
PHYSICAL REVIEW B VOLUME 41, NUMBER 14 15 MAY 1990-I
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This paper presents a model calculation of the uncorrelated bulk and surface states of a superlat-

tice, simulated by the Kronig-Penney model, with a periodic array of defects. Inside each quantum

well, there is a defect barrier. Explicit results are obtained for the bulk dispersion relation for the
minibands for two types of defects: (a) rectangular and (b) triangular. We examine the bulk band

structure as a function of the width of the defect and its position within the quantum well. We also
calculate the bulk band structure when two defects are inserted inside the well. The virtual surface
states for the doped superlattice when an external electric field is applied at the surface are also ob-
tained.

I. INTRODUCTION

Modern techniques such as molecular-beam epitaxy,
have made it possible to produce III-V compound semi-
conductors with well-defined electronic and transport
properties. Layered semiconducting superlattices have
been used in high-performance optoelectronic devices, for
example. Recently, very narrow potential barrier profiles
have been produced in GaAs/Al„Ga& „As superlat-
tices. ' The intentional doping has been implemented by
positioning Si donors and Be acceptors in precise num-
bers during the molecular-beam-epitaxy growth of GaAs
layers. This so-called sheet-doping (or 5-dopin~) tech-
nique was originally proposed by Wood et al. Since
then, it has been applied in advance semiconductor-
device concepts. GaAs sawtooth-doping superlattices,
consistiag of a periodic sequence of alternating n- and p-
type 5-doping layers equally spaced by undoped regions
emit light of high intensity. It has been suggested as an
application in photonic devices. Also the confinement of
donors or acceptors to selectively doped GaAs/
Al„Ga& As heterostructures leads to high mobilities
and to high two-dimensional carrier densities. Therefore,
these selectively doped heterostructures might find appli-
cations in transistors with improved driving capabilities.

Historically, the Kronig-Penney model has been re-
garded as an idealized but successful method of calculat-
ing the band structure of crystalline solids with periodic
potentials. This simple one-dimensional model has main-

ly been used to study the qualitative nature of bulk crys-
tals. In recent times it has been applied to the study of
surface states of crystal structures as well as semicon-
ductor superlattices. In the latter case, the discontinui-
ties in the conduction and valence bands for
GaAs/Al Ga& As give rise to potential wells for the
carriers. The electron effective mass is different in the
well and barrier layers of superlattices, in contrast to a
constant effective mass in bulk crystalline materials. This
difference in the effective mass has been taken into ac-
count at the well-barrier interface when applying the
Kronig-Penney model to superlattices to obtain the elec-

tron wave functions and band energies. This matching
procedure has been carried out by Bastard' '" who
showed that the probability current would be continuous
at an interface if the first derivative of the wave function
divided by effective mass is continuous. Several other
boundary conditions have been proposed for the electron
wave function and its derivative. ' ' However, Bastard's
boundary condition is the most intuitive and is straight-
forward to apply.

A model calculation of the electronic states of a super-
lattice of period a interleaved with a periodic array of 5-
function impurity centers located in the barrier layers has
been presented by Beltram and Capasso. ' In Ref. 14, it
was discovered that through a judicious choice of the
width of the quantum well and of the location of the im-

purity within the barrier, the width of the minibands
could be controlled. It was shown that when the defects
are centered in the barriers the energy gap at the
Brillouin-zone boundary (m/a) could be closed for cer-
tain combinations of the barrier and quantum-well
widths. As the distance s of the defect from the center of
the barrier increases the gap reopens at tria. More re-

cently Peeters and Vasilopoulos' examined the effects of
introducing a rectangular defect of width d into the quan-

tum wells of a superlattice structure. These authors
showed that for a certain value of d, the gap at sr/a could
close when the defect is centered inside the well.

Several years ago, Lin and Smit' claimed that for cer-
tain depths of the potential wells of the Kronig-Penney
model (without defects), one of the energy gaps at the
Brillouin-zorje boundary may be zero. They explained
this by showing that if both the barrier and quantum well
contain an integral number of half waves, the energy gap
of the corresponding wave number must be zero. Their
numerical results also show that su%ciently deep triangu-
lar potential wells can give rise to zero energy gaps. ' In
this paper, we calculate the effects on the hulk band
structure when two rectangular defect barriers are insert-
ed in the quantum wells of a superlattice. We also study
the minibands of a superlattice which contain positive tri-
angular defects in the quantum wells. In addition, we
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determine the virtual surface states in the presence of an

external electric field at the surface of a superlattice con-

taining defects in the quantum wells.
The paper is arranged as follows. In Sec. II the disper-

sion relation for the energy bands of a bulk superlattice
having two rectangular potential barriers per well is ob-

tained. Numerical results are presented for one as well as
two defects. The bulk band dispersion relation for a tri-
angular potential profile is calculated. In Sec. III we cal-
culate the virtual surface states for a superlattice with de-
fects.
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II. BULK DISPERSION RELATION
FOR A SUPERLAI IICE WITH DEFECTS

In this section we derive the dispersion relation for the
Kronig-Penney model in which two rectangular defects
are positioned in each quantum well. The potential
profile for the two-defect problem is shown in Fig. 1. The
defects are located at distances s, and s2 from the centers
of the quantum wells. a is the period and the widths of
the defect barriers are d, and dz. The width of the well is
w and that of each barrier separating two adjacent wells
is b so that a =b +w. The electron effective mass is m',
mb, md*, and md inside the quantum well, the barrier,

1 2

and the first and second defect, respectively. The super-
lattice direction of growth is along the z axis.

FIG. 1. Barrier representation of the potential field in a su-

perlattice containing two defect barriers of width d& and d, .
The centers of the defects are at distances s& and s2 from the
middle of the quantum well. The width of the quantum well is

equal to w.

If we choose the zero point of energy at the bottom of
the quantum well, the potential energy is zero there. We
employ the Bastard' '" boundary condition at the inter-
faces and use the Bloch condition as well. After a
straightforward mathematical calculation, we obtain the
dispersion relation for electrons of energy E and Bloch
wave number k, as

cos(k, a ) =cosh(k&b ) [[cosh(k, d, )cosh(kzdz ) rid z)d s—inh(k, d, ) sinh(kzdz )]cosk (w —d, dz )—
+ [gd sinh(k, d

&
) cosh(kzdz )+rid cosh(k, d, ) sinh(kzdz }]sin[k„(w —d, —dz)]

+z)d+z)d+ sinh(k, d, )»nh(kzdz)cos[k (w —2s, —2s, )]I

+z)l, sinh(k„b ) I [ cosh(k, d, ) cosh(kzdz) ri„rid sin—h(k, d, ) sinh(kzdz)]

X sin[k (w —d, —dz)] —[7)d sinh(k, d, ) cosh(kzdz)+gd cosh(k, d, )

Xsinh(kzdz)] cos[k (w —d, —dz)]

+ qd+ rid+ sinh(k
~
d

&
)sinh( kzd z )sin[k ( w —2s, —2sz ) ] I

+ri&+sinh(k&b )(rid+ sinh(kzdz) Icosh(k, d, ) cosk (d, —2sz)]

—
rid sinh(k, d, )sin[k (d, —2sz)]I

+rid+ sinh(k, d~ ) I cosh(kzdz) cos[k (dz —2s, )]—z)d sinh(kzdz)

Xsin[k (d, —2s, )]I } .

The electron wave number in the well is
k =(2m'Elhi )' The wave num. bers in the barriers
and in the defects are given by

A, bkb+k
~b

b b w 2kd k,-k
(3)

where kb=m'/mb* and kd =m„*/md. The result for a
l l

single defect within each period is easily obtained by set-
ting d, =0, for example, in Eq. (1) while keeping dz finite.
The derived formula agrees with the result of Peeters and
Vasilopoulos. '

We have carried out numerical calculations for the
miniband energies using Eq. (1). In these calculations we

respectively, where Vb is the potential energy of the bar-
rier and Vd is the potential energy of an electron in a de-

l

feet (i =1,2}. In this notation we have introduced the
following quantities:

+2mq*( yq g) +2md ( Vd E)—
b= l fi

7
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assume that the quantum wells are made out of GaAs
and the barriers and defects out of the material
Al Ga, As, where x is different for the barrier and the
defect. Of course, different types of material could be
used for the defect barriers. The electron effective mass
in the alloy Al„Ga, „As is given by m '/m,
=0.067+0.083x and the barrier height is taken to be
Vo=(0.693x +0.222x ) eV. The key result of Ref. 15 is
that the band gaps at the Brillouin-zone boundary could
be closed by adjusting the width of the defect when it is
located in the middle of the well. When the defect is dis-
placed from this position, the gap at the Brillouin-zone
boundary is always finite. This curious result has
motivated us to carry out the present calculation involv-
ing two defects per period. In Fig. 2, we set d, =0 in Eq.
(1) and calculate the lower and upper bounds of the two
lowest minibands as a function of the position of the
second defect barrier from the center of the well. Our
numerical calculations show that the band gaps at the
Brillouin-zone boundary increase as a function of the dis-
tance sz of the defect from the center of the well. Only
when sz =0 were we able to obtain a value of d2 for
which the gap energy is equal to zero. Figure 3 shows a
plot of the first two minibands of a superstructure having
two defects in each of the quantum wells as a function of
the width of one of these defects at a distance s2 from the
center of the well while the one having width d, is locat-
ed at a distance s

&
from the center of the well. Consistent

with the results of our numerical calculations for a super-
lattice having a single defect in each quantum well, we
find that because one of the two defects is displaced from
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FIG. 3. The lower and upper bounds of the first two mini-
bands of a superlattice having two defects in each quantum well
(see Fig. 1). The defects have widths d& and d2 and are located

0 0
~ 0

at s& =25 A and s2 =25 A, respectively. We choose d& =20 A
and assume that both defects as well as the barriers separating
the wells are made of Al„Ga& „As. We take x =0.2 for both
the barrier and the defects.

the middle of the well, the energy gap at the Brillouin
zone is finite for all values of defect width and heights of
the defect potential barrier.

III. SUPERLATTICE WITH TRIANGULAR DEFECTS
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In this section we compliment our calculations of the
band structure for the Kronig-Penney model containing
defects inside the quantum well for which the potential
profile is rectangular to a model in which the defect po-
tentials are triangular (see Fig. 4). Following the pro-
cedure outlined in Ref. 17, for an isolated triangular bar-
rier, we apply the Bastard' '" boundary condition to cal-
culate the band structure for the structure schematically
represented in Fig. 4. The general solution of the
Schrodinger equation in the wedge-shaped region is a
linear combination of Airy functions Ai(x) and Bi(x). '
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s, (R)
20.0 25.0

FIG. 2. Ca1culated energies of the first two minibands as a
function of the distance s2 of a rectangular defect from the
center of the potential well. The results are based on Eq. (1)

0
with d, =0 and d2 =25 A, i.e., we assume that only one defect is
present in each period. The barrier width b =SO A and the
width of the well is taken to be m =200 A. We take x =0.3 for
the Al Gal „As in the barrier and x =0.4 for the defect.

FIG. 4. Square-we11 periodic potential {Kronig-Penney mod-
el), with triangular defects.
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Let w be the width of the quantum well, b the width of
the quantum well, b the width of the barrier, and d the
basal width of the triangular defect. We take s to be the
displacement of the center of the triangular barrier from
the middle of the well.

We introduce notation by writing down the solutions
of the Schrodinger equation in the various regions of Fig.
4. We have

2/3

2Kp
2

' 2/3

2Kp

Kp k + Kp
2x

2x
Kp

—k —
Kp

lowing change of variables:

(5)

. , (z)= A exp(ik z ) +8 exp( ik —z), 0 ~ z ~ g, ;

(4a)

Pd. i(z) =CAi(g)+D Bi(g), g, z —+s;

Pd z(z) =E. Ai(ri)+F Bi(ri), —+s ~z ~
gz ,

' (4c)

g .z(z) =6 exp(ik z)+H exp( ik —z), (2 ~z ~ w,

(4d)

P&(z)=J exp( —k&z)+K exp(kl, z), ui ~z ~a; (4e)

where g, 2—= (w+2s+ d )/2. We have introduced the fol-
I

(6)

where the transfer matrices are

where x—:z —(w/2+s). We have also introduced the
wave number ~0 defined by Kp= +2m„' Vo/i' where Vo
is the height of the defect at the apex of the triangle.
Matching 1((z) and m' 'dg(z)/dz for the wave func-
tions, given in Eqs. (4), within a period of the superlattice
we obtain the transfer matrices relating the constant
coefficients appearing in the wave functions. Applying
this in conjunction with the Bloch condition we obtain
the eigenvalue equation for the electronic state with wave
number k, and energy E It is g. iven by

r

A A
=M5M4M3M2M)e

M)=n
ul lr (g )

~ 'S (g ) — ~ 'S+(g )

(7a)

M =m
2

Ai()u)Bi'(p)+Ai'(p)Bi(p) 2Bi(p}Bi(p)
—2 Ai(p)Ai'(p) —[Ai(p)Bi'(p)+Ai'(p)Bi(p, )]

[Ai(g, )
—

rd Ai'( g, )]e ' [Bi(g~ )
—

rd Bi'( g, ) ]e

[Ai(gi )+ rd Ai'(gi )]e ' [Bi(gi )+rd Bi'(g~ )]e

(7b)

(7c)

(kb+ik )~

1 The
4 2 + —(k —k )

Tb e

+ (kb iku )tt)

Tb e
—(kb+Ik )w

Tb 8
(7d)

1 bR
M 5 2 R+ —kba

b
8'

R+ b
b

(7e)

Here g, = —(dko/2vo) ~ and p,
—= (d~o/2) (1—ko/so~), is given by

cos(k, a ) = —,'Tr[M5M~M3M2M, ], (10)

Tb =1+, Rb =1+Rb ~

+ + 1 +
Rb

(9)

where Rb —= —ik,bkb/k . The determinant of the prod-
uct of the matrices in Eq. (6) is equal to unity. Therefore,
the dispersion relation for wave number k, and energy E

Ai(g, )

Sd
+—

(g, )
—=Ai'(g, )+

T

with rd = —i Ad/+ —
g&., where A.d has been defined in

Sec. II. We have also introduced the quantities

where Tr [ ] means that the trace of a matrix is to be
taken. We have carried out numerical calculations for
the dispersion relation in Eq. (10}making use of Eqs. (7)
for the transfer matrices. In Fig. 5 we plot the calculat-
ed energies for the first two minibands as a function of
the basal width d of triangular defects centered in the
middle of the quantum wells. This demonstrates that the
separation between the minibands decreases as the defect

0
width increases up to d =30 A and remains closed up to
d =35 A. When the defects have their centers displaced
from the middle of the wells, this range of defect widths
for which the gap remains closed decreases until s = 10 A.
This is, of course, in contrast to the superlattice with rec-
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FIG. 6. Potential profile for a doped semi-infinite semicon-
ductor superlattice with an applied electric field y. For time
t &0, the potential in the vacuum region is constant and equal
to Vo. For t &0 the potential is V(z) = Vo —yz. The screen lo-
cated at z =D is represented by an infinitely high potential bar-
rier.
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The wave function in the linear potential region
0 & z & D is the Airy function solution

1( t,(z ) =C, Ai( u ) +Cz Bi( u ),
where

FIG. 5. This figure shows the two lowest minibands as a
function of the basal width of triangular defects located in the
middle of quantum wells. We assume that the defects and bar-
riers are made from the alloy A1„Ga& „As and take x =0.3 for
the barrier and x =0.4 for the defects. The barrier width b =50
A and the width of each well is taken to be m =200 A.

u =(2mo/A y )' (Vo —yz E), — (12)

where mp is the free-electron mass. The solution of the
Schrodinger equation in the barrier region between z =0
and z = —b is given by

gb(z)=J exp( kzz)+K—exp(k&z), b~z—~0 . (13)
tangular defects which we discussed in Sec. II. We have
also carried out calculations when the triangular defects
are asymmetric about the perpendicular line drawn from
the apex to the base. Our numerical calculations show
that in this case the defects could have their centers dis-
placed from the middle of the wells and we could have
the miniband separation at the Brillouin-zone boundary
vanishing for a range of values of the displacement s.

IV. VIRTUAL SURFACE STATES
FOR A DOPED SUPERLATTICE WITH DEFECTS

The results presented so far have been concerned with
calculations of the energy bands of doped superlattices in
bulk. We now turn our attention to the effects generated
by an applied electric field on the properties of surface
states in semiinfinite superlattices which contain positive
defects in the walls. We restrict our attention to the case
when the potential field produced by the defects is rec-
tangular. This problem is of some interest since there has
been a considerable amount of work on the properties of
Uirtual surface states, i.e., surface states in the presence of
a negative electric field, and the associated electron tun-
neling from these states through the linear potential bar-
rier. ' We assume that the semi-infinite superlattice oc-
cupies the negative half-space (z ~0) with vacuum in the
positive half-space. The potential in the vacuum region
has a constant value Vp for time t &0, before it changes
suddenly at t =0 to the linear potential V(z)= Vo

—yz
for t)0. There is a screen located at z =D which is
represented by an infinitely high potential barrier (Fig. 6).

The wave function vanishes at z =D [i.e., g&&(D)=0].
Using this in conjunction with the continuity of the wave
function and m' 'dl((z) jdz at z =0, we obtain after a
little algebra

(kb —0)J=(kb+0)K, (14)

where

mb 2pmp

$2Pl p

Ai(u ( )Bi'(uo) —Ai'(uo)Bi(u ) )

Ai(u ) )Bi(uo) —Ai(uo)Bi(u, )

(15)

with uo=—u(z =0) and u& —=u(z =D). The eigenfunctions
in the various regions of the superlattice within a period
a can be written down in a straightforward way. Our cal-
culations show that the eigenvalue equation for the elec-
tronic state with wave number k, and energy E is given

by

K=~'' K (16)

where Q is a product of 2 X 2 transfer matrices relating
the coe%cients of the electronic wave functions of the su-
perlattice. From Eqs. (14) and (15) we obtain the disper-
sion relation for virtual surface states:
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1
cos(k a)=—

2

k~ —0
1+ Qil+Q12 k+0b

kb —0
k+nb

(17)

where Q» and Q, z are the elements in the first row of the
2X2 matrix g. When there are double rectangular de-
fects in each quantum well, cos (k,a) is given by Eq. (1).
In the limit when there is just one rectangular defect per
quantum well, we have

and

Q»=e ' {cosh(kid)cos[k (w d)—) rib
—cosh(kdd)sin[k (w —d)]

—
gd sinh(kdd)sin[k (w —d)]

—
rib rid+sinh(kid ) cos(2k s)+r}b rid sinh(kdd )cos[k„(w —d)]J (18)

Q&z=e '
[gb cosh(kdd)sin[k (to —d)] qd+ s—inh(kdd) sin(2k s)

r)b rid
—sinh(kdd) cos[k (w —d)]+gb rid+ sinh(kdd) cos(2k s)I (19)

Here d is the width of the defects and s is the distance of
the center of each defect from the middle of the wells.
We can now substitute these results for Q» and Q, ~ into
the surface dispersion relation in Eq. (17).

We have calculated surface states using Eqs. (17)—(19).
In Fig. 7 we plot the surface energies as a function of the
width d of rectangular defects centered in the middle of
the wells. We show plots when an electric field is applied
and also when the electric field is zero. We chose the
electric field y=0. 5 eV/A and, for both Figs. 7(a) and

7(b), we take the constant potential in the vacuum region
Vo=0.4 eV, the distance D =2 cm. The widths of the
well and the defect are w =200 A and d =20 A, respec-
tively. Here we see that there are two surface states for
the superstructure. When an electric field is applied the
surface states get closer to each other as the width d of
the defect increases up to d = 18 A and then they
separate with increasing values of d. When the electric
field y =0, our calculations show that the surface states
move closer to each other with increasing defect width up
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FIG. 7. Energy of surface states as a function of the width d of defects centered in the middle of the wells. In (a) an electric field
0

y =0.5 eV/A is applied at time t )0 in the vacuum region z & 0. In (b) there is no applied electric field. The parameters chosen for
the constant potential Vo, the width d of the defect, and m for the quantum well are given in the text. The concentration x of Al in
the defect and the barrier, both of which are chosen to be Al„Gal As, is also given in the text.
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0
to d =3 A, where there is just one surface state. As the
width of the defect barrier increases, we find that there is
a range of values of d for which there are no surface
states. For 17 A~d ~25 A we find two surface states.
For d)25 A, there are no surface states. Of course,
these results have interesting implications for the field
emission of electrons from surface states.

V. CONCLUDING REMARKS AND SUMMARY

T

~
V

~

=— V cos(gs)sin
2 gd

g d
gb—V sinb

2

2 gd+ V sin (gs)sin

' 1/2

Only when s =0, could we have V =0 which corre-
sponds to Vd/Vb equal to sin(nb/a)/sin(nd/a) The.
agreement between the numerical results obtained from
Eq. (1) and the approximate value for the defect width
and potential barrier when the band gap at the zone
boundary closes is fairly good (10—15%%uo}. This could be
interpreted as follows. When the wave number k, is on a
Bragg plane, the energy levels (to leading order in the
Fourier component Vs }, are indistinguishable from their
free-electron values for some value of defect width when
s =0.. This of course, is not possible when the defects are

In this paper we have presented a calculation for the
minibands of a superlattice which has positive defects in
the quantum wells of the superlattice. The bulk disper-
sion relation has been calculated analytically when there
are two rectangular defects present within the quantum
wells. We have also calculated the transfer matrices for a
structure having one triangular defect in each quantum
well. Numerical results for the minibands have been ob-
tained as a function of the width of the defects as well as
the displacement s of the center of the defect from the
middle of the wells. When there is a periodic repetition
of only one rectangular defect in every quantum well, we
have found that the minigaps of the superlattice at the
Brillouin-zone boundary do not close when the distance s
is finite. Only when s =0, could the rninigaps close for a
certain width (or height) of the defects. 's As a matter of
fact, in the nearly-free-electron approximation, the band
gap on the Bragg plane is equal to twice the magnitude of
the Fourier component 2~ V

~
of the periodic potential,

where g =2m. /a. When there is just one defect in each
quantum well, we have

off-centered since the symmetry and/or antisymmetry of
the eigenfunctions, with respect to the middle of the
quantum wells, is broken. For tao rectangular defects in
each quantum well of the superlattice, our numerical ca1-
culations show that the miniband gaps get larger as the
distance of the center of the defects from the middle of
the wells increases; the gaps do not close when there are
two rectangular defects in the quantum wells. For tri-
angular defects, we have found novel results for the mini-
band gaps as a function of the width d of the defects and
the distance s of the center of the defects from the middle
of the quantum wells. We have found that for s =0 the
minigaps get narrower as d increases and the gap remains
closed for a range of values of d, then the minibands
separate again for larger values of d. As s increases the
range of values of defect width for which the minigaps
remain closed gets smaller until, for sufficiently large
values of s, the gap does not close.

The surface states calculated here also show an in-
teresting dependence on the widths of the defect barriers
introduced into the quantum wells. In the sudden ap-
proximation of time-dependent perturbation theory, ' we
found that when an electric field y is applied the two sur-
face states get closer together as the width d of the defect
increases and then they separate for larger values of d.
When y =0 our calculations show that there are surface
states only for a certain range of values of the defect
width d. This, of course, means that the surface-state
current could be controlled by varying the width of the
defect. Similar results could also be obtained by varying
the height of the defects. The integrated density of states
for a doped superlattice and the surface-state tunneling
will be presented elsewhere.

Several years ago, Glasser presented a general formu-
lation for the thermodynamic potential of an electron gas
in the presence of an external magnetic field and a neu-
tralizing electrostatic potential which is periodic along
the direction of the magnetic field. In Ref. 20, the ther-
modynamic potential, from which all equilibrium proper-
ties could be calculated, was expressed in terms of the
one-dimensional band structure of the solid. We plan to
extend Glasser's formulation to a superlattice where the
electron effective mass is not uniform along the superlat-
tice growth direction.
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