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Incomplete confinement of electrons and holes in microcrystals
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A simple variational calculation is presented for the ground-state energy of an electron-hole
system confined in a microcrystal with finite potential barriers. It is shown that the effect of
penetration of the wave function outside the microcrystal is quite large in the strong-confinement
region and is consistent with the relatively small blueshift of the excitation energy observed in

CdS microcrystals.

Recently, much attention has been focused upon the
quantum size effects of semiconductor microcrystals. The
motional state of the Wannier exciton is strongly modified

by three-dimensional confinement' and this causes sig-
nificant changes in the linear3 as well as in the nonlinear
optical properties of the microcrystals from those of the
bulk crystals.

In previous papers, 5 6 one of the present authors carried
out a theoretical investigation of the quantum size effects
of microcrystals within a simple model, which assumes the
effective-mass approximation for the electron and the hole
confined in a sphere with infinite potential barriers. The
theory bridges the two extreme situations, ' namely, the
weak-confinement limit (the exciton-confinement regime)
and the strong-confinement limit (the individual-particle-
confinement regime). It was shown that the transition be-
tween the above two regimes occurs around parameter re-
gion 2 R/ag (4, where R is the radius of the micro-
sphere and att is the effective Bohr radius of the exciton.
It has been reported that the theoretical prediction of the
blueshift of the ground-state energy of an exciton agrees
fairly well with experimentally observed values in the in-
termediate region of CdTe microcrystals.

In the case of strong confinement, however, the quanti-
tative agreement becomes poor. For R/att (I, theory
predicts that the ground-state energy E of the electron-
hole system is given by the asymptotic formula2 5
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where Eit' is the band-gap energy of the bulk crystal, Ea~„
is the effective Rydberg energy of the bulk exciton, and
p= 1/(m '+mh ') is the reduced mass for the effective
masses of the electron m, and the hole mh. Experimental
observations carried out extensively for CdS„Se~ „and
CdS microcrystals embedded in glass matrices have re-

vealed that the high-energy shift in real materials is gen-
erally much smaller than the theoretical prediction in this
region. ' The discrepancy becomes salient, especially
for R as small as 10-20 k The same tendency also has
been observed in the PbI2 microcrystals incorporated into
zeolite cages. "

One should note that the boundary constraint of the
infinite barrier model is too artificial for such a small size
of microcrystals: Formula (1) diverges in the limit R 0,
while in real systems E should be bounded by the band-

gap energy of a matrix material. It may well be expected
that the main reason for the discrepancy is the unrealistic
boundary constraint, although other possibilities, such as
the nonparabolicity of the energy band, should also be ex-
amined.

The importance of the incompleteness of the con-
finement has been pointed out by Brus. Grabovskis
et al. '~ observed the photoionization of CdS microcrystals
in glass. They estimated the height of the potential bar-
rier for the electron as 2.3-2.5 eV. The penetration of the
wave function outside the microcrystals also plays an
essential role in the photochemical reactions in aqueous
solutions. '

In this work, we report the results of a variational cal-
culation of the ground-state energy of the electron-hole
system confined in a microsphere by finite potential bar-
riers and show that the effect of the incompleteness of a
confinement is, in fact, quite large. Consider an electron
and a hole in a dielectric sphere embedded in a continuum
matrix. We neglect the difference in effective masses be-
tween the microcrystal and the matrix. This is not too
bad, since most of the population density of the electron
and the hole is still confined in the microcrystal for sizes of
practical interest, as shown below. We also neglect the
difference in the dielectric constant e.

By adopting the Hylleraas coordinate system r, =
~ r, ~,

rh —=
~ rh ~, r, h

—=
~ r, —rh ~

defined for the coordinates of
electron r, and hole rh, the Hamiltonian is
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sin(P;r;)/r;, r; ~R
;(r;)- '

8;exp( —g;r;)/r;, r;) R, i e, h,

g(r, h) exp( —r, h/a),

(5)

and A is the normalization constant. The variational pa-
rameters a, p„and ph are varied so as to minimize the ex-
pectation value of energy E. The parameters 8; and g; are
given as functions of p; and R by the condition that the
wave function is smoothly connected at r; R(i e, h).
Function (5) reproduces the result of the single-parameter
theory in the limit V, ee, Vh

In Fig. 1, an example of the calculated high-energy
shift AE=E —E,„ is plotted against (ag/R) where

E,„—=Eg' —ER„ is an exciton energy of the bulk semicon-
ductor. The values of the parameters (V„Vh) are shown
in Fig. 1 in units of ER„. The result of the infinite barrier
model is also shown in the uppermost curve. As can be
seen, the reduction of hE is relatively small in the weak-
confinement region. Since the electron and hole behave as
a tightly bound quasiparticle (exciton) in this region, the
degree of penetration outside the quantum well is limited
by that of the heavier particle, i.e., the hole, as long as V,
and Vh are not so di6'erent. As we go into a strong-
confinement region, the amount of dE reduction becomes
quite large. It depends sensitively on the mass ratio
mh/m, . Since the main contribution to the high-energy
shift comes from the lighter particle in this region, the

vchere

0, r;~R
V;(r, )- (3)

V;, r;&R, i eh.
The confining potential V; satisfies Eg' + V, + Vh Es
where Eg( ) is the band-gap energy of the matrix.

The trial wave function is chosen as

rh r -h) ~P (r )4'h(rh)Z(r. h), -

where
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reduction is larger for larger values of mh/m, for fixed
values of (V„Vh).

In order to analyze the experimental data, we need to
know not only the band-gap energies Eg('I Eg( ), but also
the relative position of the bands. Moreover, the gap en-

ergy Eg ) itself has some ambiguities in the case of glass.
We tentatively assume the value Es( ) 7 eV roughly es-
timated from the optical data for sodium silicate glasses. '

In Fig. 2, the calculated ground-state energy of an
electron-hole system in CdS microcrystals in silicate glass
is shown against R . We adopted the parameter values
Eg(' 2.58 eV, ER„30meV, mh/m, 4, and ag 30 A.

for CdS. ' The centers of the band gaps of the semicon-
ductor and the glass are assumed to coincide so that
V, Vh 2.21 eV. In Fig. 2, the origin of the ordinate is
chosen at Eg"'. The calculated ground-state energy is
plotted by the bold solid line together with its decomposi-
tion into kinetic energy (K), Coulomb energy (C&, and po-
tential energy (P), due to the penetration into the glass
matrix. The corresponding quantities calculated for the
infinite barrier model are also shown by dashed lines.

Figure 2 clearly sho~s the mechanism of a high-energy
shift reduction by the relaxation of the boundary con-
straint. Just like the case of the one-body problem, the
reduction in the kinetic energy balances the increase in
the potential energy to minimize the total energy. An im-
portant point here is that the gain in the Coulomb energy
due to the strong overlapping of the electron and hole
wave function does not decrease as much, even in the case
of incomplete confinement. This is partly due to the
long-range character of the Coulomb interaction. In the
case R 12 A, the existence probability of the electron in
the microsphere is 0.92 and that of the hole is 0.99.
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FIG. 1. Calculated high-energy shifts of the electron-hole

system for m&/m, 4. The parameter values (V„Vh} are indi-
cated in the unit of ER„.

FIG. 2. Calculated ground-state energy of the electron-hole
system in CdS microcrystal embedded in silicate glass. The bold
line is the total energy. The expectation values of the kinetic en-

ergy (It), the Coulomb energy (C), and the potential energy (P)
are also shown. The corresponding quantities calculated in the
infinite barrier model are shown by the dashed lines. The origin
of the energy is chosen at the band-gap energy of CdS. The ex-
perimental peak positions of the absorption spectra are plotted
by the small circles.
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In Fig. 2, the experimental values of the peak positions
of the absorption spectra due to Ekimov, Efros, and
Onuschenko are also plotted by solid circles. Since the
effective-mass approximation may not be fully justified for
such a small size of microcrystals and since there are un-

certainties in the choice of the parameter values, the ex-
cellence of the agreement would be somewhat fortuitous.
What has been shown here, however, is that the effect of
the incompleteness of the confinement does exist and is
important in analyzing the experimental data.

In this work, we have restricted ourselves to the case
where confining potentials V, and Vq are both positive
and so strong that the extrapolation from the complete-
confinement limit works fairly well. As an extension, one

may imagine a number of interesting situations according
to the relative signs and magnitudes of V, and Vq. For
example, when V, & 0 and Vi, & 0, the exciton wave func-
tion will have a peculiar structure localized around the
surface of the microsphere with separated charge distribu-
tion. It will be worthwhile to apply sophisticated tech-
niques of microfabrication to this field in order to provide
well-controlled systems of microcrystals and to study opti-
cal properties of those exotic new materials.
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