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We present a systematic investigation of the low-lying levels and Zeeman splittings of transition-
metal ions in diluted magnetic semiconductors having the zinc-blende or the wurtzite structure.
The site symmetry of the magnetic ions is Tz in the former and C3„ in the latter. The present for-
malism permits a general derivation of the energies of the levels in the lowest terms of the (3d)"
configurations for all the iron-group ions including the effects of the spin-orbit coupling and Zee-
man interaction up to second order. The g factors of all levels are obtained including the anisotropy
of the I'8 states of Co'+ and Cu'+.

I. INTRODUCTION

Diluted magnetic semiconductors' (DMS's) are materi-
als obtained by alloying a II-VI compound A "B ', where
A" and B ' are elements of the groups II and VI of the
Periodic Table of the elements, respectively, with MB ',
where M is a transition-metal ion. Usually, the element
M enters the structure substitutionally at A sites in the
compound A "B '. The chemical formula of the result-
ing compound is A, M„B, x being the atomic concen-
tration of M. The Mn-based DMS's have, until recently,
received the greatest attention. Since the ground state of
Mn + is S&&z, the crystal field has a negligible effect on
its magnetic properties and isolated Mn + ions in DMS's
behave as if they were free. Other doubly ionized
transition-metal ions exhibit ground terms possessing or-
bital as well as spin degeneracies. In this paper we
present a systematic investigation of these transition ions
in zinc-blende and wurtzite semiconductors. In the form-
er, the symmetry of the site of the impurity is tetrahedral
(point group Tz) whereas in the latter a slight distortion
along the [111]direction yields trigonal symmetry (point
group C3, ). Excluding Mn +, all the doubly ionized
iron-group ions have ground states that are either D or F
terms. The values of L and S are symmetrical with
respect to the half-filled 3d shell so that a study of ions
whose shell is more than half filled yields automatically
information about those for which the 3d shell is 1ess
than half full. However, the order of the crystal-field-
split levels is reversed and the spin-orbit coupling con-
stant A, changes sign. Therefore we need only study four
of the transition-metal ions. Symmetry arguments show
that, while a D term splits into a doublet I 3 and a triplet
I 5 in the presence of a tetrahedral field, F terms sp1it
into I &+ I 4+ I 5. It can be shown that the ground mul-
tiplet of an ion in the (3d)" configuration in a field pro-
duced by a tetrahedra1 arrangement of negatively charged
ions is I

&
for n =S, I 2 for n =2 and 7, I 3 for n =1 and

6, I 4 for n =3 and 8, and I 5 for n =4 and 9. We expect

a fundamental difference between the behavior of Fe +

and Ni + on the one hand and of Co + and Cu + on the
other, because while the number of electrons in the form-
er is even, in the latter it is odd. By virtue of Kramers'
theorem, all eigenstates of Co + and Cu + have even de-
generacies and thus must always exhibit paramagnetism.
Fe + and Ni + can have both degenerate and nondegen-
erate states. It turns out that, in the crystals under study,
the ground states of Fe + and Ni + are nondegenerate
and are, to first approximation, nonmagnetic. However,
in the presence of a magnetic field, the Zeernan interac-
tion mixes the states of the lowest term giving rise to a
temperature-independent paramagnetism (Van Vleck
paramagnetism).

We first develop a general formulation of the efFective
spin Haroiltonian of D terms in a crystal field of
tetrahedral symmetry. The study includes all levels in
the lowest terms of the (3d)" (n =6 and 9) configurations.
The calculations are carried out to second order in the
spin-orbit interaction and in B for the lowest orbital
states and to first order in B for the excited states as func-
tions of the spin quantum number S. Thus the present
work generalizes that of Weakliem who made a
thorough study of the optical spectra of Ni +, Co +, and
Cu + in tetrahedral sites in crystals in the absence of a
magnetic field. The results are subsequently applied to
the cases of Fe + and Cu +. A study of the magnetiza-
tion of Fe + in CdTe is also presented. It reveals that,
even in the cubic field, the magnetization M is anisotrop-
ic in the regime in which M is not a linear function of the
magnetic field B. To illustrate the effect of a trigonal dis-
tortion we obtain the temperature dependence of the
differential magnetic susceptibility of Fe + in the
wurtzite-structure semiconductor CdSe and determine its
anisotropy in the low-temperature regime. These results
are in good qualitative agreement with the experiment. '

The second part of this paper is devoted to the study of F
terms in a tetrahedral field. The general theory follows
the same lines as that for the D terms and is applied to
Co + and Ni +
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II. SPIN HAMILTONIAN
FOR ADTERM IN A Td FIELD

A. General formalism

In this subsection we derive the spin Hamiltonian of a
D term in a tetrahedral environment of negatively
charged ions. %'hen L =2, the only significant part of
the crystal potential can be expressed as

V, (Td)=+a[ —,'(L++L } + ', L, —6L,——5']—

where a is positive and the + and —signs hold for Cu +

and Fe +, respectively. Here Lz=L„+iL and L„, L~,
and L, are the components of the angular momentum
operator along the cubic axes x, y, and z. The orbital an-
gular momentum states of the free ion are eigenvectors of
L, and are denoted by IML ) (ML =2, 1,0, —1, —2). In
the presence of the Td field the D term splits into I 3 and
I 5 with basis functions

r, : u, =lo),
u2=2 ' '(I2)+I —2&);

H Hc+Hs. o. +Hz (3)

where H, is the Hamiltonian of the ion in the crystal field
excluding the spin-orbit coupling H, , =EL S. The term
Hz is the Zeeman energy in a magnetic field B=Bn, i.e.,

The functions u, and u 2 belong to the rows of the r 3 rep-
resentation of Td generated by 2z —x —y and
v'3(x —y }, respectively. The choice of phase in the
wave functions v+, vo, and v is selected so that they
generate the same matrix representation as
—z (y +ix )Iv'2, xy, and z (y i—x )Iv'2, respectively.

We write the Hamiltonian operator of the problem as a
supermatrix divided into diagonal square blocks of
2(2S + 1 } and 3(2S + 1 } dimensions corresponding to
the 2(2S+1) lu, ,Ms ) states (i =1,2; Ms
=S, S —1, . . . , —S + 1, —S) generated by the orbital I'3
levels and to the 3(2S+1) Iv;, Ms) (i =+,0, —) vectors
belonging to the I 5 levels. We consider the Hamiltonian

r, : v+=I —1), Hz=psBn (L+2S) . (4)

vv=2 ' '(12) —
I

—2)),
v = —Il&.

The expression for the Hamiltonian matrix H in the
states (2) is

Eo(I 3)+2psBn S (AS+@&B, n) U

(AS+psBn} U Eo(I ~}+2}usBn S—(AS+psBn) I

& u. lr lv. & =U.. (6)

Here Eo(I 3) and Eo(I 5) are the unperturbed energies of
the I 3 and l 5 states, respectively. Two new quantities U
and I are introduced, their definition being

H (I 3)= Eo(I, )+2psBn S

1

E(I )
—E(I )

and X(AS+psBn) UU (AS+p~Bn)

& v. ILlv„& = —I„,. (7) and

(v=1,2 and a, ~'=+,0, —). The components of I obey
the commutation relation I X I= iI and can thus be treat-
ed exactly as an angular momentum operator with quan-
turn number I = 1.

The Schrodinger equation Hg=Eg can be rearranged
replacing the 5(2S+1)-component vector g by a compos-
ite of two vectors, namely g' ' and g' ' of dimensions
2(2S+1) and 3(2S+1), respectively. The Schrodinger
equation is equivalent to two coupled equations which
can be solved for f' ' and f' ' by iteration keeping terms
up to second order in k and p&8. This yields the effective
spin Hamiltonians for the l"3 and I 5 states. They are

H(I 5) = Eo(I ~)+2psBn S—(AS+p~Bn). I

1

Eo(I, )
—Eo(I 3)

X(AS+psBn). U U. (AS+psBn) .

To proceed further we express U U and XJU in terms of
pseudoangular momentum operators:
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and

UtU= 4 g e, e, (1 —I; )+ g (e;e, +e e; ) [I;,I, j

i—y E;J/, e;eJ.I/,
i,j,k

(10)

A,
2

H (I )=E (I )+
Ev(l 3)—Ev(I, )

X 2S.S+(S S—3S, )(T,

UU =g e;e, ( 2+o, }—3e3e3o, +v'3(e, e, —
ezez )o„. + (S+ +S )o„

2
(13)

Here e, =x, e~=y, e3=z, [u, v j =uv+vu, and e,,k is the
antisymmetric Levi-Civita tensor density in three dimen-
sions. cr„,cr, cr, are the usual Pauli matrices which are
introduced as a convenient representation of operators
having matrix elements between the twofold degenerate
r, orbital states. The terms which do not contain cr„,
0.„,or 0, are to be understood as direct products of the
matrix shown by the unit matrix in two dimensions. Us-
ing Eqs. (10) and (11) we can write explicitly the expres-
sions for H(I 5) and H(I 3). It is convenient to write
these operators in the form

X 2n S+(n.S—3n, S, )o,

+ (n+S++n S )o„
3

and

(p//B)'

E(1 )
—E(I )

r

2pg8 A,

H&(13)=2/u//Bn S+ E (& }

(14)

H(I „)=H (I )+H, (I„)+H (I „) (12) X 2+(1—3n, )o, + (n+ +n )o„
2

where v=3, 5. The operator Ho(I „) is independent of
the magnetic field B. H, (I „) and Hz(I'„) are the linear
and quadratic terms in B, respectively. Use of Eqs. (8),
(11),and (12) yields the Hamiltonian for the I 3 states

(15)

Here n+ =n„+in . The Hamiltonian operators for the
1, states are given by

i2
H, (r, )=E,(r, ) —XI S+ S I 4/S, 'I,'+—4S S+g. [S,, S, jIl, ,l, j

',
E//( I's ) Ev( I'3 )

(16)

H, (I s) =p//B 2n S—n I+ S n —g S;n;I; + ,' g (S;n, —+S,n; ) II;,I j
EO 5 E0 3} / /(j

and

4(psB)
H~(I, ) = E(I ) —E(I )

X 1 —g n, I, +—,
' g n, n I I, , l/. j (18)

We use Eqs. (19)—(21) and introduce the operators

Q = (2S, S, S)(2I, —I„—I )——

+3(S S)(I I ) =6—y S I —2S S—I I. (22)

2+S; I; + g IS;,S, j tI, ,I, j =2(I.S) +I S,
l i&j

g (Sn/+S/n, )II, , I/ j+2+S I; n, —[S I, I.nj =0,

(19)

A further simplification can be obtained if we eliminate
the sums over i (j in the above expressions. For that
purpose, we use the following identities:

and

Q= (2n, S, nS„nS }—(2I, I—„Iy)——

3+( Sn„—n S )(I„I~)—
=6+ n, s, r,' 4nS—(23)

and

(n.I) =g n, I, +g n, n II, ,I j . .

to write H (I ~) as
(20)

A2
Ho( I, ) =Eo( I, ) —A I S+ E(I }—E(I )

(21}
X [2S.1+2(S I)'—Q], (24)
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H, (l s}=pBB 2n. S—n I
teraction. However, this information must be supple-
mented by a quantitative evaluation of the g factors.

+ ({SI, I nj —g)
2i.

(25)

and

(pBB)'
H2(r5)= 4 —6+n;I;+2(n I)

H(6, 7) l (6,7) (27)

where cr is the Pauli matrix. In the double group Td,
there are two invariants linear in 8, namely B J and

g; B,J; so that the Zeeman energy for a I s state reads

(26)

The results derived thus far hold for any value of S.
To find the eigenvalues of the Hamiltonians H(l ~) and
H(rs) we need to specify the spin quantum number so
that we now make the distinction between Fe + and
Cu +. In order to solve the Schrodinger equations, we
make the assumption that the spin-orbit coupling is
stronger than the Zeeman interaction. The validity of
this hypothesis is discussed later but this assumption usu-
ally holds for a large range of values of the magnetic in-
duction B. Thus we first study the spectrum of Ho(I „}
(v=3, 5) which includes the effect of the spin-orbit cou-
pling. We diagonalize this term up to second order in A, .
We then proceed to the analysis of the effect of an exter-
nal magnetic field. We regard the Zeeman Harniltonian
as a perturbation on the levels split by the spin-orbit cou-
pling. A few general results can be derived by using the
theory of group representations. The form of the Zeeman
splitting depends on the number n of electrons contained
in the unfilled 3d shell. An important difference in be-
havior arises depending on whether this number is even
or odd. If the ion contains an even number of electrons,
its states are classified according to the irreducible repre-
sentations of the single point group Td. The only invari-
ant linear in B is of the type I B. An example of such a
behavior is Fe + which contains six electrons. In this
case, the Zeeman energy is written as gp~Bn I and the g
factors are isotropic. However, when the number of elec-
trons in the (3d)" configuration is odd, we recall that, ac-
cording to Kramers' theorem, all states are, at least, dou-
bly degenerate. Consequently we must work not with the
single group Td as before but with the double group Td.
We then have a splitting of the crystal-field states into I 6,
r„or I 8 levels. The matrix representation of the Zee-
man Hamiltonian for the doublets (1 6, I 7) can be written
as

5H, ('r, ) = — (12+n) (29)

where the operator 0 is given by

Q=(12—3S )o, + (S++S )(o++o ), (30)
3

2

where o+~u2) = ~u, ) and o ~u, ) = ~u2). In the states
(M, =2, 1,0, —1, —2) this operator is a

10X 10 matrix. The diagonalization of 0 is considerably
simplified observing that only a few of its elements are
nonzero. We denote the states by ~MB*) where + and-
stand for u, and u2, respectively. Consider, for example,
the state

~

0+ ) . This state is connected to
~
2 ) and

~

—2 ) only, through the operators S o and S o
In the same way ~0 ) is connected to ~2+) and

~

—2+),
whereas ~1+ ) and

~

—1 ) on the one hand and ~1 ) and
~

—1+) on the other are mixed by Q. Therefore the
10X10matrix reduces to two 3 X3 and two 2X2 subrna-
trices. The diagonalization of the latter is straightfor-
ward and yields the energies —24k, /6, —18K, /6,—12K, /b„—6A, /6, and 0 for the I i, I 4, I &, I 5, and I'2
levels, respectively. ' We note that the lowest levels of
Fe + are equidistant and that the ground state is a singlet
I,. Since it is nondegenerate, Fe + in a crystalline envi-
ronment will only show Van Vleck paramagnetism at the
lowest temperatures.

We now investigate the effect of a magnetic field on the
levels just obtained. From Eqs. (14) and (15) the terms in
the Hamiltonian in first and second order in the magnetic
field B are

H, (~r3}=2pBB n S——2n. S+(n S—3n, S, )o,

B. Application to Fe + and Cr +

The value of the spin quantum number for Fe + and
Cr + is S =2. The lowest multiplet of Fe + is the orbital
doublet I 3. The difference in energy between the I 5
and I 3 states is denoted by 6 where 6=6a so that
Eo( I 5) =b„ taking Eo( r&) =0. We first investigate the
effect of the spin-orbit coupling on the I 3 orbital states.
The spin states of Fe + belong to the representation D'+'
which reduces to I 3+I &

in the field of Td symmetry.
When we take the spin-orbit coupling into account, we
expect, from group-theoretical arguments, a splitting of
the lowest orbital states into I'3 X(I'3+I 5)=I,
+r,+r,+r,+r, .

Using the values of the unperturbed energies Eo(I;)
and the fact that S =2, Eq. (13) yields

HZ g1p'BB +g2pB (28)

where J is the angular momentum operator for /= —', .
Thus the g factor is anisotropic. We see that group
theory predicts qualitatively the form of the Zeeman in-

v'3+ (n+S+ +n S )o'„
2

(31)
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and

()M&B)'
Hi( I i)= — 2+(1 —3n, )a,

+ (n+ +n )cr„. (32)
2

The higher multiplet of Fe +, namely, I' s, is split by
the spin-orbit coupling into I 5X(I 3+15) I i+I 3

+21 4+2I 5. The energies of these levels are given by the
eigenvalues of Ho(I ~). From Eq. (24) we get

H ( I }=6,—A, 1 —2—S.I+2 (S I} —
Q .5 2 A

0 5

We write these two operators in the basis generated by
the wave functions that diagonalize the spin-orbit cou-
pling. The I &, I 4, I 3, 1"5, and I z levels originating from
the I 3 states are further split in the presence of a mag-
netic field. The linear terms in B, which only occur for
the I ~ and I 5 levels, are characterized by first-order Zee-
man energies p&B(1+2K./6)n I for I 4 and

piiB(1 —6A, /E)n I for I s. The quadratic contributions
to the energies are diagonalized using a unitary transfor-
mation making n. I diagonal. They are listed in Table I.

We note that the energy eigenvalues depend on the
orientation of the magnetic field with respect to the crys-
tal axes through the function f (n }defined by

f(n)=n n +n n +n n (33)

This function is the anisotropic part of the cubic harmon-
ic of order 4 and takes the values 0, —,', and 4 for n paral-
lel to the (100), (111), and (110) directions. These
values are local extrema of f, —,

' being an absolute max-

imum and 0 an absolute minimum. As we shall see, this
leads to an anisotropy in the magnetization M in the non-
linear region of the curve M versus B. The differential
susceptibility yD =(dM/dB)s —p is, of course, isotropic.

The above perturbation approach is valid only when
the Zeeman interaction is small compared to the splitting
6A, /b, of the spin-orbit-split I

&
states. Thus it holds for

magnetic fields less than 6A, /b, ps. This is of order 500
kG for iron in CdTe for which we use the following esti-
mates: A, = —100 cm ' and 6=2500 cm

TABLE I. Second-order contributions in B to the energies of
the I 3 multiplet of Fe +. The coe%cients of h(p B) /A, and

2
B

of (p&B) /d are given for all states in the 'I
3 multiplet.

(34)

To determine the eigenvalues and eigenvectors of Ho(I'5)
we proceed in the following manner. Since I and S trans-
form as angular momentum operators, we define

F=I+S . (35)

The components of F obey the same commutation rules
as those of I and S. In the case of Fe +, we combine an
angular momentum I =1 with the angular momentum
S =2 so that F takes the values 1, 2, or 3. The eigenval-
ues of F F are F(F+ 1) and the quantity I S is

I.S=—,'[F(F+1) I(I+—1)—S(S+1)]
in the representation generated by the states

(36)

IF Mp) = g IMs, M, )(Ms, Mi~F M~)

where Mr= 0 1 Ms=2 1 0 1, —2, and
MF=F, F —1, . . . , F+1, F—. (Ms,—Mq~F, MF) is a
Clebsch-Gordan coefficient. To diagonalize Ho(I ~) we
also need the matrix elements of Q. These are evaluated
in Appendix A, for a general value of S. We now apply
these results to the case of Fe + (S =2). We find that the
energies of the spin-orbit-split levels are
b, +3k, +(18k. /5b, ), 6+A, +(6A, /b, ), 6+A, +(12K, /6),
6—2A, +(12K, /5b, ), b, —2A, +(12K, /b, ), and b, —2k
+(24K, /6} corresponding to I'5, I 4, I &, I 5, I 4, and I',
levels, respectively.

The effect of a magnetic field B on these levels is ob-
tained in first-order perturbation theory. The calculation

Level 5(pgB) /A, (@~B)'/~ TABLE II. g factors for Fe + and Cu +.

4
3 r, Level

Fe+
Level g""

Cu2+

——'()+6f)
3f

—4(1+6f)

4 () 3f)l/2

4() 3f)l/2

-'(1 +6f)3f-
—,'(1+6y')

—(1+3f)
—2(2 —3P
—(1+3f)

—3( 1 f)—6f—
—3( 1 f)—

I3
I4
I3

r,

1+2%./6

1 —6A. /5

I I, —+(18K/55)
I ——(2A/5) I —2

I3
I, —' —(12k./55)
r, —,

' —(4X/~) r,
r,

3
+ ( A. /3h ) —

3
—

( 4A, /3h )



41

Ve( Td )

ZTAL qoXS»A~s)T(ox-EL SPP~raA OpNPRGY-L~V

l

8 ~~ [iao
)L. S

10033

I
I

I
l
I
I I

I
I I
I

II
II

r-+r

\
\
l

I
I

I
I
I

I
I
I
I

5D
\

l

\

\

\

s ~rl
li g

Il

O
E

o

100 150
0

B(kG

mo]e 0f pe as ad „Fe„Tep
erature

netization of
eld g at a t P

F~G. 2. Magn
1 magnetic Se

g ——1QQers were us
on-fMintheno-

77 K . The f
i No te the anisotropy25QQ cmcm'~—

e cur&es1 ~on ofinear reg

at sufficientlynetization ~
'

ation is line~r

ing f "".' '.

f course '"&"'signs. his is~

ergy leuc» o &+ ina
tetra ehedral poten .

On caused y
an externa

the free ion

z manpin-orbit intera
e that V~(field We assumagnetic e

0.5

0.4

M =nk~T (38)

de endc ' . The energies d pp

es through the unc
'

crystal axes

d' B and the gA endtx
h h t-

out using t e r

k-
Table II. Fig

ca y

1
' fild4

t the spectrum o r u
the order of t e2+ b reversing

'n the sign ohe crystalline
A, which is n gorbit coup ing

o
'

ions with astu yp

b en - re semicon d
unit vo umsystemt m containing n e

by

0.5—

F

0.2
Cl

O. I

I

45
0.0 60

l

15 ~0
T(K)

„Fe Se as a function
fi ld Th

pg

nd

d ob(C ) is selecte

d 1

are tealental data (Re .the experim
ic susceptibilities

to the trigonal axles, re



10 034 MURIELLE VILLERET, S. RODRIGUEZ, AND E. KARTHEUSER 41

TABLE III. Energy eigenvalues of the 'I
3 states of Fe'+ in a field of symmetry C3„ including terms

to second order in the magnetic field B~~g.

C3„

r,
I2
13

I3
r,
I3

Energy eigenvalue

—24/ g —8 Bg(6/ g —2/i)
8/2+ —1 2~+8p2 B2(6g2+ —] 2[fr)

—1 p2 B2+/3g2
18g2g —1+P p'B g( +2gg 1) 4p2 B2(6g2g —] P )

—1 p2 B2g/12g2
—18K, b '+ W+PBB((1+2kb ') —4PgBg(6A, 6 ' —fY) ' —P~B(h/12K.

12$2g —]+4p2 B2(6/2+ —1 [fr)
—[ 4p2 B2(6$2Q —1+ pr) —I

6A2~-1-28'-Sp2 B2~(6A22 1+28') ]+p2 B2~8/3A2
—6k 6 '+ W —PBB((1—6A.h ')+4PBB (6A, 5 '+ W) '+P B 5/12k,
-6A2~ 1+W+PBB~(1-6k~ 1)+4P2BB2~(6A2~-1+ 8')-]+I 2B22/12K, 2

8p B (6g g +2')

siderations. Clearly, this anisotropy becomes small in the
low- and high-temperature limits, but at intermediate
temperatures and sufficiently high magnetic fields, it is
possible to have nonlinear contributions to M from the
r4, r3, and I 5 states. Figure 2 shows an example of this
behavior. This figure has been drawn for Cd, „Fe„Teat
77 K using the following parameters: A, = —100 cm
and 6=2500 cm '. At 150 ko we expect an anisotropy
in M of 5%.

In wurtzite semiconductors the symmetry is trigonal
rather than tetrahedral. The trigonal distortion which
affects the energy levels and the magnetic properties of
the system is described by the additional potential

V(C „)= b(2 —L )
——c( —,', L —"L +—'—)3U (39)

where L& is the component of L along the trigonal axis.
As an example we investigate the magnetic susceptibility
of Fe + in a wurtzite semiconductor, such as CdSe.

The differential magnetic susceptibility is defined by

yD=nksT lim [Z '(t)2Z/t)B ) —Z 2(t)Z/t)B)2] . (40)

We take into account the contributions of the states aris-
ing from the lowest orbital multiplet of Fe +, namely,
I 3. We calculate the energy levels of the I 3 states using

second-order perturbation theory and assuming that the

Eo(B)=—(24k /b, ) —SpqB([(6A, /6) —2W]

—gpisBti[(6A, 2/b, )+ W] (41)

Zeeman splitting is smaller than the separation between
the levels caused by the trigonal field. The results, in-
cluding all the levels within the lowest orbital states, are
displayed in Tables III and IV for B parallel and perpen-
dicular to the trigonal axis g, respectively. In these
tables, 6=6a is the crystal-field parameter and
3W=2~(3b —c)A, ~/b, is the energy splitting of the
r,(C,„) and I &(C3„) states originating from the I 4(Td )

level of the lowest orbital state. Figure 3 shows the tem-
perature dependence of the differential magnetic suscepti-
bility of Cd, „Fe„Se. We note that the susceptibilities
when 8 is either parallel or perpendicular to g differ con-
siderably below 10 K in good qualitative agreement with
experimental results. ' To obtain an insight into the
physical effect responsible for this behavior we consider
only the three lowest states of Fe + in a trigonal field,
namely I'„ I 2, and I's (see Fig. 4). The Zeeman interac-
tion giving rise to the Van Vleck paramagnetism mixes
the I, and I 2 states when B is parallel to g and the I,
and I 3 states when B is perpendicular to this axis. The
energy of the ground state I, is then

TABLE IV. Energy eigenvalues of the 'I
3 states of Fe + in a field of symmetry C3, including terms to second order in the magnet-

ic field Blg.

C3„

r,
I2
13

Energy eigenvalue

—24K. 6 ' —Sp B,(6A, b, '+ W)
—18k.'lL ' —2W — 'B'[(3W) '+4(6A, 'b, '+2W) '+(12)(. b, '+3W) ']
—18/2/ ~+ W j ~ B~[(3W) ~ —2(6$ g —W) ~ —(g/6g )]
—18k.'h '+ W+ sB'[8(6k'6 '+ W) ' —2(6A.'6 ' —W) ' —(6/6)j, ') —(12k, b ' —3W) ']
—12k.'d '+ ' B'[—4(6A, 'b ' —2W) '+2(6iL'5 ' —W) ' —2(6A, '6 '+ W) ']

[4(6g g '+2W) '+2(6$ g ' —W) ' —2(6$ g '+ W) ']
—6A.'6 ' —2 W+ sB ~j [(12k,'b ' —3 W) '+ 4(6A.'b ' —2 W) ' —(3W) ']
—6A.'6 '+ W+ 'B [(12k.'b, '+3W) '+{5/6A.')+2(6A. b, '+ W) ' —8(6A, b ' —W) ']
—6A.'lL '+ w+ B [(dL/6A. ')+(3W) '+2{6)(.'b, '+ w) ']
8p B&(6X 6 ' —8')
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A2 A2H(I )= —AIS — IS0 5 (44)

As in the case of iron we introduce a new "angular
momentum" operator

I 3 states, i.e., Ep( I 3)=b, . A spin S =
—,
' state belongs to

the representation I 6 of Td so that the I ~ state splits
into I 5XI 6=I 7+I 8 whereas the I 3 state becomes a I 8
level when the spin is introduced. For S =

—,', [S,,S,. I =0,
with i Aj, and S„=S =S, =

—,'. Equation (16) yields

F=I+S . (45}

Csv

0%

'\

'\

\
\
l

& I)'
/

/ III
]IIII
IIIII IIIIII I

I II (I
I

I
I
I
I

FIG. 4. Schematic diagram of the energy levels of Fe'+ in Td
and C3„ fields taking into account the spin-orbit interaction.

Now F takes the values —,
' and —,'. I S is calculated from

Eq. (36) and takes the values —,
' if F =

—,
' and —1 if F =

—,'.
Therefore the eigenvalues of Hp( I 3) are
—(A, /2) —(3A, /2b, ) for the I s state and A, for the I 7

state. Since A, &0, the I 2 state lies below I s. The I s
wave functions are f3/2 v+ a, g, /2

=3 ' u+ P
+(

&
) vpa g 1/2=3 '

v a+( —', )' vpP, 1}/ 3/2 v P
where a and p correspond to spin up and spin down, re-
spectively, and the subscript in the wave function indi-
cates the row of the representation I s to which it be-
longs. The I'7 functions are y1/2=( 3) u+p 3 upa
andy 1/2

— (2) u a+3 upP
The g factors corresponding to these two states are

determined using the results of Appendix B and Eqs. (25},
(27), and (28). They are listed in Table II. It is interest-
ing to note that the Zeeman splittings of the fourfold lev-

el, characterized by g1= —9A, /b, and g2=4A. /5, are
small compared to those usually encountered and in com-
parison to those of the I 3=I 8 state. Using the proper-
ties of S and Eq. (13},we find that for the I 3 states, the
Harniltonian Hp( I 3) is

If n is the number of Fe + ions per unit volume,

(n /Bg)(BEV/BB&)= 16n1M21[(6A /&) 2—
(42)

3A2
H, ('r, )=a+

26 (46}

and

yz= —(n /B~)( BE p/BB~)=16np, 21[(6A, /b, )+ W]

(43}

Thus
y~~

)g~ and a fit of g~~/y1 to the experimental result
extrapolated to 0 K allows us to determine the value of

We estimate that %=2.5 cm ' for A. = —81 cm
and 5=2680 cm ' appropriate to Cd& „Fe„Se. These
parameters have been used in Fig. 3 which gives the be-
havior of g~~ and g~ as functions of the temperature T. H, ( I 3)=2psB 1+2—n S+—(S.n —3S n }oz z z

where it is understood that the quantity on the right-
hand side is multiplied by the unit matrix in four dimen-
sions. The appropriate eigenvectors are p3/2 Q2p,

41/2 1 0—1/2 1P ~—3/2 2

With S =
—,', the Hamiltonian H, ( I 3) [see Eq. (14)] be-

comes

C. Application to the cases of Cu + and Sc +

Cu + has a spin quantum number S =
—,'. As a conse-

quence, it is very easy to investigate the effect of the
spin-orbit coupling on its crystal-Geld-split states. In con-
trast to the case of iron, the lowest multiplet of Cu + is
I 5 so that we take here Ep( I 3)=0. We now use b, =6a

to designate the difference in energy between the I 3 and

3/3 X+ —(S+n+ +S n )o„. (47)

The matrix of H, ( I 3) in the eigenfunctions above is
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—n 1+4—2

H, ( I,)=
n,

1+3—n +

1+3—n

—n,

(48)

1+—n —&3—n + n 1+4—
2

We know from group-theoretical arguments that the Zee-
man Hamiltonian for a I 8 state can be written in the
form (28). Direct comparison between (28) and (48)
yields the values of g& and gz for the higher I 8 state of
the Cu + ground term. We find gi= —', +A, /3b, and

g2 = ——', —4A, /3b, .
Figure 5 shows the energy-level diagram of Cu + in a

Td field, taking into account the spin-orbit coupling and
the effect of an external magnetic field. A similar dia-
gram is expected for Sc + except that I 3 is then the
lowest level and the spin-orbit coupling constant A, has a
positive value.

III. THEORETICAL STUDY OF FTERMS
IN A TETRAHEDRAL FIELD

A. General formalism

Having completed the study of D terms in a
tetrahedral crystal field we now turn to the investigation

of the behavior of F terms in the same potential. This ap-
plies to the four ions Ti +, V +, Co +, and Ni +. How-
ever, their spin quantum numbers S differ. As in Sec. II,
we first develop the general theory of F terms in a Td field
including the effect of the spin-orbit coupling and the
Zeeman interaction and subsequently particularize it to
each individual case. When L =3, the crystal potential
reads

V, (Td ) =+a[—,'(L+ +L ) + ', L, 1—2L, ——12] (49)

where the upper sign holds for Co + and the lower sign
for Ni +. We describe the orbital states of the free ion in
terms of the eigenvectors of L, which we denote by IML )
(ML =3,2, 1,0, —1, —2, —3). The eigenvectors of the F
term in the crystal field (49) and their symmetry charac-
terization are

Ho

20

Y (Td)

2p

j lI

I
I
I
I
I
I

I
I
I
I
I

l
\

l

\
l
\
\

\

\ 2
l
l

re

r8

&,=2-'"(I2)+
I

—2&),

r, : 5,= —(-', ) 'Il& —(-', )'"I—3&,

= —(-')'"I —1& —(-', )'"I3& .

(soa)

(50b)

(50c)

FIG. 5. Schematic diagram of the energy levels of Cu'+ in a
Td field taking into account the spin-orbit coupling and the Zee-
man interaction.

The wave functions e+, eo, and e are selected so that
they belong to rows of the irreducible representation I 5

of Td generated by the functions —(x+iy)/&2, z, and
(x iy)/&2 In —a similar wa. y, 5+, 5o, and 5 generate
the irreducible representation I 4 identical to that whose
basis functions are —(~„+ia)/&2, ~„. and
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(K iKy )l~2 with )c„=x(y —z ), )(~ =y (z —x ), and

Ki —z(x y ).
The spin Hamiltonian of the system is obtained in a

manner similar to that of Sec. II. The Hamiltonian of
Eq. (3) is rewritten as a [7(2S+1)]X[7(2S+1)]super-
matrix in the vectors ~p, Ms ) where p is any one of the
orbital states (50) and Ms =S, S —1, . . . , —S + 1, —S is
an eigenvalue of the projection of the spin S on the z axis.
The Schrodinger equation in matrix form with entries in
the order given above for p, and Ms reads

Q4=Eo(I 4)+2p2)Bn. S—
—',(AS+p2)Bn).I (54)

P =()(S+psBn) V (55)

where Eo(I; ) are the energies of the unperturbed
crystal-field-split states and I is the angular momentum
matrix for I=1, introduced earlier in the study of D
terms. Finally, the (2S + 1)X [3(2S+ 1)] and
[3(2S+1)]X [3(2S+1)]matrices P and R are given by

Q2 P 0 'y(2) ' 'y(2) '

P t
Q R y(&) Ey(—5)

0 R Q4

(51)
and

R =—,'( —", )'i (AS+p&Bn) W . (56)

where 0 is the zero matrix of dimensions
(2S+1}X3(2S+1)and 1()(2), f( ', and p( ' are wave func-
tions having 2S + 1, 3(2S + 1 }, and 3(2S + 1 } com-
ponents, respectively. To fix the ideas we take I 2 as the
lowest state, an arbitrary assumption for the purpose of
the description of our procedure. However, it can be
shown that the I 5 state always lies between I z and I 4.
The square matrices Q2, Qs, and Q4 are obtained calcu-
lating the matrix elements of the Hamiltonian (3) and are
given by

The matrices V and W are given by

x+iy x—iyW2'' eZ

W=i&2(x[ I,I, j+ytI„I„]+z[I„,I~]) .

(57)

(58)

and

Q2 E()(I 2) +2p B2)n'S

Q~=Eo(I'~)+2p2)Bn S+—,'(AS+p2)Bn) I,

(52)

(53)

Equation (51) is equivalent to three coupled relations
which can be solved for the wave functions
(i =2,5,4) by iteration keeping terms up to second order
in A, and p&8. In this way we obtain the Hamiltonians
for the I z, I,, and I 4 states. They are

H(I'2}=Eo(I 2}+2p2)Bn S+ (AS +pB)((n} VV(AS+p. ))Bn}, (59)

H(I' s)= Eo(I s)+2psBn S+ ((AS+p2)Bn) I+ (AS+psBn) WW (AS+p2)Bn)
8 Eo(I g) Eo(I 4)

and

+ (AS+psBn) V V (AS+p))Bn},
E() I, E() I2— (60)

H(I 4)=Eo(I 4)+2p&Bn S——', ()(S+p))Bn}I+ (AS+psBn) W W.(AS+p~Bn}
8 Eo(I 4) Eo(I s)

(61)

where we used the explicit expressions of the matrices Q2, 5, Q&, P, and R. To proceed further, we follow the same
line of reasoning as in Sec. II and express the products WW, W W, VV, and V V in terms of the components of the
pseudoangular momentum I, i.e.,

WW =W W=2 pe, e;I; —g (e,.e +e,e;)[I;,IJ )
—i g ejke;eJIk,

i,j,k

VV =4+ e;e;,

(62)

(63)
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and

V V=4 + e, e, (1—I, ) —2 g (e, e, +e, e, ) tI, ,I, ) +2i g E, „e,e,I„.
i,j,k

(64)

Use of Eqs. (59) and (63) yields the spin Hamiltonian for the I 2 orbital singlet

4A, 'S.S 8PB» 4(1 88)'
+

E,(r, ) —E,(r, )
+

E,(r, ) —E,(r, )
+

E,(r, ) —E,(r, )

For the I 4 and I 5 triplets we write

H(r„)=H, (r„)+H,(r.)+H, (r„)
where v=4, 5 and the subscripts 0,1,2 indicate the power of 8 in the expression. %'e have

i2 4A.
Ho(I 5)=EO(r~) —S I [—', Q+ —', S S—(S I) ]+ [S S—(S I) —S I],

(65)

(66)

(67)

H, (I 5)=ps8 2n S+—,'n I+ ( —', Q+ —,'n S—IS I, I n])+ (2n S—IS I, I nI)

and

(68)

(69)

for the I"5 triplet and

k2
Ho(I 4) =ED(I ~)

—
—,'AS I+ [—', Q+ —', S S—(S.I) ],4 Eo I~ Eo I5— (70)

H, (I 4)=p&8 2n 5 ——', n I+ ( —', Q+ —', n S—IS I,I nI) (71)

and

(@~8)'
H~( 4)

4 E (I ) E(I )
g n—; I, gn;n/I I—;,I/

4 o 5 i i(j
(72)

for the I 4 states. Here we have used Eqs. (19)—(23).
The results given so far are valid for any value of S and

apply to Co + as well as to Ni +. The explicit evaluation
of the eigenvalues and eigenvectors of the Hamiltonians
derived above requires the specification of the spin quan-
tum number S and, hence, the specialization to either the
case of Co + or that of Ni +. As earlier we make the as-
sumption that the spin-orbit coupling is stronger than the
Zeeman interaction.

H( I )= —15 +2@ 8 1 —4—nS—4
2 g 8

4(}us8)

(73)

so that, in a purely tetrahedral site, the g factor is isotro-
pic and equal to 2 —(8A/6). Replacing Eo(I;) by its
value we get, from Eqs. (67) and (70), the Hamiltonians
for the I 5 and I 4 triplets, namely,

H ( r )= s+ —S I— [ Q+-'S S—(S I) ]4 A. 75 k, —
4 2

B. Application to the cases of Co + and V +
+ [S.S—(S.I) —S.I]4A, 2 (74)

The ground term of Co has a spin quantum number
S =

—,
' and the ground multiplet is the orbital singlet I 2.

Therefore, with Eo(I z)=0, we write Eo(I ~)=b, =30a
and Eo(I 4) =96,/5. From Eq. (65), the Hamiltonian for
the ground state of Co + is

and

2

H, ( r, )=;b, , AS.I+75 A [,Q+, S.S (S.I) ]

(75)
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the results of Appendix A. We find that the energies of
the levels originating from the I,( T„) state are
b, +3k, /4 (1—305k, /64k), b, +3k/4 —(225k /646, ),
b, —A, /2+(15K. /4b ), and b, —5)(,/4 —(225K, /646, ) for
I s, I 6, I s, and 1"7, respectively. For the I ~(Td ) states
we find (9b/5)+15k/4+(225K, /64k, ), (9h/5)+3k/2
+(45K. /4b, ), (9b, /5) —9A, /4+(225k, /64k), and
(9b, /5) —9A. /4+(1305K, /64k) corresponding to I 6, I'8,
I 7, and I 8 levels, respectively. Our results are in agree-
ment with those of Ryskin, Natadze, and Kazanskii.
Figure 6 shows the energy-level scheme of Co + in a field
of tetrahedral symmetry including the effect of the spin-
orbit coupling on the crystal-field-split states. The dia-
gram of levels of V + is obtained from that of Co + by
reversing the order of the states and changing the sign of
the spin-orbit coupling constant A, , i.e., by reversing the
order of the spin-orbit-split states as well. The g factors
for Co + are anisotropic and are given in Table V.

C. Application to the cases of Ni + and Ti +

Ni + is a doubly ionized ion having spin quantum
number S=1 in its ground term. The I 4 state is the
lowest multiplet of Ni + in a field of tetrahedral symme-
try. Hence, we take Eo(I &)=0, Eo(I'5) = b, so that
Eo(I z)=95, /4. Equations (70), (67), and (65) yield

FIG. 6. Schematic diagram of the energy levels of Co'+ tak-
ing into account the spin-orbit coupling.

The spin states belong to the representation I 8 of Td and
the states I, and I 4 split into I 6+ I ~+2I 8 under the
influence of the spin-orbit coupling whereas the I 2

ground state becomes I 8. Note that all these states are at
least doubly degenerate in agreement with Kramers'
theorem since Co + has an odd number of electrons in
the incomplete 3d shell.

We now evaluate the expectation value of the Hamil-
tonians (74) and (75) in the ~F,Mz ) representation using

Ho( I ~)= ——'AS I— [—'Q+ —' —(S I) ],3 15 A,

0 4 4 Q 3 3

15 A.
Ho( 1 ~)= 5+—S I+ [—,'Q+ —',

—(S I) ]

[2—(S I) —S I],16K 2

5A

and

H(3I 2)= —95+ +2p&B 1+ —n S
32K, 16 I,
5 b,

16 (Pa»'
+

(76)

(77)

(78)

Ni

TABLE V. g factors for Ni + and Co'+.

Co
Td Level

I 4

—' —(15k/4A)

—,'+(15'/4a)

Level

I6
Is
I 7

Is

(6,7)

3+(75k/8h)

1 —(75K,/8A)

+ (65K/4h )

—+ (435k, /165 )

—5A, /5

—
—,

—(45k, /4h)

I 4 —,
' —(15'/4S)

——( 53K, /206, )

—+ (75k./8A )

3 —(75K,/8A)

—"—(435K,/166 )

s
( 33'/4g )

+ (45k. /4A )

5A, /5

2+(32K, /5b ) rS 2 —(8A. /b )
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crystal field of tetrahedral symmetry in the presence of
spin-orbit coupling. We note that the lowest state of
Ni + is a I, singlet so that this ion will exhibit Van Vleck
paramagnetism at the lowest temperatures, for reasons
similar to those occurring in the iron-based semiconduc-
tors. In contrast, Ti +, whose energy diagram is obtained
from that of Fig. 7 reversing the order of the levels, has a
I 5 triplet as its ground state and, hence, exhibits a stan-
dard temperature-dependent paramagnetism.
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APPENDIX A: MATRIX ELEMENTS OF Q

We evaluate here the matrix elements of the operator
Q defined in Eq. (22). This operator can be conveniently
rewritten as

Q=(3S, —S S)(3I, —I I)+—,'(S++S )(I++I )

(A 1)

FIG. 7. Schematic diagram of the energy levels of Ni'+ in a
tetrahedral crystal Seld including spin-orbit coupling.

The spin states of Ni + belong to D'+'=—I 4 and the I 4
and I 5 states split into I &+ I 3+ I 4+ I 5 and
r, +I 3+I 4+I 5 respectively, whereas the I 2 level be-
comes I 5 when the spin-orbit coupling is taken into ac-
count.

The energies of the spin-orbit-split states are easily
determined from Appendix A and Eqs. (76) and (77). We
find that the I, ground state has energy 3A, while the I'~,
I'3, and I'5 levels of the lowest multiplet of Ni + have en-
ergies 3A. /2 —(15k, /4b, ), —3A, /2 —(45k, /4h), and—3A, /2 —(15K,2/4h). The levels originating from I 5

have energies 5—
A, , 5—

A, /2 —(53K, /206, ), b, +A, /2
+(45K, /4b, ), and b, +A/2+(15k, /4h) for the I 2, 15,
r3, and I4 states, respectively. Ni+ having an even
number of electrons in the incomplete 3d shell has g fac-
tors that are isotropic. Their values are shown in Table
V. Figure 7 represents the energy levels of Ni + in a

and its matrix elements in the lF, MF ) representation are
obtained from

(F,MplglF, MF&= g g (F,MF'IMs, MI&
M,', M' M& M&

X(Ms MslglMs Mi

x(Ms, MIlF, MF) .

(A2)

We disregard matrix elements connecting different values
of I' because the degeneracy of the states I' =S—I, S,
S+1 is already lifted in first-order perturbation theory
by the term proportional to A.S I in the Hamiltonians
(24), (67), and (70).

To evaluate the matrix elements of Q in the lF, MF )
representation we first carry out the summation over Mz,
keeping in mind the fact that Mz+MI=MF. Use of
Clebsch-Gordan coe5cients' corresponding to the addi-
tion of any angular momentum operator S with an angu-
lar momentum I = 1 then yields, for the diagonal matrix
elements,

(F=S—1, MFlglF=S —1, MF) = [21M~+3MF(5 —6S +6S)+S(5S +6S +7S+6)],
2S (2S + 1)

(A3)

(F=S, M l glF =S, M ) = [—21M —3M (5—6$ —6S)+S(—5S —10S +S+6)]2$($+1) F F
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and

(F=S+1,MFiQiF =S+1,MF) = [21MF—3MF(7+6S +18S)+S(5S +14S +19S+10)].
(2S + 1)(2S+2)

(A5)

In a similar way, the only nonvanishing off-diagonal matrix elements are found to be

(F=s 1,—MF+4iQiF =s —1, MF &

4S(2S+ 1) I [S —(MF k 1 ) ][S —(My+2) ][S —(MF +3) ](S+MF)(S T Mp —4) I
'~, (A6)

&F =S, M +4iQiF =S, M

{(S+MF)[S (Mp+—1) ][S —(MF+2) ][S —(Mpk3) ](S+MF+4)]'~, (A7)

and

(F=S+1,M, +4iQiF =S+1,M, )

i (S +MF )[(S+MF )
—1][s —(MF+2 } ](S+MF+3)(SkMF +4)(S+3fF +5) ]

'
2 2S+1 2S+2

(A8)

APPENDIX 8: MATRIX ELEMENTS
OF S, I, and Q

IN THE iF, MF ) REPRESENTATION

This appendix is devoted to the evaluation of the ma-
trix elements of the operators that are needed in the
study of the Zeeman Hamiltonians (25), (68), and (71). By
virtue of the signer-Eckart theorem, we have

and

(F,MF ISIF,MF ) = F(F+ 1)+S (S+1) I(I +1)—
2F(F +1)

X &F,M,'ipiF, M, & (B2)

(B3)

F(F +1)—S(S+1)+I(I+1}
2F(F +1)

x&F;MFIFIF,M, & .

&F,M, I~IF,M, &

&F,M, I~ FIF,M, &

(F,M,'iFiF, M, )F F+1

(B1}

The matrix elements of the operator Q defined in Eq. (23)
are also needed. Since we know, from group-theoretical
arguments, the form of the Zeeman Hamiltonian [see
Eqs. (27), (28)], it is sufficient to consider the magnetic
field to be oriented in a specific direction, say z, so that
n=(0, 0, 1) and the operator Q becomes

for any vector operator V. This allows us to find the ma-
trix elements of the operators S and I. We have

Q =2S,(3I, —I I) .

Its matrix elements are

(B4)

(F,Mpl2S, (3I,'—I.I}IF,MF) = g I&F MFIMs Ml &I 2Ms[3MI' l(I+1)]5—I MS~

(B5)
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We first perform the summation over Mr=1, 0, —1 and
use the expression for the Clebsch-Gordan coefficients.
We find

(F =S —1, M„i2S,(3I —I I)~F =S —1, MF )

3M/ —S +3S+1
=2MF S(2S+1)

(, F =S, MF i2S, (3I, —I.I)iF =S, MF )
S +S —1 —3MF

S(S+1}
and

(F=S+1,MF~2S, (3I, —I.I)iF =S+1,Mt;)

3MF —3 —S —5S

(S + 1)(2S+ 1)

(B7)
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