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We show that it is possible to control the gap between the minibands of a conventional superlat-
tice by introducing positive potentia1 barriers in its wells or potential wells in its barriers. An ap-
propriate choice of the position, the width d, and the height Vz (depth V, } of these barriers (wells),
achieved by standard methods, can reduce the energy minigaps to the desired values. When these
barriers are introduced at the center of the wells of the original structure, the position of the second
miniband E2 in energy space changes very little with d and/or V& whereas that of the first miniband
El can change by 1 to 2 orders of magnitude. This leads to a tuning of the first miniband and of the
gap E2 —E

&
and is in sharp contrast with conventional structures where both El and E& change and

a control over both the width and the height of the barriers is necessary for band-gap tuning. Simi-
lar results are obtained for the case of wells in the barriers. Possible app1ications include infrared
photodetectors and tuning of the tunneling current.

I. INTRGDUCTIQN

Superlattices have been studied extensively during the
last decade especially after the advent of materials
growth techniques with dimensional control close to in-
teratomic spacing, such as molecular-beam epitaxy and
metal-organic chemical-vapor deposition. Unusual elec-
tronic properties such as negative differential conductivi-
ty have been observed, and a detailed band-structure en-
gineering has become possible. '

In conventional superlattices the potential profile of
the conduction band is of the Kronig-Penney type with
the electrons described as free particles with an effective
mass m'corno (effective-mass approximation), where mo
is the bare electron mass. This gives rise to the miniband
structure.

For certain infrared (ir) applications it is desirable to
have only two minibands with a small energy minigap.
This could be achieved by varying, for example, the
width and height of the potential barriers as well as the
width of the wells. To obtain small transition energies
this requires small barrier heights and large well widths.
Furthermore, a precise control over both the barrier
height and well width is essential. But, wide wells are
much more sensitive to electric fields than narrow wells,
and for small energy minigaps dark currents will be large
for large well superlattices.

The present method avoids these drawbacks. Small en-
ergy separations (thus small energy minigaps) can be
achieved in superlattices with narrow wells by introduc-

ing positive potential barriers (of width d and of height
Vz ) in the middle of its wells (of width c and of depth V, )

or potential wells in the middle of its barriers (see Fig. 1).
We found that in the first case the center of the second
miniband (and its width) change very little with d and/or
Vz whereas the energy of the first miniband (and its
width) can change by 1 order of magnitude. For certain
values of Vz (V, ) and/or of d (c) the energy minigap
closes; these values change when the barriers (wells) are
displaced out of the center of the wells (barriers) of the
original superlat tice structure.

The proposed superstructure, shown in Fig. 1, can be
thought of as a superlattice with a complex basis and, as
will be shown below, exhibits a much richer band struc-
ture than the conventional superlattices. The only previ-
ous works for superlattices with complex basis (but with
a much simpler basis than that of Fig. 1) of which we are
aware are those of Refs. 3 and 4. The approximate super-
lattice dispersion relation of Ref. 3 is a particular limit of
our exact result. The same holds for the exact (numeri-
cal) superlattice dispersion of Ref. 4. In both earlier
works the tuning of the first miniband and of the energy
minigap and their physical interpretation are missing.

The superlattice dispersion relation pertaining to the
structure shown in Fig. 1 and its various limits are de-
rived analytically in the next section using the transfer-
matrix method. In Sec. III we present its numerical eval-
uation for two important cases of biperiodic superlattices:
the positive potential barrier in the quantum mell and the
well in the barrier. For the case of the barriers (wells) in
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III and V, the wave function is given by Eq. (1) with
different coefficients, and the wave vector k' is defined by
fP(k') =2m".(E+V, ). The electron wave function in
the regions IV and VI is given by Eq. (2) with decay con-
stants Eb, for region IV, and Kd, where
fi Kd =2m& ( Vd E—), for region VI.

At the interfaces of the various regions we match the
wave function and the quantity (1/m')d%/dz which
guarantees current continuity. The matching procedure
connects the coefficients A„,Bn with An+ „B„+,. in ma-
trix notation we have

FIG. 1. Potential profile of the first period of the superlattice
under investigation.

B„

A„B„—Bo
=P

Ao

B„+)
which by iteration gives (P =Q )

(3)

(4)

the wells (barriers) we present in the Appendix the corre-
sponding results of an infinitely deep quantum well with a
barrier or well in it. Our concluding remarks are given in
Sec. IV.

The eigenvalues of P give the allowed energies (bands)
and its eigenvectors the wave function, i.e., the
coefficients Ao, Bo, etc. The eigenvalue equation for P is

p2 —TrP+1=0 .

II. THE DISPERSION RELATION

A. General expression

—Kb(z —nl) Kb(z —nl)
q'() z =Cne +D„e 7 (2)

where fi k =2m~E and A K(, =2mb'( V& E). In region—s

One period of the superlattice under study is shown in
Fig. 1. In region I, the one-electron wave function can be
written, in the effective-mass approximation, as

qi ( ) g ik(z —nl)+ g e
—ik(z —nl)qz — ne ne

and in region II as

As n —++00, the wave function must remain finite, and
this entails that the acceptable solutions of (5) must satis-

fy ~TrP~ ~2. The solutions are p =exp(+ik, l) if we

define cos(k, i)=Tr(P )/2. This relation gives the allowed
energies (bands), i.e., the dispersion relation E (k, ).

To simplify the notation for the present case, we intro-
duce the following parameters: A, )

=m ' lm b',
Az=m' lmb, A3=m'/md', r, =A, ,K„/k, rz=&zKb/k',
r3 =A3Kd/k, ri, =(r; +1lr;—)l2 for i =1,2, 3,
=(1/r, r+r;r )/2 fo. r i,j =1,2, 8,

+—"=(r, /r +r /r, )/2, . (I)

=ck, x =(b —c)Kb, y =(W d}k, z =dKd—, p=2s Kb,
and co=2sk. After a lengthy but straightforward algebra-
ic manipulations, we obtain

cos(k, l) = (cos(I) coshx + z)z sing sinhx)(cosy coshz + z)3 siny sinhz)

+ [ri) cosP sinhx —
—,'sing[(8(z —ri(z)coshx +(8,+z+z))z)coshp] j(siny coshz —

ri3 cosy sinhz)

+Y/3 sinhz( z)z+ sing sinhp since+ [ ri)+cos(() sinhx —
—,[(8)z+ z))z )coshx + ( 8,z

—
ri)z )coshp ]sing I costa ) . (6)

When narrow wells are introduced in the wells of the su-
perlattice, in place of the narrow barriers, Eq. (6) is again
valid with the interchange Kd ~ik".

B. Various limits

The various limits are as follows.
(i) The standard superlattice dispersion relation is ob-

tained from Eq. (6) for z ~0 and $~0, i.e., when the ad-
ditional barriers (Kd }and wells (k') are absent.

(ii} When only the barriers (Kd ) are present (i.e., for
$~0), we obtain

cos(k, l) = coshz coshx cosy

+ (z}, coshz sinhx + z)3 sinhz coshx)siny

+ ( )I) z)3 costa —g, z)3 cosy)sinhx sinhz

This expression is identical with the one we derived be-
fore with the following change of notation g& qb and

The limit of 5-function barriers of Eq. (7) is
easily obtained by letting d~0 and Ed ~0, while keep-
ing the product d Vd constant. Another limit of Eq. (7) is
the isolated asymmetric double potential well obtained
forx~~ and



41 QUANTUM TUNABILITY OF SUPERLA'I I ICE MINIBANDS 10 023

coshz cosy +(g, coshz +rt3 sinhz)siny

+(g,+g3 cosa' —rt, g3 cosy}sinhz =0 . (8)

For 7), (ICb )~ ao and co=0, Eq. (8) gives the eigenvalue
equation of an infinitely deep quantum well with a barrier
in its center. For q

+—

, =rt3 and co=0, Eq. (8) gives the ei-

genvalue equation for the symmetric double-well poten-
tial.

(iii) The linear diatomic chain limit is obtained from
Eq. (7) for K„=ICzand s =0.

(iv) If only the wells (k') are present (i.e., for z~O),
then Eq. (6) gives

cos(k, i) =(cosP coshx +rt2 sing sinhx)cosy+siny I g, cosP sinhx —
—,'sing[(6},+2 —g,+z)coshx +(8,+z+rt,+z}cosh/]I . (9)

The 5-function limit of this expression P(c}~0, Vo ~~,
and cVo~P finite, gives the dispersion relation of Ref. 3
for arbitrary barrier widths b, whereas the derivation in
Ref. 3 was valid only for b ~ 00.

(v) For d ~ ~ and c~~, Eq. (7} gives the eigenvalue
equation for the isolated asymmetric potential well.

(vi) The limit of a linear triatomic chain is obtained for
Kb K& and s s — 0.

The list of the limits given above is not exhaustive but
it indicates the richness of Eq. (6). In the following we
will use Eqs. (7) and (9) and the limit of Eq. (8) for
g, ~0, which gives the eigenvalue equation of an
infinitely deep quantum well with a barrier in it [see Eq.
(A2)].

are plotted as function of the barrier width d. As d in-
creases the minibands move closer to each other and the
energy minigap hE becomes smaller. Notice, however,
that E2 remains almost constant whereas E, has a strong
dependence on d. At d =35.9 A the gap closes and then
reopens for d )35.9 A. This is shown more clearly in
Fig. 3(a) (for the same parameters as in Fig. 2), where the
first two miniband widths and the gap AE are plotted as
function of d. b,E2 remains almost constant whereas
hE& changes by a factor of 5. On the other hand AEg
(zero at d =35.9 A) increases when the barriers with a
fixed width (d =35.9 A) are slightly displaced from the
center of the wells as shown in Fig. 3(b). Notice that

III. NUMERICAL RESULTS

A. Positive barriers in the wells

As an example we consider Al„Ga, „Asbarriers with
x =0.4 (for x )0.4, indirect tunneling through the X val-
ley may occur) introduced at the center of the wells of a
GaAs/A1 Ga, „Assuperlattice with x =0.3. The bar-
rier heights V& and Vb are taken to be 60% of the band-

gap difFerence which is given by E = (0.093x +0.222x 2)

eV. The efFective masses are given by m'/ m&=0. 067
+0.083x. Equation (7) is solved numerically for the pa-
rameters shown in Fig. 2 in which the first two minibands
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FIG. 2. The first two rninibands as function of the width of
the barriers placed in the rniddle of the quantum wells.

FIG. 3. (a) The width of the first two minibands and the ener-

gy gap as function of the width of the barriers which are located
in the rniddle of the quantum wells. The dependence of these
quantities on the position of the barriers with respect to the
center of the quantum wells (at s =0 the gap is closed) is shown
in (b).
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when d =0 the gap E =80.8 meV. Inspection of Fig. 4,
where E„(k,) is plotted versus k, l, shows that the second
miniband has moved upwards, from its position at d =0
A, by about 10 meV so that the closing of the gap is al-
most entirely due to the upward motion (about 90 meV}
of the first miniband. In other words, varying the width
of the additional x =0.4 barriers leads effectively to a
tuning of the first miniband and of the gap since the
second one remains practically constant on the meV
scale. The same rniniband behavior is obtained when d is
fixed and Vd is varied. An additional degree of freedom
is the position of these barriers (see Fig. 3). Thus for
small E2 —E, differences, pertinent to ir applications, one
does not require large wells with the disadvantages men-
tioned in the Introduction.

A different choice of parameters will result in different
miniband widths. For example, if we take m =200 A and
keep all other parameters the same, the first miniband
width becomes 1 order of magnitude smaller: hE

~
=0.32

meV at d =0 and bE& =1.46 meV at d =38 A, when the

gap closes, whereas EE2 changes very little.
The previously cited miniband behavior when d or Vd

is varied, especially when s =0, is best understood by
considering the simplified model of an infinitely deep po-
tential well with a barrier in it. This should be a good ap-
proximation especially when the barrier is placed at the
center of the well. The eigenvalue equation derived along
the lines of Ref. 6 or from Eq. (8) is given by Eq. (A2} of
the Appendix. In Fig. 5(a} the first four energy levels are
shown as function of the barrier width b for s =0. The
other well parameters are given in the figure caption. As
b increases the levels 1 and 2 (or 3 and 4) move closer to
each other and for b ) 50 A the difference E2 E, is not—
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FIG. 5. (a) The first four energy levels for a potential barrier
in an infinitely deep potentia1 well (see inset) as function of the
width of the barrier. In (b) the dependence of the energy levels
of the potential barrier (width b =50 A and height Vo=313
meV) in an infinitely deep well (width w =200 A) is shown as
function of the shift (s) of the center of the barrier from the
center of the well.
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FIG. 4. The energy-momentum relation for the first two
minibands for two different values of the width of the barrier.
For d =0 A the first miniband falls outside the figure. For
d =35.9 A the gap is closed.

resolved on the meV scale. Notice that it is mainly the
n-odd levels that move whereas the n-even levels remain
almost constant. The same behavior is obtained when b
is fixed and Vo is varied. Figure 5(b) shows how the lev-
els move apart as s varies. This behavior is identical with
that of the superlattice minibands, as shown in Figs. 2
and 3(b). We can understand this behavior with the help
of Fig. 6 where the (analytically derived) wave functions
V(z) (cf. Appendix) for the first four levels are plotted for
b =50 A and s =0 as function of z. The dashed lines are
the wave functions of the first two levels in the absence of
the barrier (b =0); the wave function of the first level has
a maximum at the center of the well whereas that of the
second level vanishes. Therefore, the wave function and
the energy of the first level will be drastically affected by
the introduction of the barrier (b&0) whereas the corre-
sponding quantities of the second level will not. This
leads to an effective tuning of the first level and the gap
E2 —E, . This was pointed out independently for quan-
tum wells ' ' of finite height and is in direct analogy
with the superlattice case as discussed above.
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FIG. 6. The real part of the wave function corresponding to
the problem of Fig. 5. The dashed thin curves correspond to
the first two levels in the absence of the barrier.

FIG. 7. The first two minibands as function of the width of
the wells which are placed in the middle of the barriers. The

0 0
parameters used are b =50 A, m =80 A, Vb =215 meV, and
V, = —175 meV.

B. Wells in the barriers

We study this case separately because when the addi-
tional wells have the same depth as the original ones, the
new superlattice structure was shown to have certain ad-
vantages (lower dark current and higher responsivity )

over the original one. Also the 5-function limit of Eq. (9)
corresponds to the case studied in Ref. 3. We consider
the lattice-matched superlat tice made of
GaQ 23InQ 77AsQ sPQ s wells (m *=0.142m Q, w = 80 A) and
of InP barriers (m *=0.053mQ, b =50 A) with quantum
wells of GaQ 471nQ 53As (m *=0.53m

Q ) introduced in the
InP barriers.

In Fig. 7 the first two minibands, as resulting from the
numerical evaluation of Eq. (9), are shown as function of
the width c of the additional well. The other parameters
used are given in the figure caption. The behavior of the
minibands as function of the Ga In, ,As well width is
similar to that of Fig. 2. The gap closes at c =20.20 A.
The behavior of the gap and the bandwidths as function
of c is shown in Fig. 8. The dispersion relation without
Ga„In, „Aswells (c =0 dashed curves) and with those
wells (c@0 full curves) is shown in Fig. 9. Notice, how-
ever, that now it is E& which changes little with c
whereas Ez changes a lot. These results as well as the
closing of the gap can again be understood from the be-
havior of the wave functions of the isolated symmetric
double potential well which should be a reasonable ap-
proximation to the superlattice in the absence of the
Ga In& „Aswells. As seen in Fig. 15.S of Ref. 7, the an-
tisymmetric wave functions vanish in the middle of the
barriers whereas the symmetric ones do not. Thus, the
introduction of the additional wells in the middle of the
barriers will mainly influence the symmetric wave func-
tions.

It is of interest to study the effect of introducing im-
purities (donors) in the barriers of a standard superlattice
which are confined to a single monolayer since this "6
doping" can lead to very-high electron densities. This

IV. CONCLUDING REMARKS

In the present paper we have derived an analytic ex-
pression for the dispersion relation for the complex su-
perlattice structure whose first period is depicted in Fig.

80

60
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~ 40

20
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Eq

10 15
c(A)

20 25

FIG. 8. The width of the first two minibands and the energy
gap as function of the width of the we11 which is located in the
middle of the barriers.

was done in Ref. 3 where they used the dispersion rela-
tion which is the 5-function limit (c~0), VQ~OO, and
c VQ ~P finite) of Eq. (9). The behavior of the minibands
observed is similar to the one described above. However,
one may question the approximation of representing the
effect of donors by a 5-function potential. Indeed, in Ref.
10 it was shown that the e6'ect of such a layer gives rise to
a potential of Coulomb type. We believe that Eq. (9) for
narrow Ga, In& „Aswells is a better approximation to
the true potential than its 5-function limit [see Eq. (1) of
Ref. 3] despite the fact that the effective-mass approxima-
tion may be questionable for narrow wells.
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FIG. 9. The energy-momentum relation for the first three
minibands for two different values of the width of the wells. For

0
c =0 A the third miniband falls outside the figure, and when
c =20.2 A the gap is closed.

reflected, the closing of the gap will lead to a higher
transmittivity, e.g. , a higher tunneling current [note that
the group velocity, BE„(k)/Bk, at the point where the
gap closes is not zero].

Of course other barriers (made out of different materi-
als) may be more feasible. Higher barriers in the quan-
tum wells will have the advantage that smaller barrier
widths are needed in order to close the gap. The advan-
tage of using A1, Ga& „As barriers in a
GaAs/Al, Ga, „As superlattice is obvious from the
grower's stand-point: only a small number of different
elements are needed in the growth chamber. Similar re-
marks hold for the case of wells in the barriers.

In conclusion, we have proposed a new method of con-
trolling the gap between the minibands of a superlattice.
Already one particular case of the new superstructure
was shown to have several advantages over the conven-
tional structures. "' Optical experiments for the case of
an isolated quantum well with a barrier in it have been re-
ported" and we expect that this will be the case with the
new superlattice as well. A study of p1asmons in these
new structures has been undertaken' and a study of per-
pendicular transport (e.g. , tunneling current) has been
planned. '

1. The band structure as detailed in Sec. II B, Eq. (7), is
very rich, and we showed how different existing results
are reobtained as limiting cases. We have also presented
numerical results for two important limiting cases: the
one with positive potential barriers in the wells and the
other with wells in the barriers of the superlattice. An
important common aspect of these results is an additional
freedom that one has, with respect to the conventional
superlattice structures, in controlling the gap between the
minibands of the superlattice (or between the levels of an
isolated well, see Sec. III). The gap is easily controlled by
an appropriate choice of the width, the height, and the
position of the additional barriers or wells. In this way
one can avoid the disadvantages of large wells mentioned
in the introduction (e.g., large dark currents and strong
sensitivity to the electric fields). An important point,
especially in the case of barriers (see Sec. III), is that the
second miniband is little affected by their presence
whereas the first one is drastically affected (the reverse
holds for the case of wells in barriers). This behavior and
the closing of the gap is tied to that of the corresponding
wave functions as approximated by those of the isolated
wells (see Sec. III).

The strong sensitivity of the gap on the accuracy of
centering the barrier (well} in the quantum well (barrier)
[see Figs. 3 and 5(b)] may be a problem, which is also en-
countered in the case of positive defects in barriers dis-
cussed by Beltram and Capasso. This may be compen-
sated for by altering the height of the barriers.

The control of the gap has important applications. (1}
For Vd = Vb a higher responsitivity and a large reduction
of the dark current in photodetectors have been report-
ed. (2) One can tune the mobility or the effective-mass
ratio of the second to the first miniband. (3) Since in-
cident energies corresponding to the gap are totally
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APPENDIX

Below we derive the eigenvalue equation and the one-
electron wave function for an infinitely deep quantum
well with a barrier in it. We do so because we Use them
to understand the behavior of the superlattice minibands
(see Sec. III) and because we did not find the relevant ex-
pressions in the literature.

In the three regions I, II, and III [see inset of Fig. 5(a)]
the corresponding wave function %(z) can be written as

ql, (z) = A sin(kz}, 0 z IV,

%(z)= 4„(z)=B,e +B2e, Wi z &i+d
4'„,(z) =C sinK ( W —z), W', +d ~ z ~ ~

(Al)

where W, =( W —d)/2+s. Matching the wave function
and the quantity (1/m ')d%/dz at the interfaces leads to
a system of four linear equations for the unknowns A,
B

& Bp and C. The vanishing of the determinant of these
coefficients gives the eigenvalue equation for E & Vd
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2dKd
(a, + 1)(a&+1)e =(a, —1)(a2—1), (A2)

where ai =(A3Kd /k)tanh(k W& ) and a&=(A3Kd /
k)tanh(kW2) with Wz = W —( Wi+d)=( W —d)/2 —s.
Equation (A2) can also be derived from Eq. (9) for g, (or
Kb) ~ao. The coefficients a, Bi, B~, and C are related
(through the matching procedure) by

C =(a&+ 1)e "A /(a, —1),

Bi =e ' "(a~+1)MA

B2 =e ' (a2 —1)MA,

(A3)

where M =(k/2A, 3Kd )cos(kW, ). Normalizing the wave
function in the interval 0 z 8' gives

A =
—,'( W, +r2W2) — [sin(2kW, )+r sin(2kWz)]

1

+4M p sinh(dKd )[Kd(a&+ 1)cosh(2 W, +d)+Kdazsinh(2W, +d)]+2Mzb (azz—1) (A4)

dEd
where r =(a2+1)e /(a, —1). In the case of a well, of depth —

Vd and width d, all the results above hold with Kd re-
placed by ik'
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