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A new type of magnetoresistance oscillation in a two-dimensional electron gas modulated by a
hexagonal lateral periodic electric potential has been observed in GaAs/Al„Ga& „Asheterostruc-
tures. The magnetoresistance oscillations appear at very low magnetic field and the peak positions
are directly determined by the magnetic field and the periodicity of the modulation structure. The
experimental results can be understood by using a theoretical argument similar to those used in the
one-dimensional case. Two kinds of results correlate with structures difkring in degree of depletion
and the resulting geometry.

As the lateral dimension of the two-dimensional elec-
tron gas is reduced and reaches the submicrometer range
and becomes comparable with or smaller than the mag-
netic length l =&A/eB, the standard Shubnikov —de
Haas effect no longer exists because of the larger orbit
size and a new type of magnetotransport phenomena is
expected. Hofstadter' pointed out that the two-
dimensional motion of electrons in a periodic potential
and a perpendicular magnetic field generates a series of
interesting commensurability effects. This problem can
be studied experimentally in transport samples with a
synthetic two-dimensional periodic submicrometer struc-
ture. Weiss et al. first reported novel magnetoresistance
oscillations in a two-dimensional electron gas modulated
with a holographically induced one-dimensional periodic
potential. They found that oscillation maxima arise
whenever the classical cyclotron diameter 2R, at the Fer-
mi energy is a multiple of the period a, which can be ex-
plained as due to the oscillatory dependence of the band-
width of the modulation-broadened Landau levels.
Later, Winkler et al. published similar results obtained
on electrostatically induced one-dimensional grid sam-
ples. In addition they observed a set of oscillations corre-
sponding to a smaller spacing, a/3. The "one-third" set
of oscillations is stronger than the integer one at positive
gate voltages and the physical mechanism causing the
"one-third" set has not been identified. Recently, some
preliminary experimental results of magnetoresistance os-
cillations in a two-dimensional periodic potential with a
square geometry have been reported. ' In this paper, we
present observations of novel magnetoresistance oscilla-
tions with different oscillation frequencies and different
phase factors observed in a hexagonal geometry two-
dimensional superlattice potential.

The samples used in our experiments are conventional
GaAs/A1 Ga&, As heterostructures grown by
molecular-beam epitaxy with 1-LMm GaAs buffer layer on
top of a semi-insulating GaAs substrate, a 200-A un-

doped Al„Ga, „As spacer, a 500-A Si-doped
Al„Ga& „Aslayer, and a 100-A GaAs cap layer. Typical
samples with a Hall bar geometry have a sheet density in
the range of n, =(2.4—4.3)X10" cm and mobility of
ls„=(2.3 —4.6)X10 cm /Vs at T=4.2 K. With a new
and simple technique utilizing a monolayer of close-
packed uniform 1atex spheres as an etching mask in con-
junction with reactive ion etching, periodic subrnicrome-
ter structures with periodicity of 3300, 3640, and 3940 A
have been formed by etching holes between the spheres.
By adjusting the etching depth, two kinds of samples
have been made for investigation by magnetoresistance
measurements. The first kind of sample, the shallow-
etched sample, is formed by just etching through the
GaAs cap layer, stripping the balls, and then depositing
the metal on the top of the structure. In this way, an
electrostatic periodic electrical potential is generated.
Schematic drawings of the periodic structure pattern and
the shallow-etched sample profile are given in Figs. 1(a)
and 1(b), respectively. The second kind of sample is the
deep-etched sample where the etching holes go all the
way through the two-dimensional electron gas layer to in-
troduce a two-dimensional periodic carrier density distri-
bution [see Fig. 1(c)]. The experiments are performed us-
ing standard lock-in amplifier techniques to measure the
ac magnetoresistances at low modulation frequencies. In
this paper, we will present the magnetoresistance data
measured at transverse magnetic fields of 0—8 T and tem-
peratures down to 1.3 K.

Figure 2 shows the experimental data of magnetoresis-
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tance signal V „versus the magnetic field for two samples
with 3300-A periodic structure but different etching
depths. Besides the normal Shubnikov —de Haas efFect

occurring at high magnetic fields, additional magne-
toresistance oscillations are observed at the low magnetic
field range (below 0.6 T). The oscillations are periodic in
1/8 and have amplitudes that are smaller and the oscilla-
tory frequency is slower than those in the Shubnikov —de
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FIG. 2. The experimental data of the magnetoresistance vs
the magnetic field for samples with modulation period of 3300
0
A and different etching depths. The positions indicated by ar-
rows are the magnetoresistance peaks due to the new oscilla-
tions.
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Haas effect. A fan diagram of the integer number m
versus 1/8 for the two kinds of the samples (two deep-
etched and two shallow-etched and gated samples) with
different periodicities and gate biases is shown in Fig. 3.
Basically, all the experimental points fit straight lines
very well with a small error less than 2%. For the deep-
etched samples, the peaks in the magnetoresistance occur
at the magnetic field given by

2R, =(m +u)a, m =1,2, 3, . . . ,

where R, =2fikfle8 is the classical cyclotron radius at
the Fermi energy, kf =(2nn, )'~2, and n, is the average
carrier density determined from the Shubnikov-de Haas
oscillations. The value of the phase factor a from the
measurements is about —0.21+0.02 (which has the op-
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FIG. 1. The etching pattern and the schematic drawings of
the periodic structure and sample profile: (a) a scanning elec-
tron microscope picture of the etched submicrometer structure

0
of triangular hole array with a period of 3300 A; (b) a cross-
sectional view of the submicrometer periodic structure in the
shallow-etched sample, with associated device information. The
holes have been etched through the GaAs cap layer down to the
surface of the Si:Al„Ga& „Aslayer. (c) The device profile for
the deep-etched sample. Here the etching holes pass through
the two-dimensional electron gas layer.
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FIG. 3. The fan diagram of the integer number vs the re-
ciprocal of the magnetic field for both kinds of samples with
different periodicities and gate voltages. The experimental data
are taken at T = I.3 K and f= 103 Hz.
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posite sign to that of Ref. 3). Also for the shallow-etched
samples with different periodicities and gate voltages, the
maxima appear at the following positions:

2R, =(m+P)b, m =1,2, 3, . . . , (2)

low two-dimensional electron density regions

high two-dimensional electron density regions
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FIG. 4. The sketches of the carrier distributions and the
modulation potentials for two kinds of devices: (a) an array of
coupled quantum dots with a hexagonal geometry and the po-
tential variation along one superlattice direction in deep-etched
samples and (b) a triangle array with the special geometry and
the resulting simplified modulation potential in shallow-etched
samples.

with a phase factor P=D. 27+0.04 for the whole range of
the gate biases and periodicities. The P value changes
slightly with the gate voltage and becomes larger at lower
gate voltages. In Eq. (2), b is equal to a/2, the half length
of the period. It is noted that in magnetocapacitance
measurements, no additional oscillations have been ob-
served for the same devices. In order to clarify the exper-
imental results, the unetched samples made from the
same wafer have been checked. The unetched samples
show no such additional magnetoresistance or capaci-
tance oscillation structure.

For the deep-etching case, the etched holes pass
through the two-dimensional electron layer. The carrier
densities in those areas between the points of the triangles
in Fig. 1(a) will have a lower density than the shallow-
etched samples due to depletion effects. Upon consider-
ing the depletion effect, our system is an array of coupled
quasiquantum dots with superlattice period equal to the
size of the balls. Suppose that the modulation potential
between the points is weak, then the potential variation
with the positions of the spheres can be simply represent-
ed by a cosine function as shown in Fig. 4(a). Since the
periodicity of this modulation potential is a, the oscillato-
ry behavior in magnetoresistance [described by Eq. (I)]
can be understood by its similarity to the one-
dimensional case. In the shallow-etching case, the modu-
lation potential is much weaker than in the previous one
so that the circular two-dimensional electron regions fill

all of two-dimensional space. The modulation potential
at the triangular areas is higher than at the rest of the
places and the electrons traveling along those regions
affect the conductivity and modify the additional oscilla-

tions. Thus the geometry of the two-dimensional elec-
tron distribution changes from a hexagonal dot array for
deep-etched samples to this special one given in Fig. 4(b)
for shallow-etched samples because of the difference in
degree of depletion. Comparing the modulation potential
with the deep-etching one, the difference is that the dis-
tance between triangles in the shallow-etching case is
smaller and roughly half the length of the spacing be-
tween the dots in the deep-etching case, if the amplitude
size is ignored. Electrons in the shallow-etched samples
pass through more potential barriers in a mean free path
and that may cause the higher-frequency oscillation re-
sults given in Eq. (2).

Several semiclassical ' and quantum-mechanical ' '
calculations have been made for the one-dimensional
periodic modulation potential, ' ' but no results have
been published for a two-dimensional periodic modula-
tion potential. With the assumption of a weak and
cosinelike modulation potential, the two-dimensional
modulation potential with a hexagonal geometry can be
indicated as

27Tx 27Ty
V(x,y) = Vo cos +cos

a 30
21Ty

cos
30

(3)

where the x axis is chosen in the same direction as in Fig.
4(a). Using the first-order perturbation method to calcu-
late the matrix element ( n, x ~OV(x, y) ~n, xo ) with a
chosen gauge A=(0, x8,0) and an unperturbed harmon-
ic oscillator wave function

g„„(x)= e ' P„(x—xo)

centered at position xo = —I k, an energy spectrum as in
the case of a one-dimensional periodic potential can be
derived, i.e., the modulation-broadened Landau bands os-
cillate with the magnetic field and the bandwidth at the
Fermi energy vanishes when 2R, = ( m —0.25 )a and is
maximal for 2R, =(m +0.25)a in the above two-
dimensional periodic potential. One should recognize
that there is a problem of using the above method for a
two-dimensional periodic potential because the solution
could be gauge dependent. This is due to a mistreatment
of the degenerate perturbation problem with a nondegen-
erate wave function. The degeneracy in this case is ex-
tremely high and it makes the calculation for a two-
dimensional periodic potential problem very difficult.
Since the calculated results ' for one-dimensional modu-
lation potential are consistent with the experimental data,
we can use the results to interpret the experimental data
for the two-dimensional periodic potential. In the one-
dirnensional case, the average velocities U, and U„are
(n, o~v„x~n,xo) =0 and

dE„
(n, x, ~u, ~n, x, )=— "eo.

mco, dxo

From the Kubo-type formula with the similar approxima-
tion, the average conductivity tensor is given as
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, f« f d&o —g l(nxolU, ln'&o&I'

X ImG„„ImG„„
0 0

(4)

where f is the Fermi distribution function andG„„=[E E„'—"(xo )
—X (E)] ' is the collision-

broadened Green's function and the X (E) is the
quantum-number-independent self-energy. With the
average velocity U equal to zero, the major contribution
to the conductivity tensor 0.«or pyy comes from the
density-of-states variation with the periodic potential.
The density of states when the energy dispersion is zero,
i.e., flat band, is maximal and it gives rise to maxima in
o. „andpyy The nonzero average velocity v represents
the contribution from the unperturbed Landau levels
which dominates the oscillations of oyy or pzz because
there is no contribution due to the density-of-states varia-
tion in the y direction and this causes the measured resis-
tivity p „

to be a minimum at flat band. In the two-
dimensional modulation case, we expect both component
v and u to go to zero due to the modulation in all direc-
tions. Therefore the measured magnetoresistance p„„
shows maxima at flat bands. The oscillation signals from
a two-dimensional modulation potential are much weaker
because there are only a few electrons contributing to the
off-diagonal matrix elements of the conductivity tensors.
Hence the magnetoresistance oscillation in the deep-
etched samples satisfies Eq. (l) with an opposite phase
from the one-dimensional data. For the shallow-etched
samples, the modulation potential is more complicated
than the one in the deep-etched case. However, the basic

physical phenomena and oscillation mechanism are the
same as the previous case. In shallow-etched samples,
electron motion in some directions is free and in others is
modulated by the periodic potentials. Therefore we ex-
pect the measured magnetoresistance oscillations to satis-
fy Eq. (2) with a positive phase factor as in the one-
dimensional case. The experimental results for both
kinds of samples with different periodicities are consistent
with the quantum-mechanical ideas. With the above ap-
proach, the new oscillations in magnetoresistance result
from the density-of-states oscillation with the magnetic
field in a two-dimensional modulation potential, but the
detailed physical mechanism for the higher-frequency os-
cillations is yet to be explained.

In conclusion, we have observed novel magnetoresis-
tance oscillation s in a two-dimensional electron gas
modulated with a two-dimensional superlattice potential.
This new type of oscillation comes from the fact that the
Landau bandwidth as well as the density of states of a
two-dimensional electron system modulated by a two-
dimensional periodic potential oscillates with the magnet-
ic field. The new oscillations only appear in the magne-
toresistance measurements and the samples with etched
periodic submicrometer structures. The differences of
the oscillation period and phase factor in our experimen-
tal data between two kinds of samples correlate with
different geometries due to the difference in degree of de-
pletion.
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