clarity, we have represented the oscillating standing wave at
only three different times.



10 396 D. BARDAY AND M. REMOISSENET 41

tionary wave envelope which oscillates at frequency co; its
structure looks more complicated than for the JTL case,
because in each section of the JSL one has a partial
standing wave.

For some experiments, after the system has switched
up to the transmitting regime, modulation instability in
the Benjamin-Feir sense may be observed (not explicitly
represented here), i.e., at a given point on the JSL, in-
stead of remaining constant, the amplitude of the voltage
V,„becomes unstable as time increases. In fact, Eq.
(2.5) can be reduced to a nonlinear Schrodinger equation
where the product of the group velocity dispersion and
the non-linear term is positive. Consequently, in an
infinite system, one can expect modulational instability
for a plane wave: qualitatively, an amplitude-modulated
wave carrier tends to break up into envelope solitons.
Unfortunately, here we have a finite system with multiple
reAections, and we do not know how to calculate the crit-
ical conditions for the occurrence of this instability.

Nevertheless, the modulational instability can be drast-
ically suppressed if one adds a weak dissipation to the
JSL. Namely, we have performed experiments with a
conductance term 6 in parallel to the capacitance C in
the electrical model of Fig. 1. Under these conditions,
one has an additional dissipative term gBPIBr, where

g =GVo/Io in Eq. (2.5). To be consistent with the values
of dissipation in real transmission lines, we have chosen

g —10 . In Fig. 15, we have represented the spatial en-
velope of the waves in line (I) and JSL (II') for co = 1.28 in
the gap. In this case, the modulation instability disap-
pears, and the general behavior of the wave transmission
(in the gap) is not modified, although the waves are weak-
ly damped. Moreover, this result is important because the
dissipative JSL is a more realistic model from an experi-
mental point of view. '

IV. CONCLUDING REMARKS

We have examined the amplitude dependence of the
transmission properties in the natural gap of a JTL sec-
tion and in the artificial gap of a finite JSL. We have
shown that the nonlinear transmission response of both
systems exhibits bistability and hysteresis and can ap-
proach unity once the amplitude of the incoming wave is
greater than a certain threshold which is frequency
dependent and also decreases with the length of the sys-
tem. They are in good agreement with our calculations,
and show that a stationary gap soliton appears as soon as
the system has switched up to a transmitting state. As
could be expected" for the JTL, the gap soliton which

1.5 I I l I
(

l I I I
)

I I

I

-linear section ,
'

I
I nonlinear+dissipative

section,
I I I I I I

100 800

FIG. 15. Voltage envelope along the system vs x for a max-
imum of transmission (no reflected wave in the input linear sec-
tion) determined from our computer experiments. The voltage-
transfer function is less than unity because the JSL is weakly
dissipative (g =3X10 '). Its length is X3=8. d =160 unit
cells, with d =20 unit cells (period of the JSL). The characteris-
tic velocity is co=4.4721, the modulation a =0.4, and the fre-
quency co=1.28 lies in the first artificial gap.

oscillates at a frequency in the gap behaves like a station-
ary breather. For the JSL, the gap soliton presents an os-
cillating envelope whose structure, at maximum ampli-
tude and at a given time, agrees with the theoretical pre-
dictions.

We have observed that the modulational instability in
the Benjamin-Feir sense which may appear in some com-
puter experiments is eliminated if one considers weak dis-
sipative systems. Nevertheless, this phenomenon should
be considered carefully in future investigations of the
nonlinear response in the gaps of real physical systems.

Our computer experiments of the wave dynamics show
how the systems would behave in practice. This suggests
the gap-soliton-mediated bistability should be observed
experimentally on a real JTL and JSL. The experimental-
ist should be able to realize practically the JSL by modu-
lating the inductance (per unit length), which depends
simply on the geometrical parameters of a superconduct-
ing line.
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