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Deep inelastic neutron scattering measurements on normal liquid *He at 4.25 K have been carried
out at 11 densities between 0.125 (saturated vapor pressure) and 0.200 g/cm?®, at a momentum
transfer of 23 A~'. A sum of two Gaussians is required to characterize the scattering at all densi-
ties, even when the broadening due to instrumental resolution and corrections to the impulse ap-
proximation are included. The kinetic energy varies from 15.5 K at 0.125 g/cm? to 32.7 K at 0.200

g/cm’.

I. INTRODUCTION

Condensed “He, as the prototypical system of interact-
ing bosons, is of great interest to both theoreticians and
experimentalists. Theoretical attempts to describe the
behavior of liquid “He have been extensively compared to
a host of experimental measurements in order to check
the applicability of these treatments. Although much of
this effort has been devoted to studies of the interesting
properties of superfluid ‘He, the normal liquid has also
been the object of a substantial amount of experimental
and theoretical work.

There are currently no comprehensive analytic theories
capable of determining the momentum distribution of
condensed helium. Computer simulations seem to
present the most realistic description of condensed heli-
um, but until recently, most of these!’? considered only
the ground-state or low-excited-state properties. In con-
trast, path-integral Monte Carlo (PIMC) methods have
been very successful in calculating the properties of both
normal liquid and superfluid helium over a wide range of
temperatures and densities.’> Measurements of the densi-
ty dependence of the momentum distribution and the ki-
netic energy in the normal liquid provide a valuable and
unique test for these difficult calculations.

The momentum distribution of liquid helium can in
principle be determined from inelastic neutron scattering
measurements at high momentum transfers, Q, using the
impulse approximation* (IA). Several previous measure-
ments have studied the inelastic scattering from the nor-
mal fluid at saturated vapor pressure.” % Reported
values of the single-particle kinetic energies, which can be
obtained directly from the second moment of the scatter-
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ing (regardless of the validity of the IA), range from 13.6
to 16.9 K at 4.25 K and a density of 0.125 g/cm’. Addi-
tionally, the momentum distribution in the normal liquid
has been reported as Gaussian over three orders of mag-
nitude.

In this paper we report deep inelastic scattering mea-
surements of normal liquid “He at 4.25 K at 11 densities
ranging from 0.125 to 0.200 g/cm®. Our measurements
are at sufficiently high Q, approximately 23 A ~! that de-
viations from the IA are small and may be taken into ac-
count using a recent theoretical treatment by Silver.!16
We find that the kinetic energy increases in a monotonic
fashion with density and is quite comparable to the
PIMC results. The data are also consistent with the
momentum distribution generated by the PIMC calcula-
tion.

II. DEEP-INELASTIC NEUTRON SCATTERING

The scattering of neutrons by helium is described by
the double-differential cross section

2 k
—da—=b2—fS(Q,w) ,
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where b is the bound scattering length of helium, k; and
k; are, respectively, the initial and final momentum of
the neutron, and Q and w are the momentum and energy
transfer, respectively. The dynamic structure factor
S (Q, ) describes the dynamics of the helium sample.

In the limit that 27/Q is small compared with the
nearest-neighbor distance (for helium!’ this implies Q
greater than or on the order of 10 A 1) the incoherent
approximation holds and we can write

(2.2)
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where r(?) is the position vector of an atom and ¢ - - - )
signifies a thermodynamic average. In the incoherent ap-
proximation interference effects due to correlations be-
tween the atoms average out, and the scattering from
each atom can be treated independently. Moments of
this function can be derived and in particular the second
moment may be written as'®

My(Q)= [(0— 0,8, (Q0)do=40,(E,) , 2.3)
where the recoil energy, w,, is #2Q%/2My, and My, is
the mass of the recoiling atom. Under the conditions of
the incoherent approximation, the average kinetic energy
per atom can be obtained directly from the second mo-
ment of the observed scattering. In our experiments, Q at
the center of the recoil peak is 23 A‘l, and the in-
coherent approximation is certainly applicable.

At high momentum transfers, the form for S(Q,w)
simplifies considerably from Eq. (2.2). In this limit, the
impulse imparted to the target atom by the neutron dur-
ing the collision far exceeds the impulse transferred by
neighboring helium atoms and only single-particle prop-
erties are probed. The scattering can then be described
by the well-known impulse approximation (IA) which
directly relates S(Q,w) to the atomic momentum distri-
bution, 7 (|pl)

Qlim S(Q,0)=S14(0,0)

=f°° n(|p)d w—w,—m dp. (2.4)
—» My,

The 8 function represents the conservation of energy and
momentum. In the IA the duration of the scattering
event can be viewed as much shorter than the helium-
helium interaction time. The recoiling atom then acts as
a free-particle during the collision.

The scattering from an isotropic system, such as liquid
helium, can be expressed as a function of a single scaling
variable Y=(M/Q)w—w,) when the impulse approxi-
mation is obeyed.!” The scattering, as a function of this
scaling variable, may be written as

sw@o=Xry, 2.5)

Q

where J(Y) is readily interpreted as the longitudinal
momentum distribution and Y as the z component of the
momentum

J=[7" [ dpdp,n(p,.p,.Y). (2.6)
In the IA, J(Y) depends only on Y and is symmetric
about Y =0. This behavior of J(Y) is just the Y-space
manifestation of the well-known characteristics of the IA,
that the scattering function is centered at the recoil ener-
gy and, at constant Q, is symmetric with a width propor-
tional to Q.

The IA only approximately describes the scattering for
currently accessible momentum transfers. Deviations
from the IA, known as final-state effects (FSE), result
from the interaction of the recoiling helium atom with its
neighbors during the scattering process. These interac-

tions alter the ideal free-particle behavior of the final
state of the recoiling atom required for the validity of the
IA. At high Q’s the observed scattering approximately
scales?® with Y and final-state effects, while certainly
present, are amenable to theoretical treatment.

In the analysis of our data, we make use of a theory by
Silver'® !¢ which expresses FSE as a convolution with the
IA result

J=[TTR(Y — ¥ (¥Y)aY’

(2.7

where R (Y) is the final-state broadening. This broaden-
ing, which depends only on the measured pair correlation
function and interatomic potential, varies slowly with Q
and has been approximated as a function of Y only. The
shape of the final-state broadening is shown in Fig. 1.
The negative tails in R (Y) are necessary since the scatter-
ing must obey the second-moment sum rule for in-
coherent scattering [Eq. (2.3)] requiring R(Y) to have
zero second moment. We note that FSE have little effect
on the broad scattering observed in the normal liquid and
that we take them into account only for completeness.
Several other procedures, or ignoring FSE altogether,
would give similar results.

The final-state broadening may be viewed!>!® as the
Fourier transform of the probability that the recoiling
atom will not collide with a neighboring atom as a func-
tion of distance and is thus dependent on the density. In
Silver’s theory, this probability depends on the interatom-
ic potential and pair correlation function, g (r), only the
latter of which is density dependent. Since, to a first ap-
proximation, g (r) scales with the density, R (Y) will also
scale with the density.?! The final-state broadening at a
density p, may be obtained from the broadening at a
different density p, by
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FIG. 1. Comparison of instrumental resolution (solid line),
final-state broadening function (dashed line) and data at 0.138
g/cm’.
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Pry

R,(Y)=R, , (2.8)

P1

where R ,(Y) and R,(Y) are the broadening at the densi-
ties p; and p,, respectively. We use the final-state
broadening calculated by Silver?! at a density of 0.147
g/cm® and scale this result to our experimental densities
using Eq. (2.8).

We can obtain #n (p) directly from J(Y) using

—1 dJ(Y)
27Y dY

but in practice converting from an experimentally deter-
mined J(Y) to n(p) presents several difficulties. First, in
order to use Eq. (2.9) the instrumental resolution and
final-state effect broadening must be removed. Deconvo-
lution, particularly on data with statistical noise, is an
unstable and ill-defined procedure. Second, numerical
differentiation substantially increases the error associated
with the data and can only be avoided if the data are
smoothed or the results are otherwise biased. Finally, in
order to obtain n(p) the differentiated data must be di-
vided by Y and the results are particularly susceptible to
any statistical fluctuations at small Y. In this paper we
limit our analysis to J(Y), which is directly related to the
experimental data, and avoid all of these problems.

n(Y)=

(2.9)

III. EXPERIMENTAL DETAILS

The measurements were carried out using the
PHOENIX spectrometer at the Intense Pulsed Neutron
Source (IPNS) at Argonne National Laboratory. IPNS is
a spallation neutron source that generates a short burst of
neutrons with a usable flux over a wide range of energies.
PHOENIX, a high resolution time-of-flight (TOF) inelas-
tic spectrometer, uses a mechanical Fermi chopper to
select the incident energy. Low-efficiency monitors
placed in the neutron beam are used to measure the in-
cident energy and to determine the parameters describing
the incident pulse of neutrons. The chopper phasing for
these measurements was chosen such that neutrons with
a nominal incident energy of 495 meV were selected.
Scattered neutrons are detected in a single high-angle
detector bank containing 25 equally spaced detectors
with scattering angles between 135° and 145°. The detec-
tors are approximately 3.8 m from the sample position.
This choice of incident energy and scattering angle corre-
sponds to an average momentum transfer of 23 A ~! at
the recoil peak of the helium sample, with a variation in
Q across the detector bank of 2 A ~!. A more complete
description of the instrument and its use in measuring
properties of condensed helium is presented elsewhere.?

The helium sample was contained in a cylindrical cell
of 6061-T6 aluminum 0.10 m high with an inner diameter
of 0.04 m and a wall thickness of 1.6 mm. The cell was
attached to either the mixing chamber of a *He-*He dilu-
tion refrigerator or a “He pot. The temperature, which
was monitored using vapor pressure thermometry and
germanium resistance thermometers attached to the bot-
tom of the cell, was maintained at 4.25+0.05 K. Data on
the earlier samples were taken for about 30 h and resulted

in approximately 90000 total integrated counts in the
helium peak. Due to an increase in flux at IPNS, later
samples required only about 18 h of data collection to
generate the same number of integrated counts. The
scattering from liquid helium was measured at densities
of 0.125, 0.130, 0.140, 0.149, 0.160, 0.173, 0.181, 0.186,
0.195, and 0.200 g/cm? corresponding to pressure be-
tween saturated vapor pressure (SVP) and 1500 psi (abso-
lute). A background run of the empty sample cell was
taken at the same temperature and incident neutron ener-
gy.

The integrated counts in the first beam monitor were
used to normalize the flux on the sample from run to run.
Both monitor spectra, which are asymmetric due largely
to the moderator pulse spectrum, were fit to the results of
a numerical simulation to determine the energy of the
neutrons in the incident beam and the mean time of ar-
rival at the sample. Standard techniques were used to
convert the TOF data from each detector to S(Q,w) and
then to J(Y). Data from the individual detectors were
added together in J(Y) in order to reduce the statistical
uncertainty.

An accurate determination of the scattering function
requires that instrumental resolution be taken into ac-
count. In general, the instrumental broadening is a com-
plicated function depending on both the energy and the
momentum transfer.”> In the case of helium, where the
scattering is only significant near ¥ =0, the instrumental
resolution may be expressed as a simple one-dimensional
convolution. A Monte Carlo simulation of the instru-
ment response is used to evaluate the instrumental
broadening,?? which is shown in Fig. 1. The instrumental
resolution has a FWHM of ~0.6 A ~! and is much nar-
rower than the total observed scattering.

An absolute intensity scale for the scattering was ob-
tained from an experiment using a known scatterer, low-
density (0.0073 g/cm®) helium gas at 5.6 K. At this low
density, only single helium scattering events are observed;
multiple scattering and sample self-shielding are negligi-
ble. The integrated scattering is defined to have unit
area, as required by the zeroth-moment sum rule. This
provides an asbolute intensity scale to within the 5% ac-
curacy to which the area of the helium peak can be deter-
mined.

IV. RESULTS

The observed scattering, normalized to constant in-
cident flux and converted to J(Y), for our 0.138 g/cm?
sample (with the empty cell subtracted) is shown in Fig.
1. The instrumental resolution and the broadening due to
final-state effects are also shown in Fig. 1. The widths of
both sources of broadening are quite comparable to each
other but much less than the total width of the scattering
due to the helium.

After subtraction of the empty cell signal, a small,
broad sample-dependent component approximately 5
times as wide as the helium peak, is still present. We be-
lieve this component is due to multiple scattering involv-
ing scattering initially by the liquid sample followed by
scattering from the refrigerator, radiation shields, outer
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vacuum can, and other components of the cryostat before
being detected. Similar backgrounds have been observed
in other inelastic scattering experiments using the
chopper spectrometers at IPNS.?2 The observed back-
ground, which depends on the sample, has been observed
to be nearly independent of angle for scattering angles
from 15° to 110°.%? Improved shielding of the sample cell
from the cryostat used in some of the latter measure-
ments reported here, substantially reduced this back-
ground, verifying our identification of this additional
scattering. We fit this background to a quadratic polyno-
mial from Y=—9t0 —6 A "'and Y=61t0 9 A . Re-
moving this broad component, as part of the background,
does not change the shape of the observed peak within
the experimental errors.

The contribution of helium-helium multiple scattering
to the observed scattering from the bulk liquid was calcu-
lated using the same Monte Carlo simulation as used to
generate the resolution broadened scattering. At these
high Q’s the multiple scattering is primarily due to low-Q
coherent scattering by the liquid and provides a negligi-
ble contribution to the observed scattering particularly at
the lower densities.

As mentioned earlier, the second moment of the ob-
served scattering, corrected for instrumental resolution,
can be related to ( E, ) in the incoherent approximation,
regardless of final-state effects. An interesting way to ob-
serve the contributions to the second moment and its as-
sociated uncertainty is to evaluate the second moment as
a function of integration range

+Y,
my(Y,)= f_Yc J(Y)Y%dY .
The limiting value of m, provides a model-independent
method of determining (E, ) from our data. Figure 2
demonstrates the above calculation for a variety of densi-
ties. The broad background mentioned earlier was sub-
tracted from the observed J(Y) before performing the in-
tegration. The error bars shown in the plots are deter-
mined by evaluating Eq. (4.1) at the minimum and max-
imum J(Y) consistent with the uncertainty in the data.
In order to determine (E; ) from the plots in Fig. 2, the
instrumental resolution broadening must be included. If
the instrumental resolution function and the underlying
J(Y) are approximated by Gaussians, their widths add in
quadrature. The second moment of the underlying J(Y)
can be obtained by subtracting the square of the effective
Gaussian resolution second moment, ~0.06 A ~2, from
the limiting values of m, shown in the plots of Fig. 2.
Using this method, we obtain values for (E,) of
15.3£1.5, 17.1+2.1, 25.31+2.5, and 34.9%3.5 K for the
samples at densities of 0.125, 0.140, 0.173, and 0.200
g/cm?, respectively. It is important to note that the large
errors in determining the kinetic energy result from the
sensitivity of the second moment to the behavior of the
scattering at large Y, and not from poor statistics in the
data. The statistics of our data are quite good with a to-
tal of 90 000 counts in the hehum peak and approximate-
ly 1000 counts per 0.075 A 7! wide channel at the peak.
The difficulty in determining the tails dominates the er-
rors in the second moment as demonstrated in Fig. 2.
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FIG. 2. The second moment of the experimentally deter-
mined J(Y) as a function of integrating range for a variety of
densities. Plots a, b, ¢, and d are for densities of 0.125, 0.140,
0.173, and 0.200 g/cm’, respectively.

We attempted to characterize the underlying momen-
tum distribution implicit in our data by fitting the ob-
served J(Y) with a Gaussian model, implying a Gaussian
n(p). A Gaussian momentum distribution has been re-
ported in previous measurements for a sample at SVP.°
The model J(Y), convoluted with final state effects and
the instrumental resolution, was fit to the data over vari-
ous ranges of Y, but the quality of the fits was poor. A
single Gaussian J(Y) does not well represent the ob-
served scattering that is consistent with the 0 K calcula-
tions of Whitlock and Panoff! and the finite-temperature
calculations of Ceperley and Pollock.3

In an attempt to fit the data with a more flexible mod-
el, we have used a J(Y) consisting of a sum of two Gauss-
ians [corresponding to a sum of two Gaussians in 7 (p)]
with their centers constrained to the same value

_ ( Y— Ycenter )2 ’

J (Y)=———>ex
model (2ma)1? P 203
A, (Y = Y center )
————exp |[————— 4.2)
(2mo3)12 203

The center of the Gaussians was allowed to differ from
Y =0 within the experimental uncertainty in determining
the Y scale. We find that this model gives significantly
better fits at all densities than did the single Gaussian
model J(Y). Figure 3 shows the two Gaussian fits to the
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FIG. 3. Measured J(Y) and two Gaussian fits for a variety of
densities. The model J(Y) has been broadened by the instru-
mental resolution and FSE. Plots a, b, c, and d are for densities
of 0.125, 0.140, 0.173, and 0.200 g/cm?, respectively.

data at four representative densities. In general, the
agreement between the fits and the data is excellent.
Table I lists the amplitudes and widths from the fits for
all the densities. The particular values of these parame-
ters quoted for a given density are only representative of
an entire family of values which can equally well charac-
terize the data because the widths and amplitudes of the
fitted Gaussians are highly correlated. The model J(Y)
from any particular fit is indistinguishable from any other
fit to the data for a given density.

The average kinetic energy per particle was determined
from the two Gaussian fits and is shown in Fig. 4. Table
II lists the determined values of ( E; ) and the associated
uncertainties for all the densities. Figure 5 shows the
0.138 g/cm’ data and the model J(Y) (convoluted with
the instrumental resolution and final-state effect broaden-
ing) giving the quoted kinetic energy, 16.1 K. Also
shown are the J(Y) having associated kinetic energies of
14.5 and 17.7 K representing the quoted uncertainty in
(E,). The values for (E,) and the associated uncer-
tainties are consistent with those determined directly
from the second moment of the scattering as already
given. We can apply Eq. (4.1) to our fitted two Gaussian
model for J(Y) and calculate the second moment as a
function of the range of integration. Figure 6 shows the
results for the same densities as plotted in Fig. 2. We
note the consistent behavior between Figs. 2 and 6, name-

TABLE 1. Fitted Gaussian parameters of J(Y) for normal
liquid “He.

P I 2
(g/cm?) A4, (A7H A, (A7YH
0.125 0.924 0.84 0.076 1.63
0.130 0.700 1.02 0.300 0.60
0.138 0.580 1.08 0.420 0.70
0.140 0.527 1.14 0.473 0.74
0.147 0.461 1.29 0.539 0.76
0.160 0.774 1.11 0.226 0.69
0.173 0.772 1.20 0.228 0.66
0.181 0.397 1.54 0.603 0.94
0.186 0.648 1.36 0.352 0.86
0.195 0.596 1.52 0.404 0.95
0.200 0.396 1.67 0.604 1.07

ly a rapid rise in the second moment reaching a limiting
value at ¥, of about 3.2 A ~!and 5.4 A ~! for densities of
0.125 to 0.200 g/cm?, respectively.

Equation (4.1) provides an interesting way to compare
theoretical predictions with our fits. We calculate the
second moments from J(Y) determined by Ceperley for
several densities using the PIMC method and compare
them to those determined from fits to our data. From the
comparisons in Fig. 7 we note a general tendency of our
fitted model J(Y) to increase m, at a slower initial rate
than that determined from Ceperley’s J(Y). This indi-
cates that our model J(Y) have somewhat less intensity
at low Y (0 to 2 A ~!) but somewhat greater intensity at
intermediate to high Y (3 to 4 A ~!) than the theoretical
J(Y).

Several numerical calculations' of the momentum dis-
tribution have reported non-Gaussian behavior in the
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FIG. 4. The measured average kinetic energy per atom as a
function of density. The X’s are the theoretical values from
Ceperley (Ref. 3). The smooth curve is from a quadratic fit to
the measured points and is intended as a guide to the eye.
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TABLE II. Single-particle kinetic energies from normal
liquid “He.
P (Ey) ACE)
(g/cm’) (K) (K)
0.125 15.5 1.6
0.130 15.2 1.5
0.138 16.1 1.6
0.140 17.1 1.7
0.147 19.6 2.0
0.160 19.2 1.9
0.173 21.8 2.2
0.181 26.5 2.7
0.186 26.5 2.7
0.195 31.6 32
0.200 32.7 33

tails of n(p). More recently, PIMC calculations® in the
normal liquid have also indicated non-Gaussian behavior
in the tails. To examine the sensitivity of our model to
the tails of our data, we modify the behavior of our two
Gaussian model in the low-intensity region. We replace
the model n(p) with a sum of two Gaussians over the
central region of the peak, but matched to an exponential
in the tails and examined the effect on the 0.138 g/cm?
data. Gaussian and exponential portions are matched at
approximately 20% of the peak height, which occurs at
Y=~1.6 A ~!, with the constraint that the model is con-
tinuous. The widths of both components were allowed to
vary, subject to the constraint that the total area
remained within the 5% uncertainty of the intensity cali-
bration. The best fit obtained was almost equivalent to
the best two Gaussian fit and gave a value of 16.9 K for
the kinetic energy, 0.8 K greater than obtained from the
two Gaussian fit. When the exponential was constrained
so as to be consistent with the minimum and maximum
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FIG. 5. Measured J(Y) and two Gaussian fits for liquid heli-
um at a density of 0.138 g/cm®. The three smooth curves are
the model J(Y) having the indicated kinetic energies.

2.0 T
[ I I I ]
I 0.200 g/cm?® 4
& 0173 4
I L 0.140 :
o 15 I o0.125
- L
a L
£
5 |
= 1.0 —
o L
E: -
o L
Q
Q) -
0 05
0.0 ol b b b b
0 1 2 3 4 5 8

Y (A7)

FIG. 6. The second moment of the fitted model J(Y) a func-
tion of integrating range for the indicated densities.

uncertainty in the data, the kinetic energies varied from
+15% to —10% of the value obtained from the original
two Gaussian model. These variations are comparable to
the variation in ( E; ) obtained directly from the second
moment and again indicate the difficulty in obtaining ac-
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FIG. 7. Comparison of the second moments of J(Y) deter-
mined as a function of integrating range from our fitted model
(dashed line) and the theoretically determined J(Y) from PIMC
calculations (solid line) (Ref. 3). The densities used in the exper-
iment are 0.138, 0.173, and 0.186 g/cm? for plots a, b, and c, re-
spectively. The densities used in the theoretical calculation are
0.138,0.173, and 0.191 g/cm? for plots a, b, and c, respectively.



41 DENSITY DEPENDENCE OF THE MOMENTUM DISTRIBUTION . . . 109

curate information on the shape of the tails or on (E, ).
Figure 8 shows the difference between n (p) as determined
by our best two Gaussian fit and the model using ex-
ponential tails. The model with exponential tails distri-
butes more intensity to the high p region of n(p) than
does the simpler two Gaussian model. Both of these
models n (p) are consistent with our data.

V. DISCUSSION

Previous inelastic scattering measurements at SVP
have generally extracted a single Gaussian momentum
distribution.>® Corrections for FSE were either made us-
ing approximate methods® or not at all.> Earlier inelastic
scattering measurements at SVP have also determined
values for the kinetic energy which are in good agreement
with our results. Harling and Gibbs,® using a Gaussian
form and including a term to correct for FSE, obtain
values of 16.3 and 15.7+0.5 K at 4.19 and 4.2 K, respec-
tively. Mook!! obtained 16.9 K, from the second mo-
ment of n(p) obtained from S(Q,w) at a Q of 15 A 1.
He observed excess scattering at p =2.25 A ~! (which
has not been observed in subsequent experiments) that
would tend to raise his estimate of the kinetic energy.
Woods and Sears® obtained 13.6 K, also calculated from
the second moment of n(p) based on data taken at
momentum transfers between 6 and 8 A ~!. Our mea-
sured value of (E, ) at SVP of 15.5+1.6 K is in reason-
able agreement with these earlier results.

From Fig. 4 we note the good agreement of the kinetic
energy values determined from our data and those report-
ed by Ceperley using PIMC methods. The best model
J(Y) determined by our data tend to have slightly less in-
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FIG. 8. n(p) as determined from fits to the measured J(Y) of
liquid helium at a density of 0.138 g/cm>. The solid curve is the
best two Gaussian fit to the data. The dashed curve is the best
fit using Gaussians to model the central portion of the peak add-
ing exponential behavior in n(p) at Y =%1.6 AL

tensity at low to intermediate Y and slightly more intensi-
ty at intermediate to high Y than do the J(Y) given by
Ceperley as evidenced in Fig. 7. This effect, however, is
within the uncertainty in determining J(Y) from our
data. Figure 9 shows Ceperley’s J(Y) (convoluted with
the instrumental final-state effects broadening) compared
with our data at nearly the same densities. We note the
excellent agreement over most of the range in Y.

VI. CONCLUSION

We have carried out deep-inelastic neutron scattering:
measurements in the normal liquid phase at 11 densities
from 0.130 to 0.200 g/cm®. The observed scattering is
well described by the impulse approximation at the
momentum transfers used in this experiment. The ob-
served scattering is not well characterized by a single
Gaussian, and a sum of two Gaussians was used to model
the underlying J(Y) indicating non-Gaussian behavior in
n(p). Behavior at large Y is difficult to deduce due to the
low statistics in the tails of the scattering, and the data
are consistent with non-Gaussian behavior at high Y,
such as exponential tails in n (p). We note, however, that
the underlying n(p) for the case of exponential tails
differs little from the two Gaussian model over a large
range of p (Fig. 8).
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FIG. 9. Comparison of the measured and theoretical J(Y).
The solid curves are the theoretical J(Y) from Ceperley (Ref. 3)
convoluted with instrumental resolution and FSE broadening.
The measured J(Y) are from densities of 0.138, 0.173, 0.186,
g/cm? for plots a, b, and c, respectively. The theoretical J(Y)
were calculated at densities of 0.138, 0.173, and 0.191 g/cm?® for
plots a, b, and c, respectively.
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The average kinetic energy per particle determined
directly from the second moment of the scattering
(corrected for instrumental resolution) is in good agree-
ment with that determined from fitting the data with a
sum of two Gaussians. These values are also in good
agreement with the theoretical values determined by
PIMC methods. The ability of PIMC to calculate prop-
erties of normal liquid “He over this range of densities
and at finite temperatures is remarkable. The excellent
agreement between J(Y) determined by PIMC methods
and our data lends support to the application of PIMC to
the more challenging tasks of calculating the momentum
distribution and condensate fraction of superfluid “He.?*
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