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Many-body potentials anti atomic-scale relaxations in noble-metal alloys
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We derive empirical many-body potentials for noble-metal alloy systems in the framework of the
Finnis-Sinclair model [Philos. Mag. A 50, 45 (1984)] which is based on a second-moment approxi-
mation to the tight-binding density of states for transition metals [F. Cyrot, J. Phys. Chem. Solids
29, 1235 {1968)]. The most important extension of the model is a simple incorporation of inter-

species interactions which involves fitting the alloying energies. The importance of properly ac-
counting for the local atomic relaxations when constructing the potentials is emphasized. The ob-
served principal features of the phase diagrams of the alloys are all well reproduced by this scheme.
Furthermore, reasonable concentration dependences of the alloy lattice parameter and elastic con-
stants are obtained. This leads us to suggest that fine details of the electronic structure may be less

important in determining atomic structures than are more global parameters such as atomic sizes
and binding energies.

I. INTRODUCTION

Empirical descriptions of interatomic forces have been
widely used in simulations of extended lattice defects
such as grain boundaries, dislocations, clusters of point
defects, etc. ' A significant recent advancement in the
empirical descriptions of interatomic forces has been the
introduction of many-body terms in addition to pairwise
potentials. These terms model the effect of the local
electronic density. Two schemes of this type, the
"embedded-atom tnethod" (EAM) of Daw and Baskes '

and Finnis and Sinclair potentials (referred to as FS), al-
though based on rather different approaches, yield strik-
ingly similar models in the case of pure metals. Both of
these models are fitted so as to reproduce the lattice pa-
rameter, cohesive and vacancy-formation energies, and
elastic constants. They have been shown to give very
good results in simulations of point defects, cracks, and
surfaces, ' three applications for which traditional
pair potentials are known to be inadequate. In numerous
other applications, these and other many-body potentials
have yielded reasonable results, generally similar to those
obtained earlier using pair potentials.

Given the success of these new potentials in the case of
pure metals, a natural development is to extend these
schemes to alloys and several attempts have already been
made in the framework of the EAM. The formalism of
the EAM, indeed, appears to be most directly applicable.
In this model the total energy of a system is written as a
sum of two terms,

E =g F, (p, )+ —,
' g V, (R,, ),

where

zzp;=+4 (R, ), V,, =
J /J

The many-body term here is given by a function, F,-, of

a local electron density p;. The functional form of F; is
dependent only upon the species of the embedded atom
(atom i) and not on the species of its neighbors. p;, on
the other hand, is the electron density due to the sur-
rounding atoms, and is a sum of one-atom contributions,
4, independent of the species of the embedded atom.
Likewise, the EAM pairwise potential V; can be separat-
ed into a product of two one-atom functionals Z; and Z,
although some more recent EAM-type models ' ' have
used nonseparable forms for the pair potential. Thus the
total energy can be written in terms of functional forms,
each of which is dependent on one atom only, and thus
independent of the alloy in which the atom is present.
Consequently, in principle, using the EAM, alloy proper-
ties could be derived directly from parameters for pure
metals. Although this is a lot to hope for, it is not entire-
ly unreasonable to aim for, since good predictions of alloy
structures have been obtained from pure-metal parame-
ters using empirical schemes. Unfortunately, it was
found that direct application of EAM parameters derived
for pure materials leads to poor results for the formation
enthalpies and volumes of the corresponding alloys. A
set of EAM functions for a variety of different fcc metals
and alloys have been derived, but only by refitting to
properties of the alloys.

The FS model appears to be less convenient for direct
conversion from pure metals to alloys. In this model the
expression for the total energy of the system is similar to
the EAM, but the many-body term is given by a square
root of a sum of two-body potentials, i.e., F,
and both V and 4 are dependent on the species of both
atoms i and j, and thus they are not directly transferable
from a pure metal to an alloy. Other many-body poten-
tial schemes' also contain similar two-center terms.
Thus it appears that none of the many-body potential
schemes can provide potentials for alloys without further
empirical fitting to properties of those alloys. We ac-
knowledge this, and while starting with the potentials for
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II. FORM OF THE POTENTIALS

The FS potential formalism is based on a second-
moment approximation to the tight-binding theory in-
corporating charge conservation. ' This gives rise to a
many-body cohesive term in the form of a square root of
a sum of pairwise terms. For a pure metal the energy of
an atom i can thus be written

E(=—,
' g V(R,J)— +4(R;~)

J . J
(2)

where the summation extends over all the atoms. V is a
pair potential which is strongly repulsive for small sepa-
rations of atoms. 4 can be interpreted as a sum of
squares of hopping integrals within the tight-binding ap-
proach.

In an extension of the model to alloys, both V and 4
are dependent on the species of the atoms at i and j. The
species dependence is thus inseparable. A consequence of
this inseparability is that for an X-component system we
need g;. , i different two-center functions V and 4. For
a similar system the EAM requires only X different func-
tions for I', p, N, and Z, one for each species. In the
present work we study binary systems, so we need three
different functions for both V and 4. We will denote
these functions V~a V~B VBB @~a @~B and 4BB
where the suSces refer to the species of the atoms in-
volved.

In keeping with the original FS model and its subse-
quent extension to noble metals, ' it was desired that the

pure metals developed within the FS scheme' (see Ap-
pendix A), we proceed to derive many-body potentials for
alloys by carrying out an additional fitting to alloying en-
ergies of random alloys.

The many-body potentials are constructed in this paper
for alloys of the noble metals Au, Ag, and Cu. These al-
loys provide an interesting variety of systems: silver-gold
forms a disordered fcc-based alloy throughout its concen-
tration range, copper-silver shows only a limited solid
solubility governed by the entropy effect, while copper-
gold forms a variety of ordered alloys. When construct-
ing the potentials, we address the question of local relaxa-
tion of atoms in disordered substitutional alloys. This is
shown to be a significant effect, which has to be properly
accounted for in the fitting procedure. However, it can
only be fully incorporated by carrying out extensive com-
bined molecular-dynamics and Monte Carlo calculations.
We examine, therefore, several different approximations
and show that there may be significant differences be-
tween them. Hence, for different alloy systems different
approximations need to be chosen, using the alloying be-
havior known from the corresponding phase diagram as a
guideline.

We demonstrate that constructed potentials reproduce
the basic features of the phase diagrams which are in
agreement with experiments and first-principles calcula-
tions. ' They also lead to reasonable concentration
dependences of the lattice parameters and elastic con-
stants which agree with experimental data where avail-
able.

empirical functions should take a simple analytic form.
We assumed that each of these functions is independent
of the concentration of the alloys. Hence functions V»,
V», 4», and 4BB were identified with those for pure
metals and taken from previous work, ' with the excep-
tion of copper, as explained in Appendix A. The func-
tion 4~B was chosen as a geometrical mean of 4„~ and

EBB. This is consistent with its interpretation in terms of
hopping integrals, and minimizes the empirical fitting.
Hence, five of the six empirically fitted functions are
determined from the pure-metal properties and only the
pair potential V~B has been fitted to alloy properties.

Previous works ' have usually used the energy of a
single substitutional atom for empirical fitting of alloying
energies. This gives two experimental data to which to fit
for each binary system. The advantage of this property is
that it is easy to calculate theoretically but there are a
number of drawbacks which are seldom discussed. First,
experimental data for single substitutional atoms do not
exist as such. The data usually used are extrapolated
from a region of about 10% concentration. At this con-
centration 72% of impurity atoms have at least one im-

purity as a nearest neighbor (based on a random distribu-
tion of species in a fcc lattice), and less than one impurity
in 10" can be regarded as isolated, assuming the interac-
tion of atoms extends up to the third neighbors. Second,
the effects of relaxation of the lattice around the impurity
are known to be significant. The nature of this relaxation
will be different for an atom in a 10% alloy than for an
isolated impurity. Therefore, in this work we fit V~& to
observed random-alloy formation enthalpies at finite con-
centrations. Since the calculation of properties of ran-
dom alloys is not straightforward when taking into ac-
count the local relaxation, we shall discuss this in detail
in the following section. The fitting is then described sep-
arately for each system studied because the nature of the
fitted data varies between the three alloy systems.

For consistency with the functional forms used for the
pure materials, we employed cubic splines for V„B. This
is, of course, an arbitrary choice based on computational
convenience. This ensures smooth derivatives up to the
second order and can, therefore, be expected to be good
when considering first-order (energies) and second-order
effects (relaxations and elastic constants). However, to
examine third-order effects, such as thermal expansion or
Gruneisen constants, functions with smooth third deriva-
tives are needed, and the present potentials are thus not
suitable for such studies.

The functions which make up the present model are

6

V„„(R;J)= g ak""H(rl,""—R,~)(rk""—R,J)
k=1

6
C „„(R,, )= y ~""a(R""—R )(R""—R, )',

k=1
3

V„~(R,J )= g ak" H(rk" R,q)(rk" R,J)— —
k=1

C „s(R(~)=QC „„(R;J)Cs~(R;J),
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TABLE I. Parameters for potentials V„z.

Ag
Au
Ag

Au
CU

CU

r, {A)

4.408 56
4.309 816
4.158 00

r, {A)

3.469 70
4.047 479
3.157 00

r, (A)

3.00000
3.297 946
3.000 00

a, (eV/A')

0.003 566 503 525
—0.085 545 516 60

0.035 330 377 52

a~ (eV/A')

1.015 075 326
0.192 835 880
0.851 846 635 3

a 3 (eV/A )

0.000 000 00
0.759 322 86
0.000 000 00

where H(x) is the Heaviside unit-step function which
gives the cutoff distance of each spline segment. Vss and

4BB have the same form as the functions V~ ~ and 4~„.
While V~ ~ is a six-point cubic spline, a three-point spline
for VzB was found to be suScient to reproduce the ex-
perimental data fitted (alloying energies). The parameters
Ak ", ak"", Rk", and rk"" are identical to those deter-
mined for pure materials (see Appendix A). The parame-
ters ak" @nd rk" for the function V„&, determined for
the three alloy systems as described below, are summa-
rized in Table I. For pure metals these coefficients are
given in a normalized form, but for alloys there is no
unique lattice parameter for all concentrations with
respect to which one can define the coefficients, so in

0
Table I we use absolute units of angstroms and eV/A for

and ak", respectively.

III. APPROXIMATE MODELS
OF RANDOM ALLOYS

@alloy El»d E A EBCB (4)

where E" and E are energies per atom in the pure met-
als A and B, respectively. The available experimental
data on alloying energies frequently correspond to high
temperatures, while no temperature e8ects are taken into
account in fitting procedures. Hence, we are here adopt-
ing an approximation that the alloying energy is indepen-
dent of temperature below the melting point.

Since we wish to fit our potentials to alloying energies
of random alloys, it is necessary to have a simple method
for calculating these energies. There have been numerous
models to describe a random alloy based on a fcc lattice,
but none of them treats accurately the local relaxation.
This can, of course, be fully accounted for by carrying
out combined molecular-statics (or -dynamics) and
Monte Carlo calculations, but such an approach is too
computationally expensive to be used iteratively in the
fitting process at various alloy concentrations. Hence, we
employ approximations, and three di6'erent possibilities
are discussed below. The molecular statics has been used
only as a check on the already derived potentials. For
this purpose we employed the molecular-dynamics (MD)
program MOLDY (Ref. 10) adapted for use in quenched
MD and, therefore, suitable as a molecular-statics pro-
gram. We examined sample blocks containing 256 atoms
and 500 atoms with periodic boundary conditions.

In all cases we consider a fcc lattice with two types of
atoms, A and B, present with atomic fractions c~ and cB.
For each approximation we determine the energy per
atom in the random alloy, E"",and the alloying energy
is then

A. Total smearing model

The total smearing model (TSM) is the simplest analyt-
ic model for a random alloy, and that which makes the
most severe approximations. Each site is regarded as oc-
cupied by a particle consisting of a fraction c„ofan A

atom and a fraction cB of a B atom. This can be regarded
as a smearing out of both atomic types at each site. This
description has been used frequently, for example, in a
previously developed pair-potential model for alloys of
noble metals and it is equivalent to the regular-solution
model. The lattice has perfect cubic symmetry, with all
sites identical, and so it will not relax locally. The lack of
local relaxation makes the predicted energy of the TSM
too high. However, since all atoms are regarded as being
in regions of perfect stoichiometry, the mixing of the
species is overcomplete (i.e., regions rich in one species or
the other are not considered). The energy per atom in
this approximation is

E""= cq g Vqq(R, ))+c)i g Vss(R,))
J J

+2c„csg V„s(R; )

J

cq g P q q ( R J ) +c)i + 4 ss ( R ) )

J J

+2c„csg@„s(R;~)
J

and the lattice parameter is determined by minimizing
this energy for a given alloy concentration.

This model can be improved by regarding the species
of an atom i as fixed and taking only its neighbors as
smeared. In this way the central atom has a distinct
species, but its surroundings consist of smeared atoms as
in the TSM. There are thus two distinct types of site, A

and B, but they are both embedded in the same environ-
ment. This again means that no local relaxation is per-
mitted and the mixing is overcornplete. The average lat-
tice parameter is determined by minimizing the energy
per atom which is, in this case,

E""= c„gV„„(R;))+c)) g Vss(R,J)
J J

+2cAcs g V„s(R, )

J

—cs cs g C ss(R,j)+c„g@.„s(R;J)

J J
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B. Hydrostatic configurational sampling model

In the hydrostatic configurational sampling model
(HCSM) there is no smearing and every atom is regarded
as being either species A or 8 with probabilities c~ and

c&, respectively. All possible configurations of atoms
around a central atom i are considered. However, no lo-
cal relaxation is taken into account. Instead, for any
given configuration atoms are placed on sites of a perfect
lattice with a lattice parameter determined by minimizing
the average energy per atom with respect to this lattice
parameter. The number of configurations which needs to
be sampled depends on the range of interactions. For
short-range interactions this number is greatly reduced.
Moreover, in the HCSM all atoms in a given shell are re-
garded as being indistinguishable, so each shell has cubic

symmetry. This leads to a considerable amount of degen-
eracy. For the present third-neighbor model, 4550 possi-
ble configurations need to be taken into account.

The total number of degenerate configurations can be
written in terms of binomial coefficients. Defining X„as
the number of type- A atoms which are nth neighbors of i
and Z„as the total number of neighbors in the nth shell,
the probability P for any one of the above configurations
a is

NB
P =P(N,",N",N", . . . ) =g „c„"c ", (7)

n n

where Z„=N„"+X„.The energy per atom can then be
written in this approximation as

E""= c„gP g [N„"V„„(R„)+N„V„s(R„)]— g [N„"C&„„(R„)+N„4„q(R„)]
A n n

+ca g P g [N„"V„q(R„)+N„Vss(R„)]— g [N„"4„q(R„)+N„@a~(R„)]
a n 7l

where the first summation (a} extends over all the possible configurations and the second summation (n) over all the
neighboring shells; R„ is the separation of nth neighbors, which, in this case, is the same for all the configurations con-
sidered.

C. Local configurational sampling model

The local configurational sampling model (LCSM) is similar to the HCSM, but each of the 4550 configurations in
which an atom can be situated is regarded as possessing a local lattice parameter R, where a denotes the local atomic
configuration. for each of these configurations the energy of the central atom is found by minimization with respect to
R . Since we do not take into account any local shearing which may arise due to the distribution of different species
within a given shell of neighbors, we maintain the same degree of degeneracy as in the HCSM, and keep the cubic sym-

metry of that model. The energy per atom in this model is

E""= c„+P g [N„"Vq„(R„"' )+N„V„li(R"' )]— g [N "4 (R "' )+N 4 (R"' )]
a n

+cq g P g [N„"V„„(R„')+N„V„s(R„' }]—g [N„"4 (R ' )+N 4 q(R )]
a n Pf

This is similar, as in the previous case [Eq. (8)], but the
separations of the nth neighbors, R„' and R„', are now
different for different configurations.

Although each atom is locally relaxed within all avail-
able local configurations, it is not possible to build a crys-
tal out of them without imposing some strains and there-
by increasing the energy. Hence, the LCSM overcom-
pensates for the lack of relaxation in the HCSM. There-
fore, this model will provide a lower bound to the energy
of a random alloy whenever the dominant effect of the re-
laxation is the radial strain (sometimes called the size
effect), while the HCSM will provide an upper bound. In
the solid the total local relaxation is impaired by
confinement of the local configuration within the sur-

rounding crystal structure. Hence, in this case it is likely
that alloying will be better described by the HCSM, al-
though we expect the theoretical values of the alloying
energy obtained from the HCSM to be too large, and
those from the LCSM to be too small. On the other
hand, in the liquid there is no long-range order and thus
the confinement of the local configurations is less pro-
nounced. We believe, therefore, that the fully relaxed lo-
cal configurations of the LCSM will be a better approxi-
mation. However, even in the liquid environment, we
still expect the LCSM to give too low an alloying energy.
In fitting the potentials to alloying energies, we require,
therefore, that the experimental values always lie in be-
tween those calculated using the HCSM and LCSM ap-
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proximations. 'Which of these approximations is closer
depends then on the nature of experimental data, in par-
ticular whether they correspond to solids or liquids.
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IV. FITTING OF POTENTIALS

A. Silver-gold

The silver-gold phase diagram shows a complete mutu-
al solubility in the solid alloys; no ordered alloys are
known to be stable. The alloying energies, corresponding
to the solid phase, are available for the whole range of
concentrations. Since silver and gold have very similar
lattice parameters, it can be expected that the relaxation
will be of little importance in this system. Hence, when
fitting the alloying energy we described the random alloy

using the HCSM, which is a simpler approximation. The
experimental data and the fitted dependence of the alloy-
ing energy are shown in Fig. 1(a). In the same figure we
also show the alloying energy calculated within LCSM
using the same potential parameters. It is seen that the
results are, indeed, nearly identical and the curves are in-
distinguishable on the scale of Fig. 1(a). Molecular-
statics calculations were carried out for several concen-
trations and the calcu1ated alloying energies are again
practically the same as when using the HCSM or LCSM.
Calculations using the TSM gave significantly lower ener-
gies (about 40' lower). This gives some measure of the
error involved in not sampling the (higher-energy) off-
stoichiometric configurations, but it should be noted that
fitting was carried out so that the experimental data are
always in between the HCSM and LCSM approxima-
tions.

It is interesting to note that some of the molecular stat-
ics points lie below the LCSM "lower bound. " This is be-
cause the radial strains in silver-gold are very small (the
atoms have only a 0.2% lattice-parameter mismatch), so
the overrelaxation does not affect the alloying energy
much; meanwhile, the random distribution in the finite
molecular-statics calculation tends to favor near-
stoichiometric local configurations (though not as much
as the TSM does) and thus the species are overly well
mixed, leading to slightly lower energies. This subtle
effect is certainly smaller than other approximations
which are made (such as the complete lack of local order-
ing).
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B. Copper-silver

Copper-silver alloys have a simple eutectic phase dia-
gram. They exhibit phase separation at 0 K and very
limited solid solubility, presumably entropy driven, at
higher temperatures. The alloying energies are available
across the whole range of concentrations, but only for the
liquid phase, For this reason we carried out the fitting
such that the experimental data lie between the upper
and lower bounds defined by the LCSM and HCSM, but
closer to the LCSM curve, as shown in Fig. 1(b).
Molecular-statics (MS) calculations based on a fcc lattice
lie between the LCSM and HCSM, slightly above the
(liquid) experimental data because of the constraints im-
posed by the lattice. All MS and ordered-a11oy calcula-
tions on this system suggest that phase separation with
entropy-driven solid solubility will be the lowest-energy
state.

The TSM gives a still higher energy than the HCSM,
because is puts too much ~eight on the unfavored
stoichiornetric configuration and does not account for the
relaxation.

~pp t I t I I I I I I

0 50 $00
Cu (at. %)

FIG. 1. Concentration dependence of the alloying energy in
(a) silver-gold, (b) copper-silver, and (c) copper-gold systems.
Calculations using LCSM and HCSM, respectively: solid
curves. Experiment: open circles. Molecular-statics calcula-
tions: crosses. Ordered alloys: solid circles.

C. Copper-gold

The copper-gold system has a phase diagram corre-
sponding to various ordered alloys, which undergo an
order-disorder transition at high temperatures. For this
reason the alloying energies for random alloys, to which
we fit V„z, are only available for high temperatures, and
thus we again use the approximation of temperature in-
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dependence of the alloying energy. These data corre-
spond to the solid phase and, therefore, we carried out
the fitting such that the experimental data lies in between
the upper and lower bounds defined by the LCSM and
the HCSM, as shown in Fig. 1(c). Furthermore, the lat-
tice parameter for the ordered Cu3Au alloy was fitted
since the potentials are intended for studies of lattice de-
fects in this alloy.

Molecular-statics calculations were carried out for
wide range of concentrations and their results are also
shown in Fig. 1(c). They follow the experimental values
very closely for copper concentrations larger than 50%,
but for gold-rich alloys the calculated values are lower
than the experimental ones, closer to values calculated
using LCSM. This means that in the latter case the local
relaxations obtained using the potentials are more exten-
sive than in the real alloy. However, a short-range order
is likely to exist in reality, even at high temperatures,
which suppresses the relaxation, while the fitting was car-
ried out assuming an ideally disordered alloy.

The TSM gives results between the LCSM and HCSM
curves. The lack of relaxation make the TSM value too
low, but the excess weight on favored perfect
stoichiometry makes it too high. In this system these er-
rors roughly cancel.

V. CALCULATED PROPERTIES OF ALLOYS:
TEST OF POTENTIALS

A. Alloy structures

The first test of the validity of the constructed poten-
tials is how well they reproduce the main features of the
phase diagrams of the alloy systems studied. For this
purpose we evaluated for each system alloying energies of
ordered alloys corresponding to concentrations 50%-
50% and 25%-75%. These are the bcc-based B2 struc-
ture, the fcc-based 1.12 and L10 structures, and a struc-
ture we mark "Y". The Y structure is a theoretically
constructed crystal structure which can be regarded as a
faulted L 1z structure with repeated —,

' [011](111)stacking
faults. The mathematical significance of this crystal
structure is that it maximizes the number of unlike
second neighbors. Corresponding calculated alloying en-
ergies are shown in Figs. 1(a)—1(c).

In the Au-Ag system the alloying energies of L12, L10,
and Y structures are very close to those of the corre-
sponding disordered alloys while the 82 structure has an
appreciably higher energy. The lowest-energy structure
appears to be the Y structure, but even in this case the
difference in the energy between the ordered and disor-
dered state is only about 4.5 meV, corresponding to the
thermal energy of about 20 K. Hence, the ordering ener-
gies are very small, and in view of the approximations
made in the model we consider them to be negligible.
Thus the random alloy will be stabilized by the entropy
contribution to the free energy at practical temperatures.
Furthermore, even if the ground state is an ordered struc-
ture at low temperature, this structure may never be at-

tained because the kinetic barriers involved in the trans-
formation are too great to be overcome at low tempera-
ture. This is in agreement with the observation that Au-
Ag alloys are always disordered.

The alloying energies of the ordered alloys evaluated
for the Cu-Ag system are all positive, although the ener-

gy of the Cu3Ag L12 alloy is, within the limits of the
present model, zero. Similarly, the alloying energies of
disordered alloys are all positive. This implies that both
ordered and disordered alloys of copper and silver are for
all concentrations unstable with respect to the separation.
This is indeed observed for the solid state.

The situation is different in the Cu-Au system. The al-
loying energies of L12 Cu3Au and Au3Cu alloys, as well
as of the L lo CuAu alloy are lower than those of the cor-
responding disordered alloys and/or B2- and Y-ordered
alloys. Hence, these ordered structures are favored at
low temperatures over both the disordered phase and 82-
or Y-ordered structures, as observed. We have not at-
tempted to calculate the order-disorder transition tem-
peratures. These depend very sensitively on both the or-
dering energies and the treatment of the entropy, which
must incorporate possible short-range order in the disor-
dered state. However, we have evaluated the energy of
the —,'(110) antiphase boundary on the I111I planes in

Cu3Au, which is a more global quantity principally con-
trolled by the ordering energy. It was found to be 53
mJ m, which compares well with the experimental esti-
mates ' of 40-60mJrn

An interesting feature of the dependence of the alloy-
ing energy of disordered alloys on concentration is that
the minimum or maximum is displaced away from the
50%-50% mixture in the case of Cu-Ag and Cu-Au al-
loys. In calculations this is replicated for the Cu-Ag al-
loys when using the LCSM but not the HCSM approxi-
mation, which suggests that this phenomenon is related
to the relaxation. In this case the peak is displaced to-
ward Ag-rich alloys and this can be understood in terms
of the size difference between the atoms. The effect of
large Ag atoms being forced into small spaces between
Cu atoms is reduced by the relaxation more than when
small Cu atoms are placed in between larger Ag atoms.
The displacement of the rninirnum towards Au-rich Cu-
Au alloys can be understood in the same terms, but it is a
weaker effect and the LCSM approximation reproduces it
only marginally. No such effect occurs in Au-Ag alloys,
where there is a negligible size difference between the two
elements.

Alloying behavior in noble-metal alloys has recently
been investigated using an augmented-spherical-wave—
(ASW-) based density-functional-theory model to calcu-
late ground-state energies and a cluster-variation method
to investigate the entropy effect on the order-disorder
phase transition. While our model cannot be expected
to reproduce these results quantitatively, qualitatively it
gives very similar results to these more fundamental cal-
culations. This encourages us to believe that it will be
su%ciently accurate in calculations which are beyond the
scope of ab initio methods, such as studies of extended
defects in which atomic relaxations need to be fully ac-
counted for.
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FIG. 2. Concentration dependence of the lattice parameter in
random alloys. Calculations: solid curves. Experiment: open
circles. 2.0
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B. Lattice parameters and elastic constants

The calculated dependences of the lattice parameters of
the disordered alloys studied are shown in Fig. 2 as solid
curves. These dependences exhibit only small deviations
from Vegard's law, and comparison with available experi-
mental data, which are also shown in this figure, reveals
that the sense of these deviations agrees with these data.
These curves are derived from a quintic polynomial fitted
to the results of the molecular-statics calculation. The
lattice parameter is insensitive to the method used to de-
scribe the alloy —TSM, LCSM, and HCSM approxima-
tions lead to very similar curves.

The concentration dependences of the elastic constants
of the disordered alloys were calculated for Au-Ag and
Cu-Au systems using the LCSM approximation, and
these are shown in Figs. 3(a) and 3(b). Since no solid
disordered Cu-Ag alloy exists, calculations were not
made for this system. It is shown in Appendix 8 that in
the framework of the many-body potentials employed
here a relationship exists between the pair-potential con-
tributions to the elastic constants of alloys, so that the al-
loy elastic constants could not be fitted independently.
No such fit was, of course, attempted here. However,
since no fitting is achievable in principle, a correct pre-
diction of the concentration dependence of the elastic
constants would represent a good confirmation of the va-
lidity of the potentials. Unfortunately, measurements of
elastic constants in alloys are very rare. From the alloys
studied here more extensive experimental data are avail-
able only for the Au-Ag system; they are shown in Fig.
3(a). However, these measurements have been made at
high temperatures, while the fitting of potentials for both
pure metals and alloys was carried out for the case of 0
K. For this reason the experimental data shown in Fig.
3(a) are somewhat lower than the calculated values even
for pure Au and Ag. Nevertheless, this comparison
demonstrates that both the values of the elastic constants
and their concentration dependence are well reproduced
by the constructed potentials. For Cu-Au the only avail-
able data are for the 3:1 disordered alloy and these are
in agreement with calculations, even though the measure-
ments were again carried out at high temperatures.
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FIG. 3. Concentration dependence of elastic constants in
random alloys: (a) gold-silver and (b) gold-copper. Calculated
values: solid curves. Experiment: open circles.

C. Isolated substitutional impurities

Using constant-pressure molecular-statics calculations
we evaluated the energy associated with a single substitu-
tional impurity atom in a host of another element. This
quantity is useful when examining various segregation
properties. It has also been commonly used in fitting of
empirical potentials. By comparison, with extrapolated
data from molecular-statics calculations we show that the
error introduced by assuming that data from a 10% con-
centration can be applied to calculations of truly isolated
impurities is quite significant. The calculated energies of
isolated substitutional atoms, both before and after relax-
ation of the host lattice, and data extrapolated from the
molecular-statics curves at 10% concentration (the
lowest experimentally published data) are presented in
Table II. The extrapolation was taken from a quintic po-
lynomial fit to the molecular-statics data which were con-
strained to pass through a mixing enthalpy of zero at 0%
and 100% concentrations (cf. Fig. 1). A discrepancy of
up to 15% arises between the extrapolation of the
molecular-dynamics data and the calculation carried out
for a completely isolated impurity. This shows that even
at 10% concentration the interaction between impurities
is not negligible.
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TABLE II. Calculated energies of isolated substitutional impurities, with and without relaxation and
extrapolated from molecular-statics calculations.

Impurity

Cu
Ag
Au
Ag
CU

Au

Host

Ag
Cu
Ag
Au
Au
Cu

Relaxed (eV)

0.199
0.098

—0.211
—0.199
—0.298
—0.280

Unrelaxed (eV)

0.348
0.190

—0.187
—0.191
—0.188
—0.156

Extrapolated (eV)

0.187
0.113

—0.184
—0.178
—0.255
—0.249

VI. CONCLUSIONS

The intention of this work was to show that a simple
extension of the FS potential scheme can lead to reason-
able potentials for noble-metal alloys that can be used in
confidence in studies of extended defects such as grain
boundaries and dislocations in these alloys. Throughout,
we have adhered to a philosophy of minimizing the
amount of empirical refitting and keeping the functional
forms as simple as possible. We were aware that
compromising this commitment to simplicity, while ena-
bling our results to look more impressive, would have
been a pointless exercise because of the inherent simplici-
ty of the FS scheme. As shown here the model describes
three distinct types of alloying behavior (ordering, ran-
dom alloys, and separation) with only a small amount of
empirical refitting. Hence, the constructed potentials ap-
propriately describe the structural stability of the alloys
as a function of concentration and thus adequately reflect
the basic features of the phase diagrams of the alloys
studied. At the same time they ensure the mechanical
stability of the alloys, leading to correct changes of the
lattice parameter and elastic constants with alloying.
Both these features are necessary precursors for applica-
bility of these potentials to studies of defective structures
where large local deviation from ideal states in both
structure and composition are present.

We have also shown that local relaxation is of
paramount importance, especially when there is a large
difference between atomic sizes of individual species.
This will be even more important in defective structures.
These features are likely to be reflected appropriately by
potentials in whose construction the relaxations were ful-

ly incorporated. Also, the differences between the vari-
ous methods of calculating random-alloying energy show
the importance of sampling all possible local
configurations; this is especially shown in the differences
between the truly random (HCSM) and the average envi-
ronment (TSM) models. Both of these models describe
the relaxation in the same way, so that the errors in-
volved in that approximation, while large, should cancel
out when the two models are compared: the only
difference comes from the mixing. The significance of the
mixing is a feature of the many-body potentials; in a
pair-potential model the TSM and HCSM are identical.

We have thus derived a model which maximizes the
advantages of many-body empirical potentials over

electronic-structure calculations —the speed at which in-
teratomic forces can be calculated, the transparency of
the results for interpretation, and the transferability of
the energy functions. These potentials should prove use-
ful in applications where atomistic modeling of electronic
structure is impractical. The importance of local relaxa-
tion and relative unimportance of detailed electronic
structure, which have been demonstrated in this paper,
suggest that in studies of defective structures more reli-
able results may be obtained from relaxed molecular-
statics or -dynamics calculations than from single-
configuration electronic-structure calculations.
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APPENDIX A: POTENTIALS FOR COPPER,
GOLD, AND SILVER

The potentials for gold and silver are the same as those
published originally by Ackland et al. ' However, the
copper potential used here is the potential rederived for
use in molecular-dynamics simulations of radiation dam-
age. The new form eliminates the "bump" in the pair-
potential between second and third neighbors. The fitting
procedure was identical to that described by Ackland
et al. ' except for the choice of knot points in the splines.
The extrapolation of the potential to small interatomic
separation gives good agreement with the so-called
universal equation of states within the range for which
that model has been shown to be reasonable.

The forin of the potentials is given by Eq. (3) in which
rk", Rk"", and R; are in units of the corresponding lat-

0
tice parameters. The lattice parameter a (A), coefficients

ai,
"" and Ak"" (eV), and knot points rk"" and Rk"" (in

units of a) are given in Table III.
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TABLE III. Parameters of many-body potentials for copper, gold, and silver.

al
ap

Q3

Q4

a,
Q6

Al
A2

Copper

3.615
61.735 258 61

—108.184 678 00
57.000 539 48

—12.887 965 78
39.163 81901
0.000 000 00

10.037 18305
17.063 632 99

Silver

4.086
20.368 404

—102.360 75
94.312 77

—6.220051
31.080 889

175.560 47

1.458 761
42.946 555

Gold

4.078
29.059 066

—153.147 79
148.178 81

—22.205 08
72.714 65

199.262 69

21.930 125
284.996 31

i}'
l

T2

T3

Tg

P5

T6

1.225
1.202
1.154
1.050
0.866
0.707

1.225
0.990

1.224 744 9
1.154 705 4
1.118006 5

1.000 000 0
0.866 025 4
0.707 106 8

1.224 744 9
1.000 000 0

1.224 744 9
1.154 705 4
1.118006 5
1.000 000 0
0.866 025 4
0.707 106 8

1.118006 5

0.866 025 4

APPENDIX B: CONSTRAINTS IMPOSED ON ELASTIC CONSTANTS

For pure fcc materials the elastic constants are within the FS scheme given as follows:

QoC„=2 g
J

QoCi2 =2 g
QoC44 =2 g

J

V"(R 2)x4 2@
—i/2 g @"(R2)x 4++—3/2 'g q)'(R 2)x 2 2

J . J

V~i(R 2)x 2y2 2@
—1/2 g @~~(R2)x2y2 @

—3/2 'y @i(R2)x2
'

2
i i i s i o i i

J . J

V~~(R 2)x2y2 24 1/2 g 4 (R 2)x2y2

J

(Bl)

where the coordinate axes x and y are parallel to the cube axes and the summations extend over all the neighbors of the
atom i at the origin. go= g 4(RJ }, Qo is the atomic volume, and V and 4 are regarded as functions of R . For a
derivation of these equations, the reader is referred to Ref. 17. These equations can be extended to the alloys assuming
homogeneous strain by summing over all possible local configurations as in the LCSM or HCSM:

Ckj g P &a c„"ca" (Ckic„+Ckrcii ), (B2)a, n

where

QoC,", =2
i

QoC,"2 =2 g
J

QoC44 =2 g
J

V„z (RJ )xj 24'o ' g. 4'q—r (R~ )xj +Co g4'qr (RJ )x~
J J J

J . J

V (R2)x2y2 24 i/2 y @ (R 2)x2y2 @ 3/2 'y 4 (R 2)x2

J . J

V„"z (RJ )xjyj 24'o g4 —
az (RJ )xjyj

J J

(B3)

Analogous equations apply for C», C,z, and C44. T is the subscript identifying species of the atom at site j and

@o=X,@~r«,').
If we define Ck& to be the pair-potential contribution to the elastic constants, then it follows froin Eqs. (B2) and (B3}

that C ]2
=C~. This constraint is essentially the same as the Cauchy relations that inhibit pair potentials. We assume

here that 4„s=+4„„4zz,and thus the contributions from the many-body term to the alloy elastic constants are
determined entirely by the pure-material fit. Hence, if we were to use alloy elastic constants in fitting V„z (which we do
not), we would find that there were only two independent terms to which to fit (for random alloys). This constraint is
even stronger in the case of the 1.1z structure, where, unless the interactions extend beyond fourth neighbors, the con-
tribution from the (fittable) term Vzz is Cii —C,2 =C44. A simultaneous least-squares refitting of all alloy and pure-
material constants could, of course, be done to produce a best fit to the elastic constants. This method has been adopt-
ed, for example, in work on Ni3A1.
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