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Localization in a quantum Hall regime: Mixed short- and long-range scatterers
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The inverse localization length a in two-dimensional systems containing both short- and long-
range scatterers is calculated numerically by a Thouless-number method in high magnetic fields.
The strong localization in the case of long-range scatterers is reduced drastically by a small amount
of short-range scatterers. The critical exponent s, defined by a < |E|*, where the energy E is mea-
sured from the center of the Landau level, is close to 2, independent of nature of scatterers for the

lowest Landau level.

I. INTRODUCTION

One of the exciting phenomena observed in two-
dimensional systems is the (integral) quantum Hall
effect’? in which the Hall conductivity is quantized into
integer multiples of e?/h. The quantum Hall effect re-
quires the presence of both localized and extended states
in strong magnetic fields and is closely related to the An-
derson localization due to random potential fluctuations.’
Several reviews have been published already.* % The
purpose of this paper is to present results of a numerical
study on the localization in the presence of both short-
and long-range scatterers in high magnetic fields.

The nature of the level broadening and transport de-
pends strongly on the range of scattering potentials.’
There are two length scales which characterize the
electron motion in high magnetic fields, the de Broglie
wavelength ~I!/V2N+1 and the cyclotron radius
~V'2N + 11, where N is the Landau-level index and [ is
the magnetic length defined by I2=c#i/eH with H the
magnetic field strength. When the range is much shorter
than the de Broglie wavelength, the broadening is essen-
tially lifetime broadening. When the range is much
larger than the cyclotron radius, the broadening becomes
of the inhomogeneous type. This difference manifests it-
self most strongly in cyclotron resonances:’ In the case
of short-range scatterers, optical transitions between all
states in adjacent Landau levels become allowed. In the
case of long-range scatterers, only the transition between
states with nearly the same relative energy measured
from the center of each broadened Landau level is al-
lowed, since those states correspond to those with nearly
the same position of the center of the cyclotron motion.

The potential range also plays an important role in lo-
calization. It has been shown previously that the locali-
zation becomes enhanced strongly in the case of long-
range scatterers.>® There has been a suggestion that the
nature of the wave function of extended states at the
center of the Landau level is also dependent on the
range.'®”!* The strong dependence of localization on the
potential range becomes evident if we compare the case
of short-range scatterers with the long-range limit in
which the range is much larger than the cyclotron ra-
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dius.'*~!7 In the long-range limit, the electron motion
becomes classical and the center of the cyclotron motion
moves along an equipotential line with velocity propor-
tional to the local field. Therefore, the problem becomes
equivalent with that of the percolation,!® and states are
all localized except just at the center of the Landau level
corresponding to the percolation threshold. Even at the
percolation threshold, states are localized although very
weakly, because the velocity vanishes at saddle points of
potentials where different equipotential lines cross. When
the energy is very close to the threshold, however,
quantum-mechanical effects set in and such a classical
picture fails to be applicable. In the case of short-range
scatterers, on the other hand, quantum effects play dom-
inant roles at all energies.

Actual systems usually contain scatterers with different
ranges. Therefore, the question arises whether the locali-
zation is dominated by short- or long-range scatterers.
The purpose of this paper is to give an answer to this
question. We use the Thouless-number method!*?° in
determining the inverse localization length in the lowest
Landau level assuming scatterers with a 8 potential and a
long-range Gaussian potential, and study the relative im-
portance of these two different scatterers. In Sec. II a
brief review is given of the method of the calculation and
results are presented in Sec. III. It will be demonstrated
that the stronger localization in the case of long-range
scatterers is drastically reduced by the inclusion of a
small amount of short-range scatterers.

II. MODEL AND NUMERICAL METHOD

We consider a two-dimensional system with a finite
size (L X L) in a strong magnetic field H. Scatterers are
distributed randomly and their potentials are of a 8§ func-
tion or of a Gaussian form, i.e.,

L

Vi
Vi) =3 V3(r—rH)+3 P
i T

exp[ —(r—rF)?/d?],

(2.1)

where r? denotes the position of the ith short-range
scatterer, V7 (==xV5) its strength, and r* and V}

i
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FIG. 1. Calculated density of states of the lowest Landau lev-
el for 8=0 (short range), §=0.5 (mixed), and §=1 (long range).
The energy is measured from the center of the Landau level and
normalized by the broadening I calculated in the self-consistent
Born approximation. The potential range is d /I =2 and the
concentration for short- and long-range scatterers is ¢S=6 and
c=2, respectively. The curves are obtained by a smooth inter-
polation of calculated density-of-states histograms for energy
width 0.05T". Statistical errors of the histograms are of the or-
der of the width of the lines.

(==+V7) are the corresponding quantities for long-range
scatterers. The magnetic field is assumed to be so strong
that matrix elements of the potential between different
Landau levels are neglected. Equal amounts of attractive
and repulsive scatterers are assumed, which enables us to
use a symmetry relation about the center of each Landau
level, and confine ourselves to the lowest Landau level.
We shall exclusively consider the case of high concentra-
tions of weak short- and long-range scatterers and will
not treat the case of abrupt and very strong potentials,
for which complex scattering dynamics was studied quite
recently.?!

Energy ()

FIG. 2. Calculated Thouless number as a function of energy
for §=0.5. Within each energy interval with width 0.05T", the
Thouless number is plotted with increasing system size L. Only
the low-energy half is shown because of the symmetry about the
center of the Landau level.

In the self-consistent Born approximation, the
broadening of the Landau level I is given by

r=r;+r;,
,_ 2P lVSP - 2nflVE?E
Sooomr T E ar 1+d /1y

where n° and n} are the concentration of short- and
long-range scatterers per unit area, respectively. We in-
troduce a parameter 8§ characterizing the strength of
long-range scatterers such that I'4=(1—8)I'* and
r2=sr2

The inverse localization length is determined by the
system-size dependence of the Thouless number g (L),
which is defined as the ratio of the shifts AE of individual
energy levels due to a change in boundary conditions to

,  2.2)

TABLE 1. Sample numbers used in the Thouless-number study. Actual sample numbers are twice
those shown below because of the symmetry about the center of the Landau level.

8 0.0 0.2 0.5 0.8 1.0
L/1=12.5 10240 10240 10240 10240 10240
L/1=25.1 2240 2240 2240 2240 2240
L/1=37.6 960 960 926 960 960
L/1=50.1 640 640 640 640 640
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the level separation [L2D (E)]™! with D (E) the density
of states per unit area. The calculation of the density of
states and the Thouless number goes exactly in the same
way as that described previously.! The number of eigen-
values, to which the density of states is proportional, is
counted in each energy interval and the results are accu-
mulated for all the samples with different system sizes.
The Thouless number is determined by the geometric
mean of energy shifts of individual energy levels for a
given energy interval.

III. RESULTS

Numerical calculations are performed for the range
d/l =2 and the impurity concentration ¢ =27I?n5=6
and cf=2ml*n}F=2 in systems with size L/I=12.5,
25.1, 37.6, and 50.1. The numbers of samples are listed in
Table I. The actual sample number is twice as large as
those given in the table because of the symmetry about
the center chosen at E =0.

Figure 1 gives the density of states for §=0 (short
range), 0.5 (mixed), and 1 (long range). The density of
states for §=0.5 is very close to the average of those for
8=0 and 6=1, as might be expected. For §=0, it agrees
with the exact result.?>??

Examples of calculated system-size dependence of the
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FIG. 3. The inverse localization length as a function of ener-
gy for the lowest Landau level determined by the system-size
dependence of the Thouless number. The solid lines represent
a(E)= A(8)|E|* with s =2 fitted to the data. Only the high-
energy half is shown because of the symmetry about the center
of the Landau level.
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Thouless number are given in Fig. 2 for §=0.5. By
fitting these to the expression g(L)x<exp[ —a(E)L], we
can determine the inverse localization length a(E). The
results are given in Fig. 3. Within statistical errors, the
results are all expressed well by the expression
a(E)= A(8)|E /T|* with s =2 in agreement with the pre-
vious results.®®

The coefficient A4(8) for s =2, obtained by a least-
squares fit, is shown in Fig. 4. It can be concluded that
short-range scatterers are much more important in deter-
mining o than long-range scatterers, although the locali-
zation becomes stronger for long-range scatterers. As a
matter of fact, near §=1, the inverse localization length
drops very rapidly when 8 becomes smaller than unity,
meaning that the presence of a small amount of short-
range scatterers greatly reduces the localization effect.
This fact may be understood by the difference in the na-
ture of the localization between the cases of long- and
short-range scatterers. In the case of long-range scatter-
ers, the center of the cyclotron orbit moves along a cer-
tain equipotential line, i.e., the electron is confined along
the equipotential line. The presence of short-range
scatterers causes jumps of electrons from one equipoten-
tial line to another with equal energy (their distance is of
the order of the cyclotron radius), thus tending to reduce
the localization effect.

The dependence of the coefficient A4 (§) and that of the
peak value of the diagonal conductivity o,, are strongly
correlated to each other. The peak o,,, proportional to

2.0
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FIG. 4. The coefficient 4(8) as a function of 8. The peak
value of the diagonal conductivity o,, estimated from the
Thouless number at the center of the Landau level is also shown
together with that calculated in the self-consistent Born approx-
imation. The peak of o, is normalized to unity at §=0.
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the Thouless number g (L) at the band center, is also
plotted as a function of & in the figure. It is normalized
to e2/2m*#% at =0, which is the prediction of the self-
consistent Born approximation.” There have been several
suggestions that the actual peak value is slightly
larger.®24~26 With increasing 8, the peak value decreases
in qualitative agreement with the prediction of the self-
consistent Born approximation, given by

grok= € |_gy B 3.1
2t 1+d/n* |- o
Quantitatively, however, the dependence is quite

different. This suggests that the self-consistent Born ap-
proximation becomes poorer in the case of long-range
scatterers.® !

IV. CONCLUDING REMARKS

We have presented results of a numerical study on the
localization in the lowest Landau level in high magnetic
fields. It has been shown that scatterers with short-range
potentials are dominant in determining the localization.
This is consistent with the behavior of the diagonal con-
ductivity o,,. The critical exponent s for the energy
dependence of the inverse localization length is close to 2
independent of scattering potentials. However, the
present numerical method cannot give results accurate
enough to determine s in a more immediate vicinity of
the center of Landau levels where the localization length
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becomes much larger than the maximum system size
(~5000 A at H~10T).

Another known powerful method is the finite-size scal-
ing method first applied successfully by MacKinnon and
Kramer in the absence of a magnetic field.?” This method
has been applied for the case §=0.2 (the case §=0 and 1
has been reported already®). It has turned out that ex-
cept in the narrow energy range |E| $0.05T the results
are the same as those of the Thouless-number method.

This critical exponent s may be obtained experimental-
ly if we assume that the temperature dependence of the
conductivities is solely determined by the effective system
size given by inelastic diffusion length and if we know the
temperature dependence of inelastic scattering time. Re-
cently, Wei et al.?® reported s ~1.2 for both the lowest
(N =0) and the first excited Landau level (¥ =1) in an
In,Ga,_,As/InP heterostructure, and Wakabayashi,
Yamane, and Kawaji?® gave s ~2 for N =0 and a larger
value for N =1 in a Si inversion layer. The origin of this
discrepancy is not known.
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