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Dynamical properties of layered superionic conductors
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A model layered superionic conductor, which is composed of alternating layers of superionic con-
ductors and ionic crystal, is described on the basis of a continuum model. Using linear-response
theory, the dielectric function and ionic conductivity of the system are obtained as a function of fre-

quency, wave number, and the distance between the adjacent layers. It is shown that these response
functions satisfy a sum rule. The longitudinal collective modes obtained from the dielectric func-
tion are classified into two kinds of modes: the acoustic-phonon mode and the coupled optical-
phonon-ionic-plasma mode. The ionic-plasma mode has changed from the three-dimensional to
the two-dimensional plasma mode with the increase of the distance between layers. Also in the
strong-coupling limit where the distance is small enough the ionic-plasma mode has shown two
phases: bulklike and acousticlike plasma modes.

I. INTRODUCTION

One of the current interests in the field of crystal-
growth physics is to explore the possibility of artificial
substances such as semiconductor superlattices. Recent
advances made in molecular-beam expitaxy have made
possible the growth of ultrathin layers with thicknesses
on the order of atomic dimensions. ' Today we can study
various new materials with superlattice structure which
are composed of alternating layers of different materials.
In particular, type-I (e.g., GaAs/Al„Ga, „As) and type-
II (e.g., InAs/GaSb) semiconductor superlattices have
been extensively studied. If electrons occupy only the
lowest subband in a type-I semiconductor superlattice,
we can treat the type-I semiconductor superlattice as a
layered electron gas (LEG}.

The collective excitations in LEG have attracted much
interest. ' It is well known that the energy of two-
dimensional (2D} plasmons is proportional to the square
root of the wave number in the long-wavelength limit, "
while that of three-dimensional (3D) plasmons is can-
stant, independent of wave number. ' On the other hand,
plasmons of LEG systems change their dispersion rela-
tion from 2D-plasmon-like to 3D-plasmon-like with de-
creasing distance between layers. ' This dimensional
crossover property of plasma modes is a common charac-
teristic of any layered system of charged particles.

One proposed superlattice is composed of alternating
layers of superionic conductors (SIC's) and ionic crystals.
We call it the layered SIC (LSIC). Because of the layered
structure in the LSIC system, the dispersion relation of
plasma modes will also be expected to change from 2D-
like to 3D-like with decreasing distance between layers as
in the LEG system. Hence the collective modes of LSIC
are expected to be different from that of the usual 3D SIC
system.

SIC's are widely known as solid electrolytes with a

high ionic conductivity comparable to that of a liquid
electrolyte. Collective modes of 3D SIC have been inves-
tigated by many authors. ' ' Kobayashi et al. ' dis-
cussed the coupled modes of plasmons and longitudinal
optical phonons in silver chalcogenides. Jackie' predict-
ed that under the inhuence of the Coulomb force the ion-
ic diffusion mode is converted into a relaxation mode in
the long-wavelength limit. The electric field induced by
ionic density Quctuations has no effect on elastic waves,
but has a quantitative effect on damped optical phonons
and changes completely the character of the diffusion
mode. This indicates that the Coulomb field has a strong
influence on the coupling of plasma modes and other col-
lective modes. In the LSIC system, however, plasma
modes change their dispersion relations depending on the
distance between layers as described above. This struc-
ture dependence of plasma modes presumably affects the
dispersion relations of the coupled modes in the LSIC
system.

In the present paper, using the continuum model, we
investigate longitudinal collective excitations and the
dynamical properties of the LSIC system. The main pur-
pose of the present paper is to study the dynamical
difference between the LSIC and 3D SIC systems.

Our model structure is shown in Fig. 1. The system
consists of an infinite array of parallel SIC layers a dis-
tance d apart. The space between SIC layers is filled with
an ionic crystal with the static dielectric constant eo.
Here the ionic crystal is regarded as a background medi-
um which does not affect the dynamical properties of the
SIC layers. We assume that the SIC layer is sufficiently
thin and may be treated as a 2D SIC plane. As an actual
system, we consider a LSIC system composed of 2D
a-AgI planes separated by LiCl ionic crystal. From the
continuum model, the crystalline cage composed of lat-
tice ions (I ) is assumed to be immersed in a viscous fiuid
of mobile ions (Ag+). The relative motion of two ionic
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components is governed by the short-range visocelastic
force with a memory effect and the the long-range
Coulomb force. Ionic dynamics in the LSIC are de-
scribed by the equations of motion for each kind of ion
and the Maxwell equation. A current density in a SIC
plane is induced by the relative motion between ions, pro-
ducing an effective electric field which affects the ionic
motion in neighboring planes. Thus these equations have
to be solved self-consistently.

The outline of the present paper is as follows. In Sec.
II we present the equations of motion using the continu-
um model. In Sec. III we describe the dielectric function
and the ionic conductivity of the LSIC system on the
basis of linear-response theory. We find that these
response functions satisfy a sum rule. In Sec. IV we
present the dispersion relations of the longitudinal collec-
tive modes. In Sec. V we calculate numerically the inter-
plane distance dependence and the frequency dependence
of ionic conductivity. In the final section we summarize
and discuss our results.

II. EQUATIONS OF MOTION

X

l( //////////// ///
]'ll

l/51C//// //// // / //// (:1
I}i

Gp

NI

I( // // / / / / / / / / / / / 1=
/W

glC/rrrr r r/ r///rrr j--1

FIG. 1. The system of infinite-layered superionic conductors.
2D SIC planes parallel to the x-y plane are arranged with regu-
lar intervals d. The space between the planes is filled with an

ionic crystal of dielectric constant Ep.

As in shown in Fig. 1, we take the z axis to be perpen-
dicular to the SIC planes and denote the coordinate in
the x-y plane by the position vector r. The SIC planes
are located at z =z, , where z; =id (i =0, %1,&2, . . .).

The dynamics of the lattice ions is described by the lat-
tice displacement field in the crystalline cage. The equa-
tion of motion for the 2D lattice displacement field g;(r, t}
in the ith SIC plane is given by'

, g, (r, t') v, (r, t—') = — E, (r, z, , t),
ltd )

(2.1)

with M(t)=m'cooexp( t/r) and —(m') '=m
i

'

+m 2
'. Here, m, and mz are the anion (I ) and cation

(Ag+) masses, respectively; q is the elementary electronic
charge, VL is the longitudinal sound velocity, and I L its
phenomenological damping coefficient; coo is the optical
frequency with a relaxation time r in a relative ionic
motion. The field v, (r, t) is the 2D velocity field of
mobile ions in the ith SIC plane and E,(r, z, t) is the
tangential component of the total electric field E(r,z, t) at

I

the point (r, z}.
The motion of mobile ions is treated as that of a

viscous fluid. It can be described by the 20 velocity field
v; (r, t) and the dimensionless density fiuctuation n;(r, t).
Here, n, (r, t) is defined by n;(r, t)=[N, (r, t}—No]/No,
where N;(r, t) is the 2D number density of mobile ions
and No is its average value. The linearized hydrodynam-
ic equations for these fields are given by

n, (r, t)+V—v;(r, t)=0, . (2.2a)

v, (r, t)+co—Vn;.(r, t) aLV v, (r, t)—+ J dt'M(t t') v;(r, t') ,
—

g, (r,—t') = E,(r, z;, t),q
m2 t' ' '

mz
(2.2b)

where co is the sound velocity in the fluid composed of
mobile ions and al is the viscosity.

The 2D Fourier transforms of Eqs. (2.1) and (2.2) give
us the following equations:

Iqco[/o VL (co)k ]
v;(k, co) = E,(k, z, ,co),

m2H k, co
(2.3b)

iqro[co co(co)k ]-
g, (k, co) = — E,(k, z;,co),

m iH k, co
(2.3a)

where k is a 2D wave vector in the x-y plane and co is the
frequency. Here the functions G(k, co) and H(k, co} are
defined as
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G(k, co)=[co —V, (co)k ],
H(k, co) =[co —

VL (co)k ][co —co(co)k ]
—Qo(co)[co —V, (co)k ],

(2.4a)

(2.4b)

the 0th SIC plane satisfies the following Maxwell equa-
tion:

Q2
V E,'„'(r,z, t) —VV E„'(r,z, t) — E;'„'(r,z, t)~' at

where

and

V, (co) =[m, Vl (co)+marco(co)]/(mi+mz),

VL (co)= ( VJ i—coI I ),

co(co}=(co icoa—
L ) .

The frequency Qo corresponds to that of the damped op-
tical phonon in the SIC system:

Qo(co)= ico f— dt e' 'M(t)/m"=cooco/(co+i/r) .

(2.5)

III. DIELECTRIC RESPONSE AND IONIC
CONDUCTIVITY

The 2D current density j;(r, t) in the ith SIC plane com-
bines with the relative motion of ions through the equa-
tion j;(r, t)=Noq[v;(r, t) —g;(r, t)], where g;—= (c}/c}t)g;.
Then, from Eq. (2.3), the Fourier component is given by

iNoq coG(k, co)
j;(k,co) = E,(k, z;, co) .

m'H(k, co)

4~ a.—jo(r, t)5(z},
&2 9t

(3.4)

where c is the velocity of light, and 5(z) is Dirac s 5 func-
tion. Using the 2D Fourier transform, we obtain the
solution of Eq. (3.4):

E',"(kco) exp( Pl z—
I )

(0)
+ik.E', '(k, co) exp( —P~z ~ )/P (3.5)

E;„,(k, z, co) =E;'„',(k,z, co)F(P, k, ), (3.6)

where F(13,k, )= sinhPd/(coshPd —cosk, d). F(13,k, ) is
the structure factor which characterizes the layered sys-
tem.

Furthermore, the tangential component of Eq. (3.5) at
z =0 leads to the relation

where E', ' is the tangential and haik E', '/13 the z com-
ponents of the induced electric field at z =0, and
P (k2 e~2/c2)1/2

Taking the contribution from all SIC planes, the
tangential component of the total induced field

E;„,(k,z, co) is obtained as follows:

A. Dielectric function
EI„',(k, z =O, co)+ jo(k, co)=0 .

0
(3.7)

We calculate here the dielectric function of LSIC on
the basis of the linear-response theory. A weak external
charge p,„(r,z, t) induces a charge fluctuation p;„(r,z, t) in
the system. The total electric field E(r, z, t) and the elec-
tric displacement D(r, z, t) in the system obey the follow-
ing equations:

V E(r, z, t)=4mp„, (r, z, t)

By combining Eqs. (2.6), (3.6}, and (3.7), we get the rela-
tion between the induced electric field E;„(k,z, co) and the
total electric field E(k, z, co):

2nPNoq G(k, co)
E;„,(k, z, co)= F(P, k, )E,(k, z, co) .

corn 'H(k, co)

(3.8)

=4m[p;„(r, z, t)+p,„(r,z, t)], (3.1) From Eqs. (3.3) and (3.8), we get the longitudinal dielec-
tric function of the LSIC system:

V D(r, z, t)=4.np, „(r,z, t), (3.2)
eL(k, k„co)=1 co (13,k, )G(k,—co)/H(k, co), (3.9)

where p„,(r, z, t) is the total charge. Taking the Fourier
transforms of Eqs. (3.1) and (3.2), we obtain the formula
for the longitudinal dielectric function of the LSIC sys-
tem as follows:

p,„(k,k„co ) k E;„(k,k„co )

p„,(k, k„co) k E(k, k„co)

(3.3)

where E;„(k,k„co) is the electric field induced in the sys-
tem and k, is the wave number perpendicular to the
planes.

In order to obtain the dielectric function, we have to
calculate the induced field E;„(k,k„co). We can obtain it
by summing the induced fields caused by all SIC planes.
The electric field EI„'(r,z, t) produced by the current on

B. Ionic conductivity

We now calculate the ionic conductivity of the LSIC
system. Since there is no charge transfer between SIC
planes, the ionic conductivity tensor has nonzero ele-
ments only in the x-y plane. Therefore the ionic conduc-
tivity c7(k, k„co) is defined by

j;„(k,k„co)=cT(kk„co)E,(k, k„co), (3.10)

where the induced current density j;„(r,z, t) is given by

where co&(P, k, ) gives plasma frequency of the LSIC sys-
tem. In the nonretarded limit (P~k), we get
co&(k, k, ) =Q2~(k)F(k, k, ) where Qz (k) denotes the 2D
ionic plasma frequency given by Q2~(k)
=(2~Noq k/m +e )
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j;„(r,z, t)=gj, (r, t)5(z —z, ) . (3.11)

Under an external current, the total electric field obeys
the following Maxwell equation:

~p
V E(r,z, t) V—V.E(r,z, t) — E(r,z, t)

c2 c)t2

where g(k, co)=co(co+i/r)G(k, co), and the frequencies
co are the solutions of (co+i lr)H(k, co)=0

We can evaluate the integral in Eq. (3.17) by using a
contour integral. The result obtained is as follows:

, k, k„

(3.12)

g(k, co;)
=co (k, k, } 2Re g

(co; coj }

(3.18)

where j„,(r, z, t) and j,„(r,z, t) are the total and external
current density. Each current density satisfies the con-
tinuity equation and is assumed to be 2D flows confined
to the SIC planes. Thus the Maxwell equation (3.12) can
be analytically solved. After carrying out the Fourier
transform for Eq. (3.12), we can write the z and tangential
components of it as

krak E((k, kz, c)o PE, (k—, kz, co) =0,
(k, +P }E,(k, k„co)—kk E,(k, k„co)

(3.13a)

coco(P +k, )
(3.14)

kkzE (k k co)=, jtot(k, k~, co) . (3.13b)
C

Since we restrict our attention to the longitudinal
modes (k((E, and k~~j«, ), we can simplify the notation by
kk E, =k E, . A combination of Eqs. (3.13a) and (3.13b)
thus leads to

The residue theorem leads to
4

Re g g(k, co;)
4

(co; —co )=1
j=l
tj wi)

so that Eq. (3.18) is reduced to

f coImeL(k, k„co) =co&(k, k, ) . (3.19)

In the strong-coupling limit (kd « I), there are two
different cases to consider: k, =0 and k, d =~. When
k, =0 and F(k, k, ) =2/kd, we get

=n =oo dco 4&Pl ~g g

m*Ep
(3.20)

where 0 denotes an effective 3D ionic plasma mode with
an effective 3D ionic density, n, tt=XO/d In t.his case,
Eq. (3.20) leads to the sum rule in the 3D system.

For the case of k, d =n, taking account of F(k, k, )

=kd /2, we obtain another expression of the sum rule:

i coco(P +k, )k j;„(k,k„co)
ot (k, k„co)= 4' k j«,(k, k„co)

(3.15)

Substituting Eq. (3.14) into Eq. (3.10), we obtain the
longitudinal ionic conductivity f co Immit (k, k„co) =A~p(k) = ntNoci d

k
m Ep

(3.21)

Taking account of the continuity equation, we can ex-
press Eq. (3.15) in terms of the ratio p,„/p«, which
defines the dielectric function in Eq. (3.3). Then the ionic
conductivity is related to the dielectric function in the
following form:

where Q„p(k) is an ion —acoustic-plasma frequency.
Equation (3.21) is characteristic of the layered system.

In the weak-coupling limit (kd ))1), the eff'ect of the
layered structure vanishes because F ( k, k, }= 1 . Hence
all planes are independent of each other and then the sum
rule is reduced to that of an isolated single layer:

ieoco P +k,
oL (k, k„co)= [1—

eL (k, k„co)] .
4m p2

(3.16) co Ime k, k„co =0 k (3.22)

C. Sum rules of response functions

We will show that the response functions satisfy a sum
rule. First we investigate the sum rule for the longitudi-
nal dielectric function eL(k, k„co). From Eq. (3.9), the
sum rule for the imaginary part of eL(k, k„co) is ex-
pressed as

We can also obtain a sum rule for ionic conductivity.
Replacing co ImeL in Eq. (3.19}by Reo'L in Eq. (3.16), we
get

eo (kd) +(k,d)f Reo~(k, k„co) = cop(k, k, } .
4m' (kd)

(3.23)
Qo

dt's

co lmeL (k, k„co)

= —co~(k, k, }Im f (k, co) dco

(co co& ) f Reol (k, k„co} =eoQ /4m . (3.24)

In the strong-coupling limit (kd «1, k, d «1), Eq. (3 23}
represents the sum rule of the 3D system:
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In the weak-coupling limit (kd &)1, k, d )&1), the sum

rule is given by
k, =0 and k, &0 for describing the collective excitations
in the LSIC system.

f Rec7L (k, k„co ) =
eoQz~( k) /4m. , (3.25) l. Upper modes

which corresponds to that of the 2D system.

IV. COLLECTIVE MODES

A. Dispersion Felation

In this section we calculate the dispersion relation of
collective modes in the system. In the following we con-
sider only the case of the nonretarded limit (P~k). As is
well known, the dispersion relations of longitudinal col-
lective modes are derived from ez (k, k„co) =0, i.e.,
1 =co&(k, k, )G (k, co)/H (k, co). Taking account of Eq.
(2.4},we obtain the equation for co:

[co —
VL (co)k ][co —co(co)k ) —Qo(co)[co —V, (co)k ]

=co~(k, k, )[co —V, (co)k ] . (4.1)

This equation is factorized as [co2—co2+ ( co ) ]
[co —co (co)]=0, where co+(co) is defined as

co~(co)= —,'(Q++ V+k )

+—'[(Q +V k )
—4Q V (co)k

—4VJ(co)co(co)k ]' (4.2)

with Q+ =Qo(co)+co (k, k, ) and V+ = VI (co)+co(co).
The functions co+(co) and co (co) are related to an upper
and a lower collective mode of the system, respectively.

Because the continuum model is valid in the long-
wavelength region, we will consider the collective
modes only in the long-wavelength limit (k~0). The
upper mode satisfies the dispersion relation
co = limk oco+(co)=Qo(co)+co (k, k, )+0(k ). This is
identical to the third degree equation for co [note that
Qo(co ) =cooco/(co+i /r )]:

co +ico /r co[coo+co (—k, k, )] icoz(k, k, )/r—=O, (4.3)

which represents the coupled optical-phonon-plasma
mode.

On the other hand, the lower mode satisfies the disper-
sion relation of co = limk oco (co)= V, (co)k . Then we

get the damped acoustic-phon on mode of co

+Vk i I k, with —V=[(m& VL+m2co)/(m, +m2)]'~
and I =(m, I I +mzaL )/2(m, +m2). These acoustic
waves are caused by the in-phase motion of two ionic
components on a SIC plane. This motion does not induce
charge-density fluctuation and so does not couple to the
electric field.

B. Strong-coupling limit (kd « 1)

In the LSIC system, the dispersion relations of the cou-
pled modes with the plasma mode depend on the correla-
tion between SIC planes through the structure factor
F(k, k, ) contained in the plasma mode co (k, k, ). In the
strong-coupling limit (kd «1), we consider two cases of

i coo+ s0/2r
(4.4)2r co0+Q +so/2r

with so = —1/2r+i (coo+ Q —1/4H)' . This high-fre-
quency upper mode represents the coupled mode of opti-
cal phonons and 3D plasmons. On the other hand, the
low-frequency upper mode is purely imaginary:

co+ =+(coo+Q —1/4H )
' ~2—

co„i= iQ —/(coo+Q )r, (4.5)

which corresponds to the relaxation mode. From Eq.
(4.5) we find that the relaxation mode corresponds to a
combined mode of the effective 3D plasma mode 0 and
the optical mode co0. This situation is similar to that in
the 3D SIC system where the relaxation mode is inter-
preted as the overdamped plasma mode connected with
the relative viscous flow of two ionic components. '

For the case of k, %0 and kd «1, the plasma mode
turns to an acousticlike mode given by co~(k, k, )

=QAP(k)/sin(k, d/2). This mode is due to the charac-
teristics of the layered system of charged particles.
Olego et al. ' have succeeded in observing the acoustic
plasmon (AP) in GaAs-Al„Ga, „As by inelastic light
scattering.

The acoustic plasmon has also been found by Pinczuk
et al. in the 3D electron-hole system by the same
method as that used by Olego et al. This mode has been
theoretically predicted by Pines and Schrieffer and Har-
rison. The acoustic plasma mode of the 3D electron-
hole system differs from that of the layered system in
physical origin. The acoustic plasmons in the 3D system
can be excited by two kinds of carriers with a different
mass ratio. On the other hand, in the layered system con-
taining only a single type of carrier, the acoustic plasma
mode can exist only through the effect of the layered
structure. Thus the excitation mechanisms for the acous-
tic plasma mode are essentially different between these
systems.

In the long-wavelength limit (k ~0},the acoustic plas-
ma mode is considerably smaller than the optical mode so
that the coupling between them can be ignored. For the
case of k, &0, the long-wavelength upper mode satis6es

First we consider the upper mode for the case of k, =0.
When kd «1 and k, =O, the plasma mode in Eq. (4.3)
becomes the effective 3D ionic plasma mode. The physi-
cal origin of the effective 3D plasma mode is evident.
When the ionic densities in all SIC planes oscillate in
phase (k, =0) in the z direction, it is hard to distinguish a
3D plasma mode propagating in the k direction from the
effective 3D plasma mode.

In the long-wavelength limit (k ~0), taking account of
the condition Q /coos « 1 (for AgI, coo —105 cm

' —15.6 cm ', and Q &coo},' ' ' we can expand Eq.
(4.3) as a series in powers of Q /coos. Then we obtain the
following high-frequency upper modes within the first or-
der of Q /coor:
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k in the wave-number expansion of Eq. (4.1) and satisfies
the dispersion relation co+(co)co (ro)=0 within 0(k ).
Taking account of Eq (.4.2},we get

[Qo(co)+co~(k, k, )]V, (co)k + VL (co)co(co)k =0 .

This leads to the diffusion mode up to 0 (k ):

&o)f
—t [ VL cok / V, +Qzp(k ) ]/ Opr (4.7)

k(10 crri )

FIG. 2. Dispersion relations of low-frequency upper modes.
The absolute values of the frequencies are plotted as a function
of a wave number k for the two cases, k,d =0 and k, d =m. In
the strong-coupling limit (kd (&1), the former case leads to the
relaxation mode co„i given by Eq. (4.5), and the latter leads to
the di8'usion mode cod;f given by the second term of Eq. (4.7).

the dispersion relation cu =Qo(to), i.e.,

(4.6)

which represents damped longitudinal optical phonons.
Contrary to the effective 3D case (k, =O), in the

present case of k, AO we can see that the low-frequency
upper mode is transformed from the relaxation mode into
a diffusion mode. This is discussed in the next subsec-
tion.

2. Diffusion modes

The relaxation mode, as discussed in the preceding
subsection, disappears and is transformed into the
diffusion mode in the case of k, %0. In this case, charge
densities on adjacent planes oscillate out of phase in the z
direction so that they make little contribution to the total
electric field. This reduction of Coulomb force causes a
softening of the effective 3D plasma mode. Hence the re-
laxation mode, connected with the plasma mode, changes
into a diffusionlike mode which is proportional to k .
The diffusion mode is determined from the term of order

The first term denotes the intrinsic diffusion term in the
absence of the Coulomb field and the second is due to the
softening of the plasma mode.

In Fig. 2 we have plotted the absolute values of the
low-frequency upper modes given by Eq. (4.3) as a func-
tion of wave number k. We have used the physical pa-
rameters of a-AgI as those of SIC planes in our numeri-
cal calculation. The values of these parameters are
shown in Table I. In Table I, the value of the relaxation
time r is taken such that the experimental value of about
2 (Q cm) for the dc ionic conductivity of a-Agl is ob-
tained. The value of Xo is determined from the limiting
condition that the AgI SIC layers, when arrayed with a
separation equal to the lattice constant (5.07 A), must be
equivalent to the 3D AgI system. The diffusion mode cod'f

and the relaxation mode co„, correspond to the cases of
k, d =n and k, d =0, respectively. In the strong-coupling
limit (kd «1), the relaxation mode is derived from Eq.
(4.5} and the diffusion mode corresponds to the second
term of Eq. (4.7).

C. Weak- (kd »1) and intermediate- (kd -1)coupling case

When kd » 1 and F( k, k, ) = 1, the plasma mode is
given by the 2D plasma frequency and the long-
wavelength upper mode satisfies the dispersion relation
co =Qo(co)+Qz (k)+O(k ). This is identical to the
third degree equation for co:

co +ice /r —co[coo+Qzz(k}]—iQ2 (k)/v=0 . (4.8)

120

TABLE I. Values of numerical parameters of a-AgI and
LiC1. We have taken a typical value of 10~ cm ' for ~k~.

Physical parameters of u-AgI

N0. 2D average number denSity
ml. mass of I ion
m2: mass of Ag+ ion

viscoelastic relaxation time
coo.. oscillator frequency
VL . longitudinal sound velocity (cage)
c0: sound velocity (fluid)
I I. longitudinal damping coeScient
aL .. longitudinal viscosity

Physical parameters of LiCl

E'o.' static dielectric constant of LiCl

8. 11X 10' cm
2. 11X10 '

g
1.79 X 10

'=15.6 cm
105 cm
VLk =0.8 cm
c0k =0.2 cm
I Lk =0.1V
SX10 ' cm

12

100

k(10 cm')

FIG. 3. Dispersion relations of the high-frequency upper
mode co+ given by Eq. (4.3). For the case k,d =0, co+ denotes
the coupled mode of optical phonons and 3D plasma modes
given by Eq. (4.4} in the strong-coupling limit {kd « 1). For the
case k,d =m, m+ represents the damped optical phonons given
by Eq. (4.6).
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Since the condition Q2 (k)=Q kd/2»Q is fulfilled in
the weak-coupling limit (kd »1), we cannot neglect the
last term in Eq. (4.8). In this case the upper mode is rath-
er complicated and we should calculate it numerically.

For an intermediate situation of kd = 1, we can expand
Eq. (4.3) in powers of co (k, k, )/cour T.aking account of
the relation co ( k, k, ) =Q F ( k, k, )kd /2, within the low-
est order of co (k, k, )/coo~ we find

co+ = k[aP&+ co~(k, k, )
—1 /4H]' —i/2r, (4.9)

which represents the coupled modes of plasma modes and
optical-phonon modes in the intermediate coupling case.

Figure 3 shows the dispersion relations of the high-
frequency upper modes given by Eq. (4.3). From Fig. 3
we find that the upper modes co+ split into two modes in
the strong-coupling limit (kd (& 1): one of these (k, d =0)
is the coupled mode of 3D ionic plasmons and optical
phonons, and the other (k, d =n) is the damped optical-
phonon mode. In the intermediate coupling region the
upper modes are represented by Eq. (4.9) and approach a
degenerate mode independent of k, in an isolated single
layer.

V. NUMERICAL CALCULATION OF IONIC
CONDUCTIVITY

A. Interplane distance dependence of conductivity

We calculate numerically the ionic conductivity given
by Eq. (3.16) as a function of the distance d between SIC
planes. The values of parameters used in the calculation
are shown in Table I. The calculated results are shown in
Fig. 4. The solid curve shows the calculated results and
the dashed line indicates the value at d = oo, namely the
2D ionic conductivity.

From Fig. 4, we see a dimensional crossover of the con-
ductivity, from 3D to 2D. In the limit of d = oo, the ion-
ic conductivity tends to that of the isolated 2D SIC layer
and is independent of the layered structure. On the other
hand, in the limit of d =0 the ionic conductivity has to
agree with that of the 3D SIC system. Reer in Fig. 4,

however, diverges at d =0. This behavior is clarified by
the following explanation: we have used layers of zero
thickness instead of finite thickness, and treated them as
2D planes with an ionic number density No. In this case,
the effective 3D number density n,rr=No/d shows a
divergence at d =0. This corresponds to the unrealistic
situation where we can array closely a vast number of
layers in any narrow space. If we take into account the
thickness of each SIC layer, it is possible to remove the
divergence at d =0.

However, the dynamical description for the microscop-
ic region of small d is beyond the range of application of
our model. Thus we have to limit our discussion to
values of d sufficiently larger than the lattice constant of
SIC.

From Fig. 4 we see that the 2D ionic conductivity is
fairly large. If we make a LSIC system from SIC slabs
with a number density of No-10' cm by molecular-
beam epitaxy, it will have a high ionic conductivity com-
parable to that of a 3D SIC system. By changing the su-
perlattice period of the LSIC, we can prepare a range of
LSIC samples for studying the dimensional crossover be-
havior of the ionic conductivity.

B. Frequency dependence of conductivity

We will now calculate numerically the frequency-
dependent ionic conductivity of the LSIC composed of
a-AgI planes and discuss it in detail. In Figs. 5 and 6 the
real part of oL(lt, k„co) is plotted as a function of fre-
quency co. In Fig. 5, Reo L (k, k„co) has a broad peak at
about 100 cm ', which is nearly equal to the frequency of
the optical mode coo. This suggests that the broad peak is
related to an ionic motion connected with optical modes.
Also, Fig. 6 shows a dip at about 0.37 cm ', which corre-
sponds to the frequency of acoustic modes having the k
value used in the present computation. This characteris-
tic co dependence can be well explained from the point of
view of ionic motion in a SIC plane.

First we discuss the dip in Fig. 6. By using the velocity
field ratio v;(It, co)/f;(k, ro), we rewrite the 2D ionic

2.0-
4 =10
cj =100

E

tp
0

CC

0
0 5

cI (100A)
10

0-5 1-0 1.5
FIG. 4. Interplane distance dependence of the ionic conduc-

tivity ReaL(k, k„co) for the LSIC composed of a-AgI planes.
The parameter values used in the present computation are
shown in Table I. The solid curve represents the ionic conduc-
tivity calculated from Eq. (3.16). The dashed line indicates the
2D ionic conductivity in the limit of d = 00.

FIG. 5. Frequency dependence of the real part of ionic con-
ductivity Reo.L(k, k„co) in the high-frequency range. The pa-
rameter values used are shown in Table I. The broad peak has a
maximum at about co= 100 cm
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1.02-

E

C

1.00-
Q

lX

0.98
0

k, =Q

k=10 urn

d =100A

4
oocoo

[co'—(coo—1/2r )]'+(coo/2 —1/4~ )

(5.5)

where 0 0 denotes the dc ionic conductivity of
cro=n, ccq /m coos in the LSIC system. We find that
Reo in Eq. (5.5) has a maxiinum at co,„given by

corn, „=(coo—1/2r )'~ . The frequency co,„ is nearly
equal to that of the optical mode of Eqs. (4.4} and (4.6).
The broadening of the spectrum depends on the relaxa-
tion time ~ of the relative ionic motion. The spectral
peak gets sharper with increasing ~.

FIG. 6. Frequency dependence of the conductivity
Reo L (k, k„co) in the low-frequency range. Reo.L shows a dip at
co=0.37 cm '. This value of co is equal to that of the acoustic
mode with the k value used in the present computation.

current density in the form

j, (k, co) = —Noqg';(k, co)[l —v, (k, co)/g, (k, co)] . (5.1)

Taking account of Eq. (2.3), we get the following ratio for
acoustic modes:

v,.(k, co}

g;(k, co)

m, mz(co —
VL )k +O(k )

m, (VL —co)k +O(k )

(5.2)

v, (k, co)

g';(k, co)

m, co++0(k )

co++0(k )
(5.3)

In this case, we find that the center of mass is fixed.
Hence the optical modes correspond to the out-of-phase
motion of two ionic components on the ith SIC plane.
Substituting Eq. (5.3) into Eq. (5.1), we obtain

j;(k,co) = —Noqg';(k, co)(1+m, /m2), (5.4)

which produces a finite current Aow on the ith plane.
Thus the relative ionic motions on all SIC planes contrib-
ute to the total current at the optical frequency.

We will now show that the ionic conductivity in Eq.
(3.16) has a maximum at about coo=105 cm '. Using
Eqs. (2.4) and (3.9), we calculate Reor(k, k„co) in the
long-wavelength limit (k~0). The result obtained is as
follows:

Substituting Eq. (5.2) into Eq. (5.1), we find that the
current density vanishes. This indicates that anions and
cations oscillate in phase and cannot yield any net charge
density. Thus the acoustic mode does not contribute to
the total induced current of Eq. (3.11). For these reasons,
at the acoustic mode frequency the ionic conductivity
rapidly decreases and causes the dip in the co dependence.

Next we consider the broad peak in the spectrum of
ionic conductivity shown in Fig. 5. For the optical
modes of Eqs. (4.4) and (4.6), we get the following veloci-
ty ratio:

VI. DISCUSSION AND CONCLUSION

In the present paper we have studied theoretically the
collective excitations and the dynamical properties of lay-
ered superionic conductors (LSIC). We have found that
the collective modes are classified into two kinds of mode,
the lower mode and the upper mode. The lower mode
corresponds to the acoustic-phonon mode, while the
low-frequency and the high-frequency upper mode corre-
spond to the relaxation mode and the coupled optical-
phonon-ionic-plasma mode, respectively.

The LSIC dispersion relations of ionic-plasma modes
are strongly related to the layered structure of the sys-
tem. The plasma modes show various regimes in their
dispersion relations depending on the distance and the
correlation between SIC planes. In the strong-coupling
limit (kd « I}, the LSIC system is essentially a 3D-like
system, except for the appearence of the acoustic plasma
modes due to the out-of-phase correlation between SIC
layers. In the weak-coupling limit (kd ))1), we found
that the plasma frequency co of the LSIC is proportional
to k'~ . In an intermediate situation, kd =1, co~ is pro-
portional to [kF(k, k, )]', which shows an intermediate
character between 2D and 3D systems. This dispersion
relation is the same as that in the layered electron gas
(LEG) system. The structure factor F ( k, k, ) reflects a
characteristic of the layered structure in LSIC.

In the strong-coupling situation, there are two
branches of the plasma modes, a 3D plasma mode and
acoustic plasma modes. For the case of k, =0, ionic den-
sities on all SIC planes oscillate together in phase in the z
direction, and thus lead to an effective 3D plasma oscilla-
tion in the system. Even in the long-wavelength limit,
the 3D plasma mode strongly couples with the optical
phonons on all planes and forms a coupled mode of opti-
cal phonons and the 3D ionic plasma mode. For the case
of k, &0, the plasma mode changes into an acousticlike
mode. The acoustic plasma mode has a frequency pro-
portional to A: in the long-wavelength limit. This is due
to a softening of the plasma mode, because charge densi-
ties oscillating out of phase (k, AO) on different planes
cause a decrease of their restoring force, i.e., a reduction
of the Coulomb field. In the long-wavelength limit, the
acoustic plasma &node is so small that the coupling with
optical phonons is ignored, hence damped optical pho-
nons outlive it. However, the acoustic plasma mode
strongly influences the characteristic of the relaxation
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mode. Under the reduction of the Coulomb field, the re-
laxation mode is converted into a diffusionlike mode due
to the softening of the plasma mode. This behavior ex-
hibits a striking contrast to that in the 3D bulk SIC sys-
tem and is characteristic of the LSIC system.

The lower mode does not correspond to the coupled
optical-phonon plasma mode but represents an acoustic-
phonon mode. The Coulomb field caused by the ionic
charge-density fluctuation has no effect on the acoustic-
phonon modes. This physical meaning is evident. The
acoustic-phonon mode corresponds to the in-phase oscil-
lation of the ions on any SIC plane so that it cannot cou-
ple to the ionic charge-density fluctuation oscillating out
of phase.

We have also calculated the sum rules for the dielectric
function and the conductivity. The expression for the
sum rule is closely related to the correlation between lay-
ers. In the strong-coupling limit (kd « I), there are two
expressions. For the case of in-phase correlation
(k,d =0) the sum rule gives the usual 3D expression. On
the other hand, the out-of-phase correlation (k,d =m)
leads to an expression described by the acoustic plasma
modes. In the weak-coupling limit (kd» I), the sum rule
obtained represents that of a 2D system. Our derivation
of the expression for the sum rule seems to be the first for
a layered system of charged particles.

We have numerically calculated the frequency and dis-
tance dependence of ionic conductivity for an LSIC com-
posed of a-AgI planes. The frequency dependence of the
conductivity is found to be similar to that of bulk a-AgI.
The broad peak and the dip structure in the spectrum are
attributed to the optical-phonon modes and the acoustic-
phonon modes, respectively. This behavior in the spec-
trum is similar to that in 3D SIC. On the other hand, the
value of the ionic conductivity changes from a 3D to a
2D value with increasing distance between SIC planes.

The distance dependence enables us to see a dimensional
crossover in ionic conductivity of the LSIC system. Cal-
culation using our model gives the 2D ionic conductivity
in the limit of infinitely separated planes, but does not
converge to the 3D ionic conductivity value for smaller
values of d. This theoretical discrepancy will disappear if
one uses an improved LSIC model, i.e., by taking account
of the thickness of each SIC layer. Recently, the fast ion
conductor superlattice was studied by Aniya and
Kobayashi taking into consideration the finite layer
thickness.

Before finishing our discussions, we will consider some
remaining problems connected with the present theory.
Our theory of the continuum model is restricted within
the macroscopic description. The dynamics of atomic
motion at the interface between the SIC and ionic crystal
has not been suSciently studied. In a description of the
atomic motion at the interface, the effect of the micro-
scopic structure is expected to be important. Thus we
may need some microscopic description such as a hop-
ping model. In general, the atomic motion in SIC ought
to be considered as a many-body problem. Several
theoretical treatments from this point of view have been
presented in explaining atomic diffusion in SIC. Yoko-
ta and Okazaki ' suggested that the individual atomic
motion in SIC is a strongly correlated diffusion process,
such as a caterpillar mechanism. However, we also be-
lieve that the continuum model is fairly useful for study-
ing the collective behavior of complicated atomic motion
in SIC.
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