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Intermetallic compounds which are ductile at high temperatures are of great technologica1 in-

terest; however, purely experimenta1 searches for improved intermeta11ic materials are time consum-

ing and expensive. Theoretical studies can shorten the experimental search by focusing on com-

pounds with the desired properties. While current ab initio density-functional calculations cannot
adequately determine materia1 properties at high temperature, it is possible to compute the static-
lattice equation of state and elastic moduli of ordered binary compounds. Known correlations be-

tween equilibrium properties and high-temperature properties such as the melting temperature can
then be used to point the way for experiments. We demonstrate the power of this approach by ap-

plying the linear augmented-plane-wave method to the calculation of the equation of state and all of
the zero-pressure elastic moduli for SbY in the B1 (NaC1) phase, CoAl and RuZr in the B2 (CsC1)

phase, and NbIr in the L 10 (Au-Cu I) phase. The calculated equilibrium lattice constants are a11

within 2% of the experimentally determined values. The only experimentally known elastic moduli
in these systems are the bulk and shear moduli for polycrysta11ine SbY, CoA1, and NbIr. The pre-
dicted bulk moduli are with 7%%uo of experiment. Theory enables us to place limits on the experimen-
ta1 po1ycrystalline shear modulus. The experimenta1 shear moduli of SbY and CoA1 are within our
theoretica1 bounds, but the experimenta1 shear modulus of NbIr is 35% smaller than our lower
bound. We stress that in the case of CoAl our calculations provided a prediction for the bulk and
shear moduli that were subsequently confirmed by the experiments of Fleischer. Wt; also discuss the
band structures and electronic density of states for these materials.

I. INTRODUCTION

New technological applications demand the increased
use of metals which are strong, stiff, and ductile at high
temperatures. Ideally, these metals would also be light in
weight. Stable materials which have the desired proper-
ties are not the single crystals theorists favor. Intermetal-
lic alloys are complex structures, with defects, impurities,
and grain boundaries helping to stabilize the material and
determine its physical properties. At the present time,
theory is unable to dea1 with real systems of this type.
One role of computational physics is to help determine
materials worthy of experimental attention, and to indi-
cate possible candidates for substitutional alloying.

Our approach is to perform calculations of the elec-
tronic structure of various ordered intermetallic alloys
and from them determine the equation of state and the
elastic moduli. Using known empirical correlations,
these properties may then be related to other interesting
physical properties such as the melting temperature' and
the ductility. The electronic-structure calculations are

performed using the linear augmented-plane-wave
(LAPW) method. No shape approximations are made to
the potential. This method is very accurate and
represents the state of the art in band-structure calcula-
tions. We applied the LAPW method to obtain the self-
consistent electronic structure, equation of state, equilib-
rium lattice constants, and elastic moduli for several or-
dered binary intermeta11ic compounds. We present our
work on the SbY (Bl structure), CoAl (82 structure),
RuZr (82 structure), and NbIr (Llo structure) systems.
In addition, we use the correlations discovered by Fine
et al. ' to predict the melting temperature. We em-

phasize that all of the structural parameters and elastic-
moduli calculations are of the first-principles type; that is,
the crystal structure and the elemental atomic numbers
are the only inputs.

Extension of this process to more complicated materi-
als is dificult. The LAPW method is computer-time in-
tensive, and for compounds with more than ten atoms per
unit cell its use becomes prohibitively expensive given the
capabilities of present-day computers. We may, however,
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use the information obtained in these simple systems as
input for modeling larger systems. For example, the
equations of state and elastic moduli determined here can
be used as input to determine the parameters needed to
do embedded-atom calculations. This is particularly im-
portant in systems such as RuZr, where no single-crystal
measurements of elastic constants have been performed.

The paper is organized as follows. In Sec. II we de-
scribe the details of the LAPW calculations and the
determination of the equilibrium lattice constants. In
Sec. III we present the method of evaluation of the elastic
constants. In Sec. IV we discuss our predictions for the
mechanical behavior of the intermetallics SbY, CoA1,
RuZr, and NbIr, including comparison with experiment.
The electronic structure of these intermetallics is exam-
ined in Sec. V. In Sec. VI we summarize our results.

II. TOTAL-ENERGY CALCULATIONS:
EQUILIBRIUM LATTICE DETERMINATION

The equilibrium structural parameters were deter-
mined using total energies obtained by the self-consistent
full-potential linear augmented-plane-wave (LAP W)
method of Andersen, using the program of Wei and
Krakauer. This procedure has been previously tested on
the intermetallic TiA1, where the computed lattice con-
stants were found to be in good agreement with experi-
ment. Following the usual procedure, we divided the
electronic states of the system into core, semicore, and
valence bands. The core eigenstates were calculated us-

ing a fully relativistic spherical integration routine, while
the semicore and valence states were found by diagonaliz-
ing the Hamiltonian using the LAPW basis functions and
the semirelativistic (averaged spin-orbit interaction) ap-
proximation. To allow more variational freedom in each
band, the valence and semicore states were diagonalized
separately. The nominal atomic states in the valence and
semicore windows are listed in Table I. Brillouin-zone in-

tegrals were approximated using the special-k-points
method of Monkhorst and Pack, with slight
modifications as outlined below. Table I lists the number
of k points used in each window for the equation-of-state
calculations. We found that these selections of k points

B ( V) = VE"(V) .

For the calculations in this pa er, we chose N =3. Fit-
ting to higher powers of V / (where possible) did not
significantly change the results.

The tetragonal L lo phase of Nblr (see Fig. 1) has two
lattice parameters, a and c, with primitive vectors

a, =(-,'a, —
—,'a, O),

az=( —,'a, —,'a, O),

a3=(0,0,c),
and basis vectors

(3)

bi = (0,0,0)

bz= —,'(a, +az+a3)=( —,'a, O, —,'c) .
(4)

provided satisfactory convergence of the equation of
state. The Kohn-Sham single-particle potentials were
found with use of the Hedin-Lundqvist parametrization
of the local-density approximation (LDA) to Hohenberg-
Kohn density-functional theory. Iteration was stopped
when the total energy changed by less than 0.01 mRy be-
tween iterations.

We began the determination of the equilibrium proper-
ties of the intermetallics by calculating the total energy as
a function of the unit-cell volume for the cubic materials
and as a function of the volume and c/a for the tetrago-
nal Llo structure. The number of points used in each
case may be found in Table I. The equilibrium structures
were determined by making a least-squares fit of the total
energy versus the lattice parameters to a model equation
of state. For the cubic intermetallics SbY, CoAl, and
RuZr we used the form proposed by Birch

N

g( V) y & V
—zn/3

n=0

where V is the volume of the unit cell. The minimum-

energy volume was found by minimizing (1), and the
equilibrium bulk modulus was determined from the
definition

TABLE I. Numerical parameters used for LAP& equation of calculations.

Structure

Symmetry
Number of lattice

constants computed
Number of windows
Number of

special k points
[valence- (semicore)]

Valence states

Semicore states

SbY

cubic
5

2
28 (2)

Sb 5p
Y 4d, 5s

Sb 4d, 5s
Y 4s, 4p

CoA1

B2

cubic

1

10

Co 3d, 4s
Al 3s, 3p

Compound
RuZr

cubic
5

2
20 (10)

Ru 4d, 5s
Zr 4d, 5s

Ru 4s, 4p
Zr 4s, 4p

NbIr

L10

tetragonal
35

2
30 (6)

Nb 4d, 5s
Ir 5d, 6s

Nb 4p
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4L structural parameters and elastic moduli can also be used
as a database to determine parameters for model systems
such as the embedded-atom method. Methods such as
this have been used to consider defects and cracks in met-
als. Thus our calculations can be extended in ways far
beyond the direct capabilities of the method.

We already have sufficient data to determine the bulk
modulus as a function of volume, Eq. (2). We calculate
B ( V) by doubly differentiating the Birch fit (1),
remembering that, for the tetragonal NbIr system, E( V)
must be evaluated at the c/a ratio which minimizes the
energy.

For later use, we now present the relationship between
the bulk modulus and the elastic moduli C; . For the sys-
tems considered here, "

FIG. l. The L 10 structure of NbIr. The niobium atoms are
represented by solid circles, the iridium atoms by shaded circles.
The distances a and c describe the lattice in terms of the primi-
tive vectors (3), while the distances a' and c describe the lattice
in terms of the primitive vectors (16).

and

B =
—,'(C„+2C,2) (cubic lattice)

(C„+C)2)C33 2C/38 = (tetragonal lattice) .
» 12 33 13

(6)

Obviously, a fit to the simple formula (1) at fixed c/a is
not adequate. To overcome this difficulty, we did LAPW
calculations at five different c/a ratios for each volume.
At each volume we fit the energy to a third-order polyno-
mial in c/a. Since the equilibrium c/a ratio for NbIr is
near unity, these polynomials always had local minima
near c/a =1. The precise value of this local minimum
was denoted the c/a ratio for this volume, and the corre-
sponding energy was used to determine the energy-
versus-volume equation of state. This was then fit to the
Birch form (1), and from there the equilibrium volume
and bulk modulus were found. The remaining parameter
c/a was determined by fitting to the Birch-like form:

N

(c/a)(V)= g z„V
n=0

where (c/a)( V) is the value of c/a which minimizes the
energy at the fixed volume V.

III. TOTAL-ENERGY CALCULATIONS:
ELASTIC-MODULI COMPUTATIONS

The LAPW method allows total-energy calculations to
be done for arbitrary crystal structures. We can there-
fore apply small strains to the equilibrium lattice, deter-
mine the resulting change in the total energy, and from
this information deduce the elastic moduli. The calcula-
tion of the rnoduli allows us to garner information about
nonequilibrium properties fro.-- our simple initial system.
First of all, of course, the elastic moduli give direct infor-
mation about the stiffness of the crystal, and AE's depar-
ture from quadratic behavior can give information about
the ductility. In addition, using the correlations
discovered by Fine et al. , we can use the equilibrium
elastic moduli to make a rough estimate of the melting
temperature. Our determination of the equilibrium

The remaining elastic moduli require additional calcu-
lations beyond the simple equation of state. We deter-
mine linear combinations of the C;. by straining the crys-
tal and relating the change in energy as a function of the
strain to the elastic moduli. ' ' Following the notation
of Ref. 12, we distort the lattice by applying a small
strain which transforms the lattice vectors a according to
the rule

e, 0

0 e1

0 0 (1+e ) —!

with energy change

bE=3V(C„—C,~)e, +0(e, ), (10)

where V is the volume of the unit cell, and an orthorhom-
bic shear,

a'=(I+V) a,
where a' (a) is a matrix containing the components of
the new (old) lattice vectors, I is the 3 X 3 identity matrix,
and e is a matrix containing the strain components.
There are many distortions which can be used to deter-
mine the elastic moduli. Ideally, we would choose the
shears which minimize the amount of computer time and
memory needed to do the calculations. Thus we will tend
to choose highly symmetric strained lattices, since this
limits the number of special k points needed to obtain ac-
curate total energies.

A cubic crystal has three independent elastic moduli.
We may consider them to be the bulk modulus (6),
C» —C,2, and C44. For the calculation of the tetragonal
shear modulus C» —C,2, we considered two possible
strains, a volume-conserving tetragonal strain,
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e) 0
—e,

0 e, /(1 —e21 )

with energy change

EE(e, )=dE( —e, ) = V(C» —C,2)e, +O(e, ) . (12)

biE(e&) =LE( —e6)= ,' VC~—es+O(es) . (14)

Like (12), the energy associated with the shear (13) is
even in the strain parameter.

The tetragonal Llo structure has six elastic moduli.
The moduli C»+C», C&3, and C33 could, in principle,
be determined from the data already taken in finding the
equation of state. One example of this is the calculation
of the bulk modulus (7) using Eq. (2). Another example is
the modulus

Ks„=—,
' [2(C11+C13}+C33+4C13], (15)

The higher-symmetry tetragonal shear (9) allows the
use of fewer special k points than the orthorhombic shear
(11) in the self-consistent energy calculations. This is
more than offset by the fact that the energy change {12)is
an even function of the strain e„halving the number of
total-energy calculations which must be done to obtain
enough information to determine the elastic modulus.
We determined C» —C,2 for SbY and RuZr by use of the
strain (11),while C» —C,3 for CoA1 was found using (9).

The remaining independent modulus, C44, was found
by shearing the crystal with the monoclinic strain,

0 —,'e, 0
e= —,'e, 0 0 (13)

0 e6/{4—e26)

The energy associated with this strain is

bound on the bulk modulus. ' Unfortunately, as we shall

see below, the difference Ks„(V) B—( V) is smaller than

the estimated error in our calculations, so that we cannot
use (7) and (15) to separate the contributions of the indivi-

dual C;~. We will therefore determine all six elastic
moduli by calculating the change in total energy due to a
lattice strain (8). The specific strains used to determine
the specific moduli are listed in Table II. Whenever pos-
sible, the strains are chosen so that the change in energy
is even in the strain.

The elastic moduli listed in Table II are calculated rela-
tive to the crystal structure given by (3) and (4). This
structure may be considered an fcc Nb lattice with every
other (001) plane of Nb atoms replaced by Ir atoms. Al-

ternatively, we can consider the Llo structure a body-
centered-tetragonal lattice, with alternating planes of Nb
replaced by Ir. In this case the lattice can be represented

by the primitive vectors

a, =(a', 0,0),
a3=(0,a', 0),
a3=(0,0,c),

and the basis vectors

bi =(0,0,0),

(16)

(17)

C» +C» —C) ) +C», C» —C» —2C66,

C66= —,'(C» —C12), C13=C13

b3= —,'(a, +a3+ a3}= ( —,'a', —,'a', —,'c},
where a'=a/~2, rather than by (3) and (4). This lattice
can be obtained from (3) and (4) by making a 45' rotation
about the z axis. Since the C;J are actually components of
a fourth-order tensor, the components in the old
(unprimed} and new (primed) frames are related by

C33=C33, C~=C~ .
which can be determined by considering the energy as a
function of volume at fixed c/a, and is, in fact, an upper This choice of axis is standard for a tetragonal structure.

TABLE II. Strains and elastic moduli for the tetragonal L 10 phase of NbIr.

Strain Parameters (unlisted e; =0)

e2=e,
e2 =e& e3 =(1+e& ) —1

e3

e, =[(1+x)/(1—x)]'~ —1, ez = —e, /(1+e, )

eg =e4, e3 =e4/4
e6, e

&

=e2 =(1+e6/4)' —1

bE/V [to O(e )]

(Cl 1 +C[2 )e 1

(Cl l + C[2+2C33 4C» )e ]

2 C33e31 2

C12 )x
C44e4

2

l 2

Strain matrix:

e,

—,e61

2e5
1

—,e6 —,e5I 1

e2 —,e4l

—,e4 e3l
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M

p(e])= g c e]
m=0

(19)

Comparing (19}to the energy expansion (12), we see that

C» —C,2=c, /V . (20)

A rough estimate of the error can be made by noting how
c& changes with M.

Since single crystals of these intermetallic compounds
have not been produced experimentally, experimental
determinations of the elastic moduli used polycrystalline
samples. These measured elastic moduli are averaged
values of the single-crystal C;-. If we assume that the
polycrystalline sample is homogenous and isotropic, we
can use elasticity theory to place bounds on the possible
experimental measurements of the bulk modulus and the
shear modulus. ' For the cubic lattices, the averaged
bulk modulus is identical to the single-crystal bulk
modulus. For the tetragonal 1.1o phase of NbIr, howev-
er, the isotropically averaged bulk modulus is bounded
from above by the Voigt approximation.

Bv =
—,'(2C]] +C33+2C]2+4C]3 ) (21)

and from below by the Reuss approximation, ' which is

Doing Brillouin-zone integrations in strained lattices
requires special attention to the choice of k points. Our
general scheme for generating special k points is taken
from the work of Monkhorst and Pack. Problems can
arise with this method, however, when the primitive vec-
tors which are used to generate the k points are not or-
thogonal. In the limit of zero strain e, we can group the
special k points into "stars" which are equivalent under
the full set of symmetry operations for the lattice. If the
star is not complete (i.e., there are other k points, not in
the original list, which are equivalent under the full set of
symmetry operations but not under the reduced set of the
strained lattice), then the k-point-integration mesh does
not recognize anything special about the zero-strain lat-
tice. As a result, the computed stress need not vanish at
zero strain, and the values deduced for the elastic moduli
will be incorrect. The solution is to generate a set of k
points for the high-symmetry lattice, enlarge the set to
find all k points which are identical with any k point in
the original set under any transformation in the high-
symmetry space group, and then group the k points
which are identical under the lower symmetry of the
strained lattice. The resulting k points have the proper
symmetry at zero strain, and stress is guaranteed to van-
ish at zero strain. When the primitive vectors are orthog-
onal, the stars are complete, so in this paper only the fcc
lattice of SbY requires this treatment.

After choosing the strain matrix e, determining the ap-
propriate space-group operations, and selecting a
special-k-point mesh, we are finally ready to calculate
elastic moduli. As an example, we outline the process
used to determine C» —

C&2 using the orthorhombic
strain (11). First, we use the LAPW method to calculate
E(e, ) for several strains e„ including E(e, =0), the en-

ergy at zero strain, at fixed volume. By (12), b,E is even
in e „sowe next fit hE (e, ) to a polynomial in e „

identical to the single-crystal bulk modulus (6).
An isotropic material has only one shear modulus, usu-

ally denoted G. In an isotropic solid, '

G =C~= 2«» —C]2) . (22)

We can compare our calculated shear moduli to experi-
ment using the other bounds discovered by Voigt and
Reuss. For a cubic crystal, 6 is bounded from above by'

Gv =
—,'( C]]—C]2+3C~ ),

and from below by'

(23)

G] —
—,', (2C]]+C33 C]2 —2C]3+6C~+3C66),

while the Reuss approximation (lower bound) is'

G]] =15/(8s]]+4s33 4s, 2
—8s»+6s~+3s66} .

The s;J are the compliance constants"

s]] +s]2 =C33/C, s]]—s]2 = 1/(C]] —C]2 ),
s]3 C]3 /C, s33 (C]]+C]2 )/C

s44 = 1/C44 s66 = 1/C66

(25}

(26)

(27)

where

C =C»(C» +C,2 )—2C (28)

IV. EQUATION OF STATE
AND ELASTIC-MODULI RESULTS

We used the LAPW method described above to calcu-
late the equation of state and equilibrium lattice parame-
ters of SbY in the Bl phase, CoAl and RuZr in the B2
phase, and NbIr in the tetragonal L lo phase. As summa-
rized above, we found the equation of state by fitting the
energies E( V) to the Birch equation (1) with N =3. The
Birch fit works extremely well, giving a rms error of less
than 0.05 eV for each of the four crystals. As samples of
our work we show the equation of state of SbY and the
Birch fit to it in Fig. 2, and the energy as a function of
volume at fixed c/a for NbIr in Fig. 3. As can be seen in
Fig. 3, the minimum-energy c/a value is close to 0.968
for the entire range of volumes shown.

Table III presents our results for the equilibrium lattice
constants of SbY, CoA1, RuZr, and NbIr. The computed
lattice constants, which neglect zero-point motion and
thermal expansion, are within 2% of the experimental
lattice constants' ' for all of the crystals. This error is
on the same order as found in previous LAPW calcula-
tions. We conclude that the local-density-approximation
(LDA) is indeed able to determine the equilibrium lattice
constants of these materials to very good accuracy.

We have also calculated all of the independent elastic
moduli for the four intermetallic alloys at the lattice con-
stants listed in Table III. Although the moduli are

G]] =5(C]]—C]q)C~/[4C~+3(C]] —C]2)] . (24)

Analogous expressions hold for the tetragonal lattice,
where the Voigt approximation (upper bound) is'
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Lattice Constant (A)

6.2 6.3
180 190

I

200
V (a.u. )

210 220

FIG. 2. The equation of state of SbY in the B1 (rocksalt)
phase. The circles represent the calculated energies, and the
solid line is a third-order Birch fit to the data. The LAPW ener-

gy has been shifted so that the minimum lattice energy is at 0
eV.

volume dependent, we expect the change in modulus
from the LDA equilibrium volumes to the experimental
volumes to be small. In Fig. 4 we plot the results of a
typical calculation, using the monoclinic strain (13) to
determine C44 for CoA1. Fits of the data to polynomials
of order M =1, 2, 3, and 4 in e6, as outlined in Sec. III,
give C44=1.24, 1.33, 1.32, and 1.26 Mbar, respectively.
In light of this analysis, and allowing for numerical noise,
we assign C44=1.30+0.05 Mbar. The other moduli are
determined in a similar manner. Table IV summarizes
our results.

We may now compare our numbers to experiment.
The moduli in Table IV are our predictions for perfect
single crystals. We used the Voigt and Reuss bounds
[Eqs. (21)—(28)] to place bounds on the polycrystalline
bulk modulus B and shear modulus G. Our predictions
are compared to the available experimental data ' ' in
Table V. It should be emphasized that our theoretical
values for the bulk and shear moduli of CoA1 were made
before we obtained the experimental data. Our predic-
tions for the bulk moduli are in excellent agreement with
experiment, as are the shear moduli of SbY and CoAl.
The odd point is the shear modulus of NbIr, which is ap-
proximately 15% lower than our lowest estimated bound
on G. This is most likely caused by the fact that the ex-
perimental sample was 52 Jo Nb-and 48% Ir.

The computed values of C,-. may also be used to test
the correlation between elastic moduli and melting tem-

FIG. 3. Energy vs volume at fixed c/a for NbIr in the tetrag-
onal L 10 phase. The symbols represent ab initio data points,
while the lines are third-order Birch fits [Eq. (1)] at fixed c/a.
Notation: The diamonds and solid line represent c/a =0.9, the
circles and dashed line c/a =0.95, the triangles and dotted line
c/a =0.968, the pluses and dashed-dotted line c/a =1.0, and
the x's and dashed-double-dot line c/a = 1.05.

(29)

T =354 K+(450 K/Mbar)[ —,'(2C„+C33)]+300K .

(30)

TABLE III. Equilibrium lattice constants —comparison with

experiment. (RT denotes room temperature. )

SbY
Compound

CoA1 RuZr NbIr

Theory
a (A)
c(A)
c/a

Expt. (RT)
a(A)
c(A}
e/a

6.12

6.16'

2.80

2.86b

3.22

3.253'

3.99
3.86
0.967

4.027
3.863
0.9578

'Reference 17, p. 807.
Reference 18; Ref. 19, p. 109.

'Reference 19, p. 374.
"Reference 19, p. 296.

perature discovered by Fine et al. ' For cubic materials
Fine et al. found that the data comparing melting tem-
peratures and the equilibrium value of C,, could be fitted
by the straight line
T =553 K+(591 K/Mbar)C»2300 K,
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TABLE IV. Calculated elastic moduli.

Lattice constant
a (A)
c(A)

SbY

6.11 2.862

Compound
RuZr

3.22

NbIr'

3.99
3.86

3.99
3.86

Bulk modulus (Mbar)
Cl 1 (Mbar)
Ctp (Mbar)
C,3 (Mbar)

C33 (Mbar)
C~ (Mbar)

C66 (Mbar)

'Lattice parameters in Eq. (3).
bLattice parameters in Eq. (16).

0.68+0.01
1.75+0.02
0.15+0.01

0.255+0.01

1.57+0.01
2.57+0.04
1.07+0.05

2.25+0.10
3.72+0. 10
1.52+0. 10

1.30+0.05 0.78+0.02

3.2+0.3
4.3+0.2
2.7+0.2
2.5+0.2
4.9+0.2

1.75+0.05
2.3+0.1

3.2+0.3
5.8+0.2
1.2+0.2
2.5+0.2
4.9+0.2

1.75+0.05
0.8+0. 1

T =607 K+(930 K/Mbar)8+500 K . (31)

LJ
CI

Another correlation' is that between the bulk modulus of
a cubic metal and its melting temperature,

The "errors" listed above represent the 68% confidence
level as determined from Figs. 1, 2, and 4 of Ref. 1.

In the last section of Table V we use our calculated
elastic moduli to calculate a melting temperature for each
of the intermetallics. The C;; used for L10 NbIr are those
associated with the lattice described by the primitive vec-
tors (16) and the basis vectors (17). The first set of
theoretical calculations are based on the correlations (29)
or (30), while the second set are based on (31). The "er-
ror" terms include both the uncertainties included in
(29)—(31), as well as the uncertainties in our elastic-
moduli calculations. Except for SbY, the difference be-
tween the predicted and experimental melting tempera-
tures is no greater in magnitude than twice the "error."
Since our predicted moduli are in good agreement with
the experimental data for SbY, it is clear that the failure
is in the correlations (29) and (31), not in our calculation
of the elastic moduli. The correlations (29)—(31) are use-
ful in guiding experiments, but obviously do not absolute-
ly determine the melting temperature.

O
V. ELECTRONIC STRUCTURE

OF THE INTERMETALLIC ALLOYS

0.00 0.0l 0.02
2

e6
0.03 0.04

FIG. 4. The change in the total energy of CoAl under the
monoclinic strain (13), used to determine C~. The circles are
the ab initio values. The solid line is a linear fit to the data, and
the dashed line is a quadratic fit. The third- and fourth-order
polynomial fits (not shown) are nearly identical to the quadratic
fit.

Although the main purpose of this paper is to calculate
equilibrium lattice parameters and elastic constants, in
this section we discuss the energy bands and densities of
states. The level of accuracy required for these quantities
is significantly lower than for the total-energy determina-
tions. For this reason we use the equilibrium lattice pa-
rameters from our LAPW total-energy calculations to
perform a final set of calculations for the cubic materials
using the faster Slater augmented-plane-wave (APW)
method in the muffin-tin (MT) approximation. In all oth-
er respects (the scalar-relativistic approximation, Hedin-
Lundqvist exchange, etc.) the APW calculations were
done in the same way as the LAPW calculations. The
APW code has the advantage that it is symmetrized and
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TABLE V. Comparison of elastic moduli with experiment.

Bulk modulus (Mbar)
Expt.
Theor. upper limit
Theor. lower limit

Shear modulus (Mbar)
Expt.
Theor. upper limit
Theor. lower limit

Melting temperature (K)
Expt.
Theor. [Eqs. (29) and (30)]
Theor. [Eq. (31)]

'Reference 20.
Reference 21.

'Reference 22.

0.66'
0.67+0.01
0.67+0.01

0 405'
0.460+0.01
0.310+0.01

2580'
1590+310
1240+510

Compound
CoA1

1.62+3%b
1.57+0.01
1.57+0.01

1.14+3%
1.08+0.04
1.01+0.04

1700'
2070+310
2070+510

RuZr

2.25+0. 10
2.25+0. 10

0.91+0.03
0.88+0.03

2100'
2720+360
2650+590

NbIr

3 01'
3.2+0.3
3.2+0.2

0.993'
1.55+0.2
1.35+0.2

2200
2830+390

conveniently labels the symmetry of each state. The den-
sities of states (DOS's) were calculated by the tetrahedron
method using interpolated eigenvalues and I components
of the MT charges found by a Fourier-series interpolation
that accounts for the symmetry of each state.

The MT approximation introduces a small error,
which should be negligible for the purpose of presenting
the DOS's in cubic metals. In addition, the LAPW and
APW methods use slightly different basis functions,
which may introduce small changes in the DOS. To
check the magnitude of these effects, we calculated the ei-

genvalues of SbY at the high-symmetry points I, X, 8',
and I., using both the APW and LAPW methods. We
shifted the potentials in both systems so that E+=0.
(The unshifted Fermi energy is 0.4005 Ry for the LAPW
calculation and 0.3834 Ry for the APW one. ) The shifted
eigenenergies are compared in Table VI. The symmetry
assigned to each APW state was determined by the sym-
rnetrized code. The LAPW symmetry was determined by
matching the muffin-tin charge for each I component of
the density of states with the corresponding APW state.
One sees that the APW and LAPW programs switch the

1 0

0.9

0 7

12
0.5 - 2S'

15

3'
3

2 ~

2'

13.0

11.0
5 9.0
2

7.0

0.3

0. 1

2'
3

3'

2'

5.03

3 04'

1.0

(3
CE
LLjz

—0. 1

—0.3

—1.0
—3.0

-5.0

—0.5
r ~ xz v q r. ~ r

-7 0

0
FIG. 5. The band structure along high-symmetry directions of the B1 phase of SbY at the lattice constant a =6.11 A, calculated

using the APW method. The dotted horizontal line represents the Fermi level.
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TABLE VI. Comparison of APW and LAPW eigenvalues (in

Ry) for SbY. -7, 0 -3.0

ENERGY feV)

1.0 5.0 9.0 13.0

State

EF=0 Ry
Eigen values

APW LAPW Difference

50. 0

25. 0

TOTE L DOS 4. 0

2.0

Ii
I ls
I as

I lq

—0.7331
0.0694
0.0852
0.1572

—0.7382
0.0571
0.0756
0.1237

—0.0051
—0.0123
—0.0096
—0.0335

0. 0

3.0

0.0

tea Sb

0.0

0.3

0.0

X)
X4
X3
Xs
X2

8'i

8'q
8'3

L)
L2
L3

—0.6446
—0.2158
—0.0483
—0.0393

0.2200

—0.6292
—0.1801
—0.1477

0.1770

—0.6240
—0.3089
—0.1152

—0.6531
—0.2144
—0.0380
—0.0532

0.1862

—0.6377
—0.1794
—0.1687

0.1700

—0.6313
—0.3151
—0.1363

—0.0085
0.0014
0.0103

—0.0139
—0.0338

—0.0085
0.0007

—0.0210
—0.0070

—0.0073
—0.0062
—0.0211

0
~pI

3.0
eg- Sb

0.0
30.0

0.0

30.0 tpo

0.0
30 0 ez Y

0.0
30 0

p Sb

0.3

0.0

2.0

0.0
2. 0

0.0

2.0

0.0

2. 0

A

0.0

3.0 .

0.0

0.0
0.3

0.0
0.3

order of the X5. and X3 states. Otherwise, there is good
agreement between the two methods, with the eigenval-
ues differing by no more than 0.03 Ry, and by no more
than 0.02 Ry for states below E~.

In Fig. 5 we show the energy bands of SbY in the 81
(NaCl) structure. The bands near the Fermi level (EF)
are predominantly a mixture of p Sb and d Y states. For
example, at point I the state I » has p Sb character,
while the I 25 and I",2 states have d Y character. The dis-
tribution of states is more clearly seen in Fig. 6, which

3.0
s Y

0. 0 0.0
-0.5 -0.3 -0. 1 0. 1 0.3 0.5 0.7 0.91 G

ENERGY (Rp)

FIG. 6. The density of states of the 81 phase of SbY at the
lattice constant a =6.11 A, calculated via the APW method.
The top graph shows the total density of states. The lower
graphs show the partial density of states at each atom site,
decomposed by the symmetry of the state. The Fermi level is
represented by the dotted vertical line. Note the different scales
between the d and the s,p components of the DOS.

TABLE VII. (a) Density of states at the Fermi level, and (b) I components of the DOS at EF.

(a)

Crystal

SbY

RuZr

Site

Sb
Y

Co
A1

Ru
Zr

SbY
CoA1
RuZr
NbIr

0.009 98
0.021 23

0.096 35
0.014 85

0.542 11
0.418 10

EF

0.383 40
0.822 79
0.397 08
0.835 95

(b)

1.843 95
0.11509

0.500 57
0.420 95

0.823 76
0.550 22

DOS

6.099 84
8.10900
5.873 36

21.44

eg

0.018 19
0.216 59

5.181 81
0.006 54

0.035 19
0.301 44

t2g

0.241 83
1.413 72

0.936 17
0.177 73

0.081 21
0.487 40

0.011 71
0.066 10

0.009 81
0.005 51

0.030 25
0.039 73

NbIr Nb
Ir

0.1686
0.0806

0.5948
0.8058

8.718
5.405

0.1527
0.0648
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FIG. 7. The band structure along high-symmetry directions of the B2 phase of CoA1 at the lattice constant a =2.862 A, calculated
by the APW method. The Fermi energy is denoted by the dotted horizontal line.
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5.0
0.0

0.3
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0 0 - ~- . ~ — ~ -—~ - ~ . — — 0.0
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ENERGY (Ry)

FIG. 8. The density of states of the B2 phase of CoA1 at the
lattice constant a =2.862 A, as found by the APW method.
The top plot shows the total density of states, while the lower
graphs show the symmetry-decomposed partial density of states
on each atom. The dotted vertical line represents the Fermi en-
ergy. Note the different scales between the d and the s,p corn-
ponents of the DOS.

shows the DOS decomposed into the l components on
each site. We note the following features: (a) the d Sb
states appear mainly above EF,'(b) a strong p Sb com-
ponent below EF,' (c) a strong s Sb contribution far below

EF, (d) a strong component of d Y states with tz symme-
try above EF; (e) a pronounced peak of d Y states with e

symmetry below EF that strongly hybridize with the p Sb
states; and (I) the low DOS at E~. The Fermi energy, the
total DOS, and the decomposed DOS values at the Fermi
energy are given in Table VII.

In Fig. 7 the energy bands of 82 (CsC1) CoA1 are
displayed along several symmetry directions. Flat bands
occur just above EF in the XM and RX directions, while
another Hat band appears below EF in the RM direction.
This suggests that EF may fall into a DOS minimum be-
tween two pronounced peaks. This is confirmed by look-
ing at Fig. 8, which shows the DOS and its various com-
ponents. We note the following: (a) a strong t2 Co com-2g
ponent below EF; (b) a uniform distribution of the e Cog
DOS with a pronounced peak just above E~; (c) a small p
Al contribution across the entire energy range; and (d)
the intriguing possibility that in a Co-rich alloy EF might
fall on a DOS maximum, which could change the elec-
tronic properties of this system. The numerical values of
EF and the DOS and I-decomposed DOS are listed in
Table VII. We should mention here that this calculation
is 'in agreement with a previous calculation of Nagel in
which x-ray spectra were also calculated.

The energy bands of B2 RuZr are presented in Fig. 9.
The RuZr band structure is very different than that of
CoA1, the main characteristic being the narrowness of
the d Zr bands that appear below EF. This feature is also
shown in Fig. 10, where the RuZr DOS and its com-
ponents are presented. Note the very high DOS with t2g
and eg Zr symmetry below EF and the very low DOS at
EF. Table VII lists EF, the DOS at EF, and the I com-
ponents of the DOS at EF.
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FIG. 9. The band structure along the high-symmetry directions of the B2 phase of RuZr at the lattice constant a =3.22 A, using

the AP%' method to do the calculations. The dashed horizontal line shows the location of the Fermi level.

50.0

I ~

TC Al, DOS

I ' I 6 0

4 0

0.0

0 tgo Ru

0.0

0. 3

0.0

ee Ru

0.0

ENERGY (eV)

-3.0 1.0 5.0 9.0 13.0 17.0 21.0
The energy bands and DOS of NbIr in the L10 struc-

ture were calculated using eigenvalues found by the
LAPW program at the LDA equilibrium values of the
volume and e/a. The energy bands are shown in Fig. 11.
The density of states and the I decomposition are shown
in Fig. 12. Since our LAPW DOS program is not sym-
metrized, we cannot distinguish the eg and t2g d states.
Note that although the d Ir states dominate below EF,
the levels near the EF are composed of nearly equal
amounts of d Ir and d Nb states. Table VII lists the DOS
and partial DOS at the Fermi energy.
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FIG. 10. The density of states of the 82 phase of RuZr at the
lattice constant a =3.22 A, calculated via the APW method.
The top graph shows the total density of states, while the lower

graphs show the symmetry-decomposed partial density of states
on each site. The Fermi energy is marked by the dotted vertical
line. Note the different scales in the various components of the
DOS.

X Y M E FAZ U R T A S Z

FIG. 11. The band structure along the high-symmetry direc-
tions of NbIr in the L10 phase, as calculated by the LAP'
method. The calculation was made at the lattice constants
a =3.99 A using c =3.86 A using the lattice defined by the
primitive vectors (3) and the basis vectors (4). The dotted hor-
izontal line is at the Fermi level.
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VI. CONCLUSIONS

We used the LAPW method to perform a set of first-
principles, self-consistent, total-energy calculations to

FIG. 12. The density of states of the L10 phase of Nblr, de-
rived from ab initio eigenvectors calculated by the LAP%' pro-
gram using the method developed by Wang. " The lattice con-
stants are the same as in Fig. 11. The top graph shows the total
density of states, The lower graphs show the 1-decomposed
partial density of states within each muffin-tin. The solid lines
represent the contributions from the s partial waves, the dashed
lines the p partial waves, and the dash-dotted lines the d partial
waves. The dotted horizontal line is at the Fermi energy.

determine the equations of state and the elastic constants
of SbY in the Bl (rocksalt) phase, CoA1 and RuZr in the
B2 (cesium chloride) phase, and NbIr in the 1.1o phase.
The lattice constants and bulk moduli we determine are
in excellent agreement with the available experimental
data. We then calculated the strain energies in each crys-
tal to determine the remaining elastic moduli. The nu-
merical uncertainty in this procedure (basically due to the
limited basis size and k-point mesh, and to errors in the
energy-versus-strain fit) is less than 5%o for the cubic ma-
terials and 10% for NbIr. Direct measurements of the
single-crystal elastic moduli for these intermetallic alloys
are not available, but we were able to use our computed
C;~ to determine bounds on the polycrystalline shear
modulus G. The experimental values of 6 in SbY and
CoA1 are within our theoretical bounds, so we conclude
that our predicted elastic moduli are in good agreement
with experiment. In fact, the data for CoA1 were provid-
ed to us after we submitted this paper. ' For NbIr the
experimentally determined shear modulus is below our
calculated lower limit, so the agreement there is not quite
as good. This may be due to the fact that the experimen-
tal NbIr sample was not stoichiometric. We did not find
experimental shear moduli for RuZr, nor did we find any
single-crystal measurements of the elastic moduli.

We have also used our calculated elastic moduli and
the correlations discovered by Fine et al. ' to predict
melting temperatures of the intermetallic alloys. Except
for SbY, where the correlation obviously fails, our pre-
dicted melting temperatures are all within two standard
deviations of the correlations of Fine et aI.
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