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A newly developed first-principles quasiparticle theory is used to calculate the band offset at the
(001) interface and band gaps in 1X1 and 2X2 superlattices of GaAs-AlAs heterojunctions. We
find a sizable many-body contribution to the valence-band offset which is dominated by the many-
body corrections to bulk GaAs and AlAs quasiparticle energies. The resultant offset
hE =0.53+0.05 eV is in good agreement with the recent experimental values of 0.50-0.56 eV.
Our calculated direct band gaps for ultrathin superlattices are also in good agreement with experi-
ment. The Xl, -derived state at point 1, is however, above the I l, -derived state for both the 1 X 1

and 2X2 lattices, contrary to results obtained under the virtual-crystal approximation (a limiting
case for the Kronig-Penny model) and some previous local-density-approximation (corrected) calcu-
lations. The differences are explained in terms of atomic-scale localizations and many-body effects.
Oscillator strengths and the effects of disorder on the spectra are discussed.

I. INTRODUCTION

Because of their great importance in high-speed elec-
tronic devices, semiconductor heterojunctions have re-
ceived considerable attention. ' One of the fundamen-
tal problems for these systems is the determination of
their electronic structure and band offsets. Contrary to
earlier belief, ' relatively larger valence-band offsets
are now generally accepted. " ' A 65/35 ratio was
found for the conduction (hE, ) and valence (b,E„) -band
offsets of the prototypical GaAs-A1As heterojunction
grown with a molecular-beam-epitaxy (MBE) technique.
Considerable theoretical effort has been made to predict
these offsets. "' Earlier theories " predicted a
nearly vanishing value for the valence-band offset for the
GaAs-A1As heteroj unction, except for an empirical-
pseudopotential calculation. ' Recently, local-density-
functional (LDA) calculation using ab initio pseudopoten-
tials gave hE, =0.37 eV. ' All-electron calculations
within LDA also predicted a large valence-band
offset. ' ' The discrepancies between the earlier models
and recent calculations are now understood. The ear-
lier (tight-binding-type) models had omitted the d core
levels. In ab initio pseudopotential calculations, the in-
teraction between the d core and valence electrons is in-
cluded through nonlocal d potentials although the cores
are frozen at the atomic level.

An area closely related to the heterojunction is the
study of superlattices. A superlattice is a periodic array
of heterojunctions. High-quality superlattices of artificial
periods can be made using the MBE technique. %ith
the recent development of the metalorganic chemical
vapor deposition (MOCVD) technique, ultrathin

GaAs/A1As (001) superlattices down to 1X1 period are
also available. New physical phenomena related to
quantum confinement, Brioullin-zone folding, and quasi-
two dimensional electron-gas behavior occur within the
superlattices. Superlattices therefore have potential ap-
plications. A perturbative envelope-function approach
(or Kronig-Penney model) proposed by Bastard is often
used to describe large-period superlattices. ' The so-
phisticated LDA calculations currently are only applic-
able to ultrathin superlattices.

However, the use of the LDA eigenvalues can lead to
grossly incorrect predictions for the band gaps as well as
for the band offsets. Such errors, although they do not
diminish the merits of the Hohenberg-Kohn-Sham LDA
in correctly determining ground-state properties of solids,
refiect the inability of this approach to calculate the elec-
tronic structure of excited states. Because of this inabili-
ty, LDA results for superlattice electronic structure,
which are believed to be more erroneous than band
offsets, are usually cross checked by other methods or ex-
periments, e.g. , although most recent LDA calculations
predict that the lowest-folded X state at point I is above
the I -derived state for the l X 1 and 2 X 2 lattices, this re-
sult is not generally accepted since it appears to contra-
dict with experimental results for larger lattice
periods and the classical envelope-function re-
sults. * Qften, the LDA results are "corrected" by
adding the known LDA errors for the band gaps in bulk
materials [we shall refer to these as LDA (corrected) re-
sults]. An underlying assumption for these corrections is
that many-body effects going beyond the LDA are in-
dependent of the superlattice periods. An adequate ap-
proach to the excitation energies and band gaps is to
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solve the self-energy equation ' for quasiparticle energies.
We have recently extended Hedin's GW quasiparticle for-
malism for the self-energy operator to systems without
an inversion center. Here, this formalism is applied to
the GaAa-A1As heterojunction band offset and band gaps
in ultrathin superlattices.

The paper is organized as follows. In Sec. II, we
present a theory for valence-band offset and its applica-
tion to GaAs-A1As heterojunctions. In Sec. III, the elec-
tronic structures of the 1X 1 and 2X2 superlattices of
GaAs/A1As (001) are discussed. A brief summary is
given in Sec. IV.

II. GaAs/A1As (001) VALENCE-BAND OFFSET

The LDA calculations for semiconductors and semi-
conductor interfaces have the important advantage that
the self-consistent charge densities are properly calculat-
ed. Thus these calculations provide the correct dipoles at
the interfaces. However, using the LDA to calculate the
valence-band offset further requires that the LDA eigen-
values representing the position of the valence-band edge
states in the materials on both sides of the interface ade-
quately approximate the true electron-removal energies,
i.e., the quasiparticle valence-band edges. This assump-
tion is found to be incorrect and the many-body correc-
tion to the LDA valence-band offset is significant. We
find this correction to be 0.12+0.02 eV for the
A1As/GaAs (001) interface; this is about 30% of the
LDA offset value (5E„=0.41 eV). Hence, our calcu-
lated value for the valence-band offset is b E„
=0.53+0.05 eV in good agreement with the most recent
experimental values of 0.53-0.56 eV. ' '

Within the quasiparticle framework, the valence-band
offset can be rigorously written as the difference between
the quasiparticle valence-band maxima at each side of the
materials far away from the boundary

~Eu ~Eu +5VBM+5VBM ~ (2)

with b,E„" A defined to be the LDA valence-band offset,

5~'" =( V a V lAs) ( V a s V As)LDA.
VBM H H H H

VBM, GaAs VBM, AlAs

Following the procedure used to derive Eq. (22) in Ref.
43, this can be written as

Hartree energies VH, which is expected to be small. This
term will, however, be examined later since it has not
been shown that using LDA to approximate the exact
charge densities does not cause sizable error in the elec-
trostatic dipole. The many-body correction term 5vBM,
is, on the other hand, a bulk property since the offset
should be evaluated at large distances away from the in-
terface and both operators f and P'„, are short range.

To calculate the LDA band offset EE„we use an ap-
proach similar to that in Ref. 16 and of Van de Walle and
Martin. The local part of the self-consistent LDA po-
tential of supercells, V(r) is averaged within a volume
equal to the bulk unit cell in the bulklike regions of GaAs
and A1As. The average potential is denoted here as V
and their difference 5V= VG,„,—V„l„, is used to line up
bulk LDA eigenvalues. In this calculation, the GaAs lat-
tice constant (a0=5.6523 A) (Ref. 45) is used corre-
sponding to a MBE-grown heterojunction on a GaAs
substrate. The values of the LDA valence-band maxima
converged to within 0.02 eV which in our estimate will
cause an uncertainty of 5 meV in the result for the LDA
valence-band offset. The relative position of the average
potentials V is calculated using results from 2X2 and
3 X 3 lattices and a 6—k-point set for the Brillouin-zone
sum. An energy cutoff of 12 Ry is used for the plane-
wave expansion in the supercell calculation. The energy
cutoffs, the number of k points, and the layer thickness of
the supercells ensure a total convergence to within 0.02
eV. The calculations were iterated until the potential was
self-consistent to within 10 Ry in the whole space and
hV was stable within a few meV. Hence, our result for
the LDA valence-band offset after taking into account
the spin-orbit splittings is EE„A=0.41+0.03 eV. A
slightly different scheme for evaluating the LDA band
offset has recently been proposed. As long as the b V is
converged with respect to the layer thickness in the su-
perlattice, the two schemes yield similar results.

We estimate the dipole correction 5vB'M in the follow-

ing way. Vz in Eq. (3}is the electrostatic dipole potential
and hence is independent of the band and k- vector in-
dices as well as the spatial variables. We can calculate Vd

by taking the difference between the average Hartree po-
tentials in the bulklike GaAs and A1As regions. The
average is with respect to the x and y coordinates, and
with respect to the z coordinate within bulk period.
Hence,

and

V(p)V(pLDA} (3) 6e2L2
Vd = [p"(0,0, 1)—&3p'(0, 0, 1)+ ],

cell

(5)

5VBM ( ~ Vxc )GaAs ( ~ Vxc AIAs (4)

where VH denotes the Hartree energy,
&QVBMI t H(p)IltvBM&; Vd is the interfacial electrostatic
dipole potential, p and p are the exact and the LDA
charge densities; and X and V„, denote the expectation
value» &PVBMIf(EvBM}IPVBM& and &gvBMIt „IPVBM&
respectively. Here, f is the self-energy operator, while
P'„, is the density-functional exchange-correlation poten-
tial, evaluated in the LDA.

The dipole correction 5""' is from corrections to the

where e is the electron charge, L and V„l, are the cell size
(along supercell axis z), and the volume of the supercell
used to evaluate Vd, p"(G), and p'(G) are the real and

imaginary parts of the number charge density (in units of
electrons per supercell), respectively. The supercell used
here is a 3 X 3 cell. One should notice that although Vd is
a well-defined quantity, some minor details of Eq. (5) de-
pend on the choice of origin. The higher-order terms of
Eq. (5) have the form

p(0, 0, (2n +1))/(2n +1), n =1,2, 3, . . . ,
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10 14

5v~M (eV) 0.082 0.116 0.121

TABLE I. The many-body correction 5»M versus number of
q points used in the Brillouin-zone sum.

0.0

-0.2

04
I

-0.6CF'

UJ

-0.8

~ ~
k

so that the series converges quickly. This is because the
higher Fourier components of charge density have more
spatial oscillations and hence are less effective in terms of
transferring charge across the boundary. About 80%%uo of
the electrostatic dipole is determined by the lowest G
component of charge, G=(0,0, 1), which is least affected
by the LDA used to approximate the short-range
exchange-correlation potentials. In general, the low-G
components of the LDA charge density agree with exper-
iment to within a few percent. Moreover, from the linear
dependence of Vd on charge density p and Vd = —0.36
eV for GaAs/A1As (001), we estimate that a l%%uo devia-
tion in the low G components of the LDA charge density
from the exact density-functional result affects Vd by less
than 4 meV. Hence, 5""' is negligible.

The bulk many-body term 5vaM is determined as fol-
lows. In Table I 5v&M is given as a function of the num-

ber of q points, N used in the Brillouin-zone sum in Eqs.
(24) and (25) of Ref. 43 for evaluating X. The numerical
value of 5vaM is 0.12 eV for Nq = 14 and the estimated ac-
curacy is about 10 meV. A systematic trend for the
valence band is easily observed in Fig. 1 in which
Eg —e„P versus Eg is shown for both the GaAs and
A1As p-like valence bands. There is a consistent 0.1—0.2
eV difference in the many-body correction to the LDA ei-
genvalues for the GaAs and A1As valence-band states.
This is consistent with the value of the many-body contri-
bution to the valence-band offset 5vaM, which is deter-
mined to be 0.12+0.02 for this interface. This contribu-
tion is significant and is about 30% of the LDA value.

The sign of 5v&M can be understood by examining the
individual terms of the self-energy at the valence-band
maxima: the bare exchange, screened exchange, and
Coulomb-hole components (see Table II). A more nega-
tive bare-exchange energy is found in A1As, which is 0.3
eV lower than that of GaAs. The exchange hole for this
state in A1As is therefore deeper and narrower than that
in GaAs. This is consistent with a more localized
valence-band wave function for AlAs. The occupied p-
like band of A1As is found to be about 1.1 eV narrower
than that of GaAs. The screened exchange term reduces
the bare exchange in both GaAs and A1As but has little
effect on their difference. However, the Coulomb-hole
energy competes with the exchange energy and reduces
the differences by about 0.2 eV. A larger negative-

-8 -6 -4 -2 0

FIG. 1. Quasipartic)e correction Eg e„„"-vs quasiparticle
energy Eqt', for the p-like valence bands of bulk GaAs (solid cir-
cles) and A1As (solid triangles). Eg =0 corresponds to the top
of the valence band.

III. GaAs/A)As (001) ULTRATHIN SUP ERLATTICES

Recent experiments show that ultrathin superlattices
exhibit high degrees of crystalline order, small interlayer
diffusion, and hence are metastable. This has stimulated
many studies on their electronic structures. ' It
is expected that these structures have different electronic
properties than thick-layer superlattices. In this section,
we apply the quasiparticle theory to the electronic struc-
tures of the 1X1 and 2X2 superlattices and discuss spe-
cial features of these lattices such as atomic-scale locali-
zation, avoided band crossings, effective-mass change, an-
isotropic oscillator strength, and the degeneracy of segre-
gating states.

The calculational details can be found in Ref. 43. In
particular, a 16-Ry cutoff energy (for the 1 X 1 lattice) and
a 12-Ry cutoff energy (for the 2X2 and 3X3 lattices) in
the plane-wave expansion are used for the LDA self-
consistent potentials. A 16-Ry cutoff energy is used
throughout to obtain the LDA eigenvalues and wave
functions. To calculate X, 250 and 500 bands have been

Coulomb-hole energy in GaAs is consistent with more
effective screening [e„o,A,

= 10.9 and e „A)A,=8. 16
(Ref. 45)]. Since LDA gives an almost identical
exchange-correlation potential V„, for GaAs and A1As,
the many-body correction to the LDA is more negative in
A1As; this leads to a positive 5vaM. This conclusion
agrees with previous results for diamond, Si, Ge, and
LiC1, where the many-body correction to the valence-
band maximum increases as the wave functions become
more localized.

In conclusion, the LDA cannot be used for an accurate
prediction of the band offsets although it is a useful
method for many ground-state properties. We expect
that the many-body effects will play a more important
role in band offsets for chemically less similar materials.

TABLE II. The bare exchange X, screened exchange X„„,Coulomb hole X„h„self-energy X, and
the LDA exchange-correlation potential V„, at the valence-band maximum for GaAs and A1As in eV.

GaAs
A1As

—12.638
—12.936

~sex

8.987
8.992

—8.280
—8.110

—11.931
—12.054

V„,

—11.759
—11.761
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used for the 1X1 and 2X2 lattices, respectively. Up to
11 q points in an irreducible zone of the superlattice have
been used for the Brillouin-zone sum for the 1 X 1 lattice.
The sum over umklapp process was truncated at
G,„=9.0 Ry. The error due to these finite cutoffs is es-
timated to be about 0.1 eV. For the 2X2 lattice, six q
points are used for the Brillouin-zone sum and the sum
over umklapp process has been truncated at Gmsx =7~ 84
Ry. The lattice constant of GaAs (ao=5.6523 A) (Ref.
45) is used for the superlattice. A 0.14% mismatch of the
lattice constant (ao =5.660 A} (Ref. 45} may cause some
relaxatign but this should not affect the band structure
significantly.

A. Band structures of 1 X 1 and 2 X 2 lattices

3.0

0

0.0
LIJ

-3.0
R

(o) 1 x1

The unit cell of the 1X 1 lattice and the corresponding
Brillouin zone are shown in Fig. 2. The 1 X 1 Brillouin
zone can be obtained by folding the bulk zone once.
Hence, point I' corresponds to both points F and X„
point M corresponds to both points X„and X~, and point
R corresponds to both points L, and L, of the corre-
sponding bulk Brillouin zone, respectively. For a 2X2
lattice, each It point corresponds to the folding of four It
points of the zinc-blende-structure lattice. Hence, point
I' is given by points I', X„and kb, /2; point M by points
Xz y and 8'„»,; and point X by points Lz, and
kX/2, respectively. The 1X1 and 2X2 lattices belong to
different space groups. This gives rise to symmetry oscil-
lations with respect to layer thickness for zone-folded
states.

The calculated quasiparticle band structures are shown
in Figs. 3(a) and 3(b) along the symmetry line R —I —M
(1 X 1) and X—I —M (2 X 2), respectively. For an accurate
band structure for Ga(A1)-As, the spin-orbit splitting
should be included. These splittings for ultrathin super-
lattices have not been measured accurately so that no ex-
perimental data can be used to "refine" current theoreti-
cal nonspin-orbit results. We have calculated the spin-
orbit splittings with the LDA. The many-body correc-
tions are then included according to the linear combina-

/

0 Al QGa ~ As

FIG. 2. The conventional and primitive unit cells of the 1 X 1

GaAs/A1As superlattice along the [001]direction and the corre-
sponding Brillouin zone drawn within an fcc zone.

3.0

(b) 2x2

FIG. 3. Quasiparticle band structures in the vicinity of the
gap (a) for the 1 X 1 lattice along the symmetry line R -I —M; (b)
for the 2X2 lattice along the symmetry line X—I —M. Spin-
orbit splittings are not included.

tion of superlattice states induced by the spin-orbit in-
teraction. An alternative approach is to calculate the
spin-orbit interaction for the quasiparticle states. The re-
sults between the two approaches are, however, quite
similar (less than 0.01 eV difference for the GaAs-A1As
heterojunction). We determine the split-off gap at the
valence-band maximum for the 1 X 1 lattice to be 0.34 eV.

The effects of core-valence exchange should also be
considered. These effects are small but are important for
predicting accurate energy gaps as discussed in Refs. 42
and 43. The core-valence effects are in principle very
short in range and should be nearly identical for bulk and
for superlattices. Hence, by adding these terms, the cal-
culated energy levels for the superlattices should be
closer to the true values and are hence more reliable. Be-
cause of the absence of compatible and accurate all-
electron quasiparticle calculations for GaAs and A1As,
the differences between the experimental data and present
quasiparticle values for bulk GaAs and A1As will be used
as the core corrections for the superlattices. ' The
weighting factors used in the correction for dividing bulk
regions are determined by integrating the charge density
over the GaAs region (see Table III). The major effect of
the core-valence exchange is to move the lowest I „state
up relative to other conduction-band states by about 0.2
eV.

We would like to emphasize the difference between the
present procedure of considering core effects and the
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TABLE III. Total charge integrated over GaAs region for
some symmetry states for 1X 1, 2X2, and 3X3 lattices in per-
centage (%%uo). Data are shown with bulk symmetries.

(bulk)

1X1
2X2
3X3

65
56
61

54
44
26

40
59

X1c,xy

47
42

TABLE IV. Quasiparticle energies from the top of valence
band for symmetry points for 1X1 and 2X2 lattices in eV.
Core corrections and spin-orbit splittings have been considered.
LDA (corrected) and virtual-crystal-approximation (VCA) re-

sults are also given.

1X1

present
WZ'

GCC

2.11
2.18
1.93

2.23
2.17
1.99

Rim

1.85
1.88
1.69

2.13
2.10

LDA (corrected) methods. The core correction has a
well-established physical origin and is small compared
with the gap value (about —,', of the gap value or less}. In
contrast, in the LDA (corrected) cases, the correction
terms are large with the entire many-body effect taken as
a frozen term from the bulk characters of the states.
Without the present quasiparticle calculation, it would be
impossible to estimate the magnitude of the errors in the
LDA (corrected) calculations.

Present results including the spin-orbit interactions as
well as the core effects are given in Table IV. We esti-
mate a total uncertainty of about 0.1 eV for these results.
A few features should be pointed out.

For the 1 X 1 lattice, (1) the I „(I„)state is below the
I 4,(X„,) state; (2) the R „(L„)state is the conduction-
band minimum; (3) the M5, (X„„~) state is lower than
the I 4,(X„,) state.

For the 2 X 2 lattice, (1) the I „(I „)state is still below
the I &, (X&, , ) state, but the energy separation is slightly
reduced; (2) the low-lying L-derived state X„is no longer
the conduction-band minimum and is, instead, above the
I'&, and Mz, states; (3} the conduction-band minimum is

at the Mz, (X„„~)state.
The LDA (corrected) results are also given in Table IV.

The results of Wei and Zunger agree better with the
present results, while the results of Ref. 31 are consistent-
ly smaller. Contrary to the quasiparticle results, the
LDA (corrected) calculations state that the I „-derived

state is above the X„,-derived state. This is partly be-
cause the estimated many-body corrections for the folded
X state used in the LDA (corrected) calculations are inac-
curate. We find that the calculated many-body correc-
tions for the 1 X 1 lattice are 0.91 eV for I 2, (I „),0.86
eV for I 4, (X&, ), and 0.79 eV for M~, (X„). In contrast,
the mean values of the many-body corrections for GaAs
and A1As (Ref. 43) are 0.92 eV (I „),and 0.77 eV (X„),
respectively. These mean values are implicitly used in the
LDA (corrected) calculations. We notice a sizable
difference between our result (2.23 eV) and Wei and
Zunger's result (2.02 eV) for the I „(X)state for the 2 X 2
lattice. Performing an LDA (corrected) calculation simi-
lar to Wei and Zunger, we get 2.18 eV for this state.
Hence, this particular discrepancy is not caused by
many-body corrections. Since for the 2X2 lattice both
the I and the folded X states have I

&
symmetry and

hence mix with each other, convergence in the calcula-
tion is perhaps crucial. We point out that for a noncon-
verged calculation with an energy cutoff of 12 Ry, the
pseudodirect quasiparticle gap would be smaller than the
direct band gap, the reverse of our more converged re-
sults.

The virtual-crystal-approximation (VCA) results for
Gao 5A10 5As alloy are also shown in Table IV for corn-
parison with the quasiparticle calculation for the 1X1
lattice. These results are obtained in the following way.
The VCA energy gaps have been found within the LDA
to change nearly linearly with respect to the change of
cation composition x. Hence, we have used here an
empirical approach and list in Table IV the arithmetic
average of the measured GaAs and A1As band gaps as
the VCA results for x =0.5. Such a VCA is a special
case of the Kronig-Penny model for zero well and barrier
thicknesses. The quasiparticle gap for X&, „-derived
states (2.13 eV) agrees well with the VCA result (2.13 eV).
The gap for the I 4, (X&, , ) state (2.23 eV) is, however, 0.1

eV higher because of an increase in the many-body
correction discussed earlier and a repulsion from the
lower I -derived I 4„valence state. For the L&,-derived
state, the quasiparticle gap (1.85 eV) is smaller than the
VCA result (2.32 eV) because of a strong repulsion be-
tween the two originally degenerate L&, states. The aver-
age value of 2.32 eV for the two repelling states, 1.85 and
2.79 eV, is on the other hand, in reasonable agreement
with the VCA. The most significant difference is of the
I „-derived state for which the quasiparticle gap (2.11
eV) is about 0.2 eV smaller than the VCA result (2.32
eV). This is a consequence of an atomic-scale localization
effect (discussed in some detail in Sec. II C).

2X2
present

WZ'
aCCb

(bulk)
VCA

'Reference 29.
Reference 31.

r„
2.18
2.23
2.03

I„
2.32

r„
2.23
2.02
1.85

Xl, ,
2.13

X„
2.34
2.35

I.I,
2.32

Mzc
2.16
2.06

+ I c,xy

2.13

B. Comparison with experiments

The experimental data are summarized in Table V. At
this time, except for a strong low-energy peak corre-
sponding to the I -I direct transition, the assignments for
indirect and pseudodirect transitions are still in dispute.
Three major experimental techniques are currently avail-
able for detecting the direct transitions: excitation spec-
tra of luminescence, ellipsometry measurements, and res-
onant Raman scattering.
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TABLE V. Experimental data for direct and indirect transition energies in eV. PLE denotes the threshold in excitation spectra of
photoluminescence, "Raman" denotes resonant Raman scattering, and PL is the photoluminescence experiment.

PLE
Direct

e11ipsometry Raman PL
Indirect

Raman

1X1
2X2
T {K)
Refs.

2.214
2.190
2

52

2.19
4.6

53

2.07
2.08
RT
30

2.18
30
53

2.006

RT
55

2.108

RT
49

1.890

1.7
37

1.931
1.971
2

52

2.070
4.6

53

2.05
2.02
4.2

25

1.890

RT
49

A luminescence excitation experiment' at low temper-
ature (2 K) gives the excitation threshold energies at
2.214 eV for the 1X1 lattice and 2.190 eV for the 2X2
lattice, respectively. The recent ellipsometry measure-
ments give ED=2.07 eV (1X1) and ED=2.08 eV (2X2)
at room temperature and ED=2. 18 eV (2X2) at low

temperature. ' The strong peak for resonant Raman
scattering at room temperature for the 1X1 lattice is
ranged from 2.006 (Ref. 55) to 2.108 eV. From these
data and from the fact that the direct band gaps for
GaAs and AlAs are smaller by about 0.1 eV at room tem-
perature, we expect that the direct band gap for the 1 X 1

lattice is ranged between 2.1 and 2.2 eV. Our calculation
gives 2.11 eV for this lattice. The direct band gap for the
2X2 lattice, on the other hand, is well determined to be
2.18—2.19 eV, in good agreement with our calculation
2.18 eV.

The E, and E2 peaks from the ellipsometry measure-
ment are also consistent with the calculated direct tran-
sitions at point R for the 1X1 lattice, point X for the
2X2 lattice, and point M for both the 1X1 and 2X2 lat-
tices, i.e., for the 1 X 1 lattice, E, = 3.20 eV, and
E2=4.67 eV from experiment, while the calculation pre-
dicts EEz(L~=2.9 eV and AEM, ~~=4.7 eV. Similarly,
E, =3.25 eV, and E2 =4.64 eV compared with
AE&(L~=3. 3 eV and AEM(&j=4. 7 eV for the 2X2 lattice.

Most data for indirect transitions are measured by pho-
toluminescence experiment performed near zero tempera-
ture. These are ranged from 1.89 to 2.05 eV for the 1X1
latt, ce2s, s2, ss and from 1.97 to 2.07 eV for the 2X2 lat-
tice. ' ' A 1.890-eV peak is also observed in the
room-temperature Raman-scattering measurement as a
weak feature for the 1X1 lattice. Depending on the ex-
perimental conditions, these measurements may reveal
different features, since the low-energy luminescence
peaks corresponding to transitions to the lowest-excited
state can be an indirect transition, a pseudodirect transi-
tion, a direct transition, or even transitions to defect lev-
els within the energy gap.

The observed luminescence peak for the 1 X 1 lattice is
assigned to the indirect transition to point R (1.85 eV).
The calculated minimum gap at point M for the 2 X2 lat-
tice (2.16 eV) is, however, larger than the measured
peaks. An alternative assignment in this case is attribut-
ed to imperfect growth of the 2X2 lattice, since a local
excess of Ga or Al ions can easily create 3 X 1 (three lay-
ers of GaAs and one layer of A1As) and 1 X 3 local struc-
tures. Our calculation shows that the direct band gap for
one of these structures in the ideal form, the perfect 3 X 1

lattice, is 1.87 eV and is much smaller than the direct

band gap for a 2X2 lattice. Hence, whether these local
3 X 1 structures repeat themselves to form local lattices or
exist as local defects, their energy gaps, with the 1.87 eV
as the lower bound, are below the direct band gap of the
2X2 lattice and could have been detected by lumines-
cence experiments. The local Al-rich 1 X 3 structures, on
the other hand, have larger direct band gaps and hence
could not affect the measurement. Although the proba-
bility of forming relatively large local lattices is very low,
the transition-matrix elements for direct transitions are,
however, much larger than those for indirect transitions.
The imperfect growth and the formation of 3X1 and
1 X 3 local structures could also occur in the 1 X 1 lattice.
In either case, it is unlikely that the measured lumines-
cence peaks should be assigned to transitions to the X„-
derived state at point I .

C. Confinements and some microscopic band features

In this subsection, we discuss spatial confinement
effects, avoided band crossing, energy oscillation with
respect to lattice thickness.

The charge contours for the I - and X-derived states at
point I up to 3X3 lattice are shown in Fig. 4. The X-
derived states qualitatively agree with the Kronig-Penny
model in terms of confinement, i.e., as the layer thickness
approaches zero, the confinement effects vanish. In con-
trast, the I -derived state is qualitatively different. Some
confinement or localization remains in the case of a 1X 1

lattice. The more repulsive Al pseudopotentials relative
to the Ga pseudopotentials are the cause for the more lo-
calization on the GaAs side for the excited states. Be-
cause of this localization, the energy for the I state for
the 1X 1 lattice (2.11 eV) is lower than that calculated by
the VCA (2.32 eV). A quantitive estimate can be made
using the localization percentage listed in Table III. The
modified value for this state, E 2.08 eV, is in reasonable
agreement with the quasiparticle calculation. The
cation-potential difference has the maximum effect for
the on-site antibonding s-like I state and the effect for
the interstitial X state is much smaller. We suggest that
this localization at atomic scale also causes the observed
largest bowing effect for the I state in Ga(A1)-As alloys,
i.e., the point I gap for GaosAlosAs alloy is about
0.1—0.15 eV (Refs. 62 and 63) smaller than the VCA gap.

The quasiparticle energy order at point I for the 1 X 1

lattice indicates band crossings. An avoided crossing
occurs between the two lowest conduction bands along
line A (from point I to point Z) near 10%%uo off the zone
center [see part (a) of Fig. 5]. Another avoided crossing
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occurs between the second and the third lowest conduc-
t' bands near 30% off the zone center in the sameion an
direction. There are two important consequences.
The longitudinal effective mass for the I 4(X) state is
about 70% smaller than the corresponding effective mass
of GaAs (or AlAs) at X minima so that the I 4 valley is

nearly spherically symmetric. m I ( I 4) =0.23p? 0 and

m, (l'4)=0. 21mo, where mo is the free-electron mass.
This reduced effective mass also reduces the optical-
transition probability for transitions to this state since the
density of states near point I 4, is reduced; (2) large varia-
tions of the optical-transition matrix elements as a func-
tion of wave vector k, are expected.

We have calculated the relevant matrix elements,

~ ( p; ~ p ~ 1(f ) ~, for transitions from the upper valence

bands to the lower conduction bands near the zone
center. Results are shown in part (b) of Fig. 5. The
lower of the zone-folded states (I 4, ) does not mix with
the I -derived point I „by symmetry so the matrix ele-
ment is essentially zero. The second zone-folded state has
a significant oscillator strength. The situation reverses
for the 2X2 lattice. However, the matrix element is fur-
ther reduced by the spatial separation of the electrons
and holes, being about 0.01 a.u. (compared to 0.25 a.u.
for I „-derived level). Moving away from the zone
center, there is a significant anisotropy in the matrix ele-
ments that derives from the anticrossing behavior in the
k, direction, which is illustrated in part (a) of Fig. 5. As
the avoided crossing is approached, the I &,

- and I 4, -

derived bands exhibit strong mixing. The oscillator

1x1

~77

3x3

-1 in I - and X-derived conduction-band states for the 1X1,2X2,FIG. 4. Charge-density contours in the (101)plane for the low- ymg - an
and 3 X 3 superlattices.
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that this does not affect the matrix elements significantly,
e.g., with the spin-orbit coupling, the matrix-element
square for transitions to the I 4, state for the 1X 1 lattice
is still very small, about 4 orders of magnitude smaller
than that for transitions to the I „state. The spin-orbit
results are summarized in Table VI. These transitions
are polarized. For example, the z component
I ( 1t; Ip, lg~ & I is zero for transitions from the planarlike
valence I &„states to the s-like I conduction state. In
contrast, transitions from I 5„- to the X&,-derived state
are polarized in the z direction. Although the anisotro-
pies have not been observed for ultrathin superlattices,
polarization studies for GaAs-A16aAs quantum wells6
are consistent with our calculations. The matrix ele-
ments for infrared transition between the two conduction
states are also signi6cant.

0.1—
ta.

V'

0.0
0.10

ky /( m/o )

0
r

0.1 0
kz /( vr/oo)

2c

Ga
i

Ca
i

FIG. 5. Calculated (a) quasiparticle conduction-band ener-
gies, and {b) optical matrix elements squared, near the zone
center for the 1X 1 lattice.

strength is transferred from the lower to the upper band.
In the perpendicular direction, where no avoided crossing
occurs, the oscillator strength for the I"„-derived band
drops smoothly and the zone-folded band has very little
oscillator strength.

In principle, the spin-orbit interaction can mix states of
different symmetries. Our calculation, however, showed

TABLE VI. Transition-matrix elements for the 1 X 1

GaAs/A1As lattice calculated with spin-orbit interaction in
Rydberg atomic units. m, is the quantum number of the z com-
ponent of total angular momentum j.

5c

5c
Ga

i

1c

i~f
r,„r„ even

odd

l(0;Ipl@f &I'

0.02
0.22

l(A Ip. l@f & I'

0.0
0.0

2x2

even
Qdd

0.06
0.17

0.01
0.16

r„r„

even
Qdd

even
odd

even
odd

0.30x 10-'
0.19x 10.-'

0.26x 10-'
0.27 X 10

0. 19x 10
0.18x10 '

~0
0. 19x10-'

0.0
0.0

0.19x10 '
0. 18x 10

FIG. 6. Charge-density contours in the {101)plane. The
points M2, and Ml, are the segregating states, and the point
M5, is the degenerate states of the 1 X 1 lattice; the point M5, is
the degenerate states, and the points M l, and M2, are the segre-
gating states for the 2X2 lattice. Charge densities for the de-
generate states are symmetrized.
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The minimal rectangular unit cell of the zinc-blende
structure along the [001] direction contains twice the
volume of its primitive cell and two chemical formulas.
The two molecular sites provide two natural registries for
segregation of paired states, which are derived from de-
generate bulk states. For a superlattice with an even
number of sublayers, 2X2, 4X4, etc., each subcell of
GaAs or A1As also contains a multiple of such mini
(rectangular)-cells. This condition, on the other hand,
cannot be satisfied by superlattices with odd numbers of
sublayers, 1X1, 3X3, etc. , and in this case one of the
minicell is shared by one GaAs and one AlAs molecule.
The commensuration and incommensuration between the
minicell and the subcells of GaAs and A1As for (001) su-
perlattice cause the energy oscillations for the paired
states at points M and R (X ) [see Figs. 3(a) and 3(b)].

An example is the paired X3, states with charge
residents in the cation layers (the points M„and Mz, for
the 1X1 lattice and the corresponding point I&, for the
2X2 lattice shown in Fig. 6). These states segregate for
odd number of sublayers. The energy separation is siz-
able because it reflects the on-site potential difference be-
tween Ga and Al ions. For an even number of sublayers,
however, the minicell commensurate with the subcells
and the two registries within the minicell are equivalent
causing degeneracy. Another example is the paired Xt,
states. These states form superlattice states with charge
residing on the common-anion As layers. For this pair of
states, segregation may occur because there are two inter-
facial As sites in each supercell. Degeneracy occurs for
odd number of sublayers since, in this case, the minicell
incommensurates with the subcells and this forces each
state to occupy both interfacial As sites. In the even
number case, the energy separation between this pair
reflects the nearest-neighbor cation-potential difFerence
and is hence smaller. The repulsion between the XI

states was once suggested as the cause for a lower
M(X„„s) level relative to the 1 (Xt, , ) level. This does
not apply because the repulsion vanishes for odd-
sublattice periods.

IV. SUMMARY

We have calculated (1) the valence-band offset for
GaAs/A1As (001) with quasiparticle many-body correc-
tions. These corrections are dominated by many-body
contributions to the bulk eigenenergies. Our result is in
better agreement with experiment than the LDA result,
which demonstrates the limitation of the current LDA
scheme. (2) The electronic structures of GaAs/A1As
(001) ultrathin superlattices were determined. The effects
of many-body interactions and atomic-scale localization
on superlattices were also examined. We found that, due
to these effects, the 1X1 and 2X2 lattices have direct
band gaps instead of pseudodirect band gaps at point I .
Available experimental data are consistent with the
theory.
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