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The electronic structure of a layered system, such as a bulk, its surface, or internal interface, is
formulated solely in terms of the angular-momentum matrix elements of the isolated layer scatter-
ing operators and structural Green's functions that couple the layers together. In contrast to the
traditional layer-doubling technique, based on plane-wave expansions, the scattering matrix of the
semi-in6nite solid is constructed from the solution of a self-consistent equation using the real-space
multiple-scattering theory approach. Results of calculations using this new technique are presented
and compared with those based on layer coupling with plane-wave expansions.

I. INTRODUCTION

Defects in solids, despite forming only a sma11 percen-
tage of the total of a bulk material, can have a profound
inAuence on macroscopic properties. Specifically, planar
defects, such as surfaces and interfaces, are important in
determining properties as diverse as catalytic activity, '

mechanical stability, and deformation behavior. In ad-
dition, novel interfacial magnetism found in arti6cially
layered materials may lead to technological improve-
ments in data-storage and -retrieval media. These ma-
terials can now be fabricated with great control using
techniques capable of producing atomistically sharp in-
terfaces, such as molecular-beam epitaxy. Theories
which can help us understand and predict such properties
will clearly require a detailed knowledge of the ground-
state electronic structure, as well as the bonding and the
atomistic structure of these low-dimensional systems.

In practice, techniques capable of yielding the electron-
ic structure of surfaces and interfaces with accuracy simi-
lar to that existing for perfect crystals have only recently
been realized. The diN. culties arising from the re-
duced symmetry and infinite number of unique atoms in
the two-dimensional (2D) unit cell has slowed down pro-
gress in the development of suitable methods. As a re-
sult, innovative uses of perfect-crystal techniques using
films or supercells have been adopted by many groups.
Systems with large numbers of atoms in a unit cell often
need to be considered in order to reduce the efFects in-
duced by the artificial boundaries, and thus, calculations
on the more complicated structures become extremely
demanding computationally. Calculations for semi-

infinite solids circumvent the problem of an infinite num-
ber of atoms in the 2D unit cell by embedding a finite
slab, representing the region of interest, in an otherwise
perfect crystal. The matrix Green's-function formalism
of Williams et al. formulates the perturbation induced
by the defect in terms of the perfect-crystal Green's func-
tion and the perturbing potential, which is then most
easily solved within a localized basis set. This method
has the flexibility to study a wide range of problems, and,
for example, was successfully used by Feibelman' in a
study of the chemisorption of an isolated Si atom on an
Al monolayer. Two other embedding techniques are
those of wave-function matching '" or Green's-function
matching ' ' ' and both rely on the fact that e1ectronic
screening ensures that the perturbations induced by the
defect are localized within a finite distance. Perhaps the
most flexible of the Green's-function matching methods
for treating 20 defects are those based upon multiple-
scattering theory and are collectively known as layer-
Korringa-Kohn-Rostoker (LKKR) approaches. LKKR
methods have been applied not only to studies of the elec-
tronic properties of surfaces' ' and interfaces, ' but
also to the interpretation of photoemission' and low-
energy electron

diffraction'6

(LEED) experiments.
Green's-function matching methods have also been
developed for isolated impurities. This technique has
been successfully applied to studies of local-moment for-
mation. "

II. MULTIPLE-SCA j.=j,ERING THEORY

The electronic properties of the solid are determined
from the charge density which is found from the imagi-
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nary part of the trace of the one-electron Green's func-
tion. A multiple-scattering analysis of the Dyson equa-
tion for G, at a given energy and 2D wave vector k in the
2D Brillouin zone (BZ), leads to the following expansion
about atom a in layer i, labeled a;, in terms of the atomic
Green's function 6 ', atomic (cell) t operator, and the
site-diagonal blocks of the scattering-path operator

12, 13, 18

G =—IGp+Got 'Gp+(1+Got ')(t ')

X [ f l(k) ~l]( k') —i

X(l+t 'Go)j,

where Q is the area of the Bz. In order to calculate ~ ' ',
we partition the solid into a finite number of layers where
the potentials are allowed to relax in a self-consistent-
field calculation, bounded on either side by two half-
solids in the case of a bulk or interface calculation, and
one half-space and a surface barrier in the case of a sur-
face. The exact number of layers included is determined
by electronic screening and is chosen so that the poten-
tials of the outermost layers are bulklike to within some
prescribed accuracy. Each half-space is characterized by
semi-infinite periodicity (SIP), ' defined as the regular re-
petition of a basic scattering unit, e.g., a monolayer,
along a given direction. Scattering operators for systems
characterized by SIP can be found using the recently

I

developed real-space multiple-scattering theory (RS
MST) approach. ' This technique equates the problem of
solving the Schrodinger equation for a system with an
infinite number of scatterers to one of a finite number in
which boundary scatterers are renormalized to represent
the infinite half-solid. A self-consistent equation for the
determination of either the total-scattering operator or
the site components of the scattering-path operator is
found by using the property of removal invariance, which
states that the scattering properties of a system with SIP
remain unchanged when a finite number of basic repeat-
ing units is removed from the free end of the system. '

The resulting equation is expanded, and solved, in the
angular-momentum basis set.

At any given k point in the 20 BZ, a half-solid can be
viewed as a semi-infinite chain of scatterers, represented
by the layer t matrices, whose inverse (m; ) is given by

m, =(t ') ' —G,,(k),

where 6;;(k) are the intralayer structure constants. The
layers are coupled together by the interlayer structure
constants GJ(k), which can be evaluated using formulas

given by Kambe. Here all quantities are matrices in
angular-momentum space. We wish to represent the
scattering-path operator, ~, which has an infinite number
of site indices, by an effective matrix, 7, with a finite num-
ber of site indices with the boundary sites renormalized.
The self-consistent equation for 7 is given by

I 0 . 0 0
0I . . 0 0

0 0 ''' I g(Rpi)

I 0 . 0
0 I e ~ s 0

0 0 ~ ~ ~

g(Rip)

(3)

where m ' is the scattering operator of the repeat unit
and g(R; ) is the angular-momentum representation of
the translation operator associated with the vector R;ij
which connects the origins of the layers i and j. The
quantities 0 (9') are matrices formed from the interlayer
structure constants between the layer represented by m
and those represented by 7, and are given by

I

g. They involve internal summations of angular-
momentum states which are truncated at a finite I in
practical calculations. The translation operator g is
determined by the requirement that the Green's function
propagating between (n+1)th neighbors is also exactly
given regardless of the I truncation, leading to the expres-
sion of the k-dependent effective translation operator,

&=«oi Go2 . . . Go. ) (4)
g(Ro, )=[Go„(k)] 'Gp „+i(k) (6)

G1o

G2o

G.o
It can be shown ' that the multiple-scattering expan-

sion of (3) gives the exact Green's function up to nth-

nearest neighbors, i.e., Go„and G„o, where n is the num-

ber of site indices in 7. Green's functions connecting sites

further apart are given by the matrix products of Go„or
G„o with appropriate powers of the translation operator

with an analogous construct for g (R,p). The scattering-
path operator of an interface can then be found using (3)
to determine scattering operators for left and right half-

spaces, ~l and 7„and then inverting the multiple-
scattering matrix

7?l i
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and inserting the appropriate blocks into (1). The sub-
script i labels the interfacial layers. More interfacial lay-
ers can be included in embedding problems involving lat-
tice relaxation or impurities. In the case of a surface cal-
culation, the quantity ~I would represent the scattering
from the surface barrier.

m. RESULTS

In the following calculations, we use the muon-tin ap-
proximation to the crystal potential. Within this model
the angular-momentum expansion of (1) in Hartree atom-
ic units is given by

4EKG(r, r')= — QRL'(r&)Rt '(r& )+ g RL'(r')(t, ') [~gtL (k) 5—tL, t, '. ](tt, ') RL,'(r)Q LL'
(8)

a,. (1)a,where Rt '(r& ) and RL '(r& ) are products of the regular
and irregular solutions to the radial Schrodinger equa-
tion, respectively, and a complex spherical harmonic.
The overtilde is used to denote complex conjugation of
the spherical harmonic only and r&(&) is the greater
(lesser) of r and r'. The k-resolved density of states,
n(E, k}, is found from the imaginary part of (8) in the
usual manner and was calculated with a constant imagi-
nary energy of 1 mRy at k =O, k =0, i.e., at the I point
of the 2D BZ. The energy zero was chosen to be the
muon-tin zero, the angular-momentum expansion was
truncated at 1=2, and in the LKKR calculations 25
planes waves were used in the interlayer scattering. All
potentials were assumed to be those of the self-consistent
bulk solid, and in surface calculations no account was
taken of the barrier. Figure 1 shows n (E,O) on a surface
atom in three- and nine-layer slabs representing a Cu(100)
surface. The rate of convergence in system size of
n (E,O) is slow, illustrating that in this case a film calcula-
tion of n (E,O) for a semi-infinite surface is inappropriate
(compare to Fig. 2). Integrated quantities, of course, will
show smaller di8'erences; however, such di6'erences may
be important for certain total-energy calculations. Figure
2(a) shows the converged n (E,O) for a surface atom in a
semi-infinite surface obtained with the old LKKR
method. Figure 2(b) shows the corresponding n(E, O)
found with the new algorithm, with the site dimension of
~ equal to 1 and 2. We find that (1) increasing the site di-
mension of Y. to 3 changes n(E, O) in the fifth decimal
place, (2) the values calculated agree with the old I.KKR
calculation to three significant figures, and (3) the
angular-momentum convergence is comparable between
old and new methods in this geometry

Bulk Cu was simulated as an interface between two
ideal (100) surfaces. The results of this calculation are
shown in Fig. 3, which compares n (E,O) obtained with
the old LKKR method with the new approach. As in the
surface calculation, the values agree to the same accuracy
and the rate of convergence in the site size of ~ is similar.
We have also tested the algorithm at k=(k„,k~}
=-(0.3,0.3) (not shown) and found identical behavior in
convergence rates. Further, we believe the new approach
is converged to greater accuracy than the old LKKR
method since the interlayer structure constants are calcu-
lated to machine accuracy rather than truncated at 25
plane waves. This is supported by calculations which
show that the LKKR results converge towards those ob-
tained with the new technique as the number of plane
waves is increased. The CPU times of both approaches
are similar, with each (E,k) point in this (100) geometry
taking =-1 to 2 s on a Cray 2.

The LKKR Inethod is capable of providing solutions
to the one-electron Schrodinger equation which are accu-
rate enough for total-energy calculations. Self-
consistent, spin-polarized, total-energy calculations using
the new method are at present underway on a X 3 tilt
boundary in Fe, and mill be reported in a future publica-
tion. The details of the self-consistent cycle and the
total-energy calculation in the semi-infinite geometry are
discussed in more detail in Ref. 13.

Finally, we note that in the RS MST approach the
equations of multiple-scattering theory are applied to a
finite-size cluster representing a semi-infinite solid. In
these calculations, while the bare sites are represented by
muftin-tin scattering matrices, the boundary cells are in
fact associated with cell t matrices representing semi-
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FICx. 1. k-resolved density of states [n(E,O)] for Cu(100)
slabs of (a) three layers, and (b) nine layers.

50
IX

I'A 25C

50

25

0 I I I

0.2 0.3 0.4 0.5 0.6 0.7
E(Ry)

0
0.2 0.3 0.4 0.5 0.6 ' 0.7

E(Ry)

FIG. 2. k-resolved density of states [n (E,O)] for an atom at a
Cu(100) surface. (a) LKKR results and (b) new approach: shad-
ed curve, one layer; solid line, two layers in the repeat unit.
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FIG. 3. k-resolved density of states [n (E,O) t for an atom in
bulk Cu(100). (a} LKKR results and (b) new approach with a
two-layer repeat unit.

infinite chains. This folding of the half-space, i.e., use of
a single cell to represent a semi-infinite chain, is not valid
if so-called near-field corrections (NFC's) exist. The
rapid convergence in the angular-momentum expansions
and the excellent agreement with the results obtained
with the layer-doubling technique provide strong numeri-
cal evidence of the vanishing of the NFC s and the validi-
ty of multiple-scattering formalism for the case of space-
filling nonoverlapping cell potentials.

An eScient extension to the LKKR algorithm has
been presented which treats all multiple-scattering events
in a spherical wave basis. The technique, unlike the usual
LKKR formulations, is equally applicable to both high-
and low-Miller-index surfaces and interfaces because the
Bloch Green's functions for close-spaced places can be
treated using Kambe's methods. In addition to applica-
tions in electronic-structure calculations, the methods de-
scribed here should be applicable to treating the LEED
problem from high-Miller-index surfaces, such as found
at stepped surfaces. Initial work on this problem is
presently underway and preliminary results indicate that
comparable accuracies are possible in LEED intensities
up to 300 eV above the muftin-tin zero, when the
angular-momentum expansion is truncated at the ap-'
propriate atomic value.
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