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Using a full-potential linear-muffin-tin-orbital method (LMTO-FP), ab initio calculations of the
I'-point phonon spectrum and elastic properties of the copper halides CuF, CuCl, CuBr, and Cul
(and for purpose of comparison of Si, ZnSe, and ZnTe) were performed. Our results for the TO(I')-
phonon frequencies, the bulk modules, and the piezoelectrically stiffened shear modules agree very
well with the experimental values, establishing thus the accuracy of the LMTO-FP method. The ex-
perimental determination of the optical mode Griineisen parameters is quite difficult, as there is a
strong dependence of the structure of the Raman spectrum on the applied hydrostatic pressure.
These difficulties can be totally avoided by our method, so we obtain reliable optical mode
Griineisen and internal-strain parameters. Moreover, the LMTO-FP method has been used to test
the proposed Cu off-center model for CuCl, which could not be confirmed by our ab initio calcula-

tion.

I. INTRODUCTION

Copper halides belong to the substances with zinc-
blende structure, but their Phillips ionicity is near the
critical value for the transition to the rocksalt structure.!
Therefore interesting lattice dynamical properties should
be expected; and since the mid-1970s, a lot of experimen-
tal and theoretical effort has been devoted to their study.
The phonon spectrum of the copper halides has been
determined by inelastic neutron scattering over a broad
temperature range and was fitted with various models.2~’
At low temperatures, CuCl and CuBr show a negative
thermal expansion coefficient,® which was related to neg-
ative mode Griineisen parameters for the shear modules.’
Measurements of the elastic constants®!© yielded unusu-
ally small ¢;-c,, values.

A lot of interest has been drawn by anomalies in the
Raman spectrum of CuCl (and less pronounced of CuBr
and Cul). Though—due to the symmetry of the zinc-
blende structure—only one transverse-optic I'-point pho-
non should exist, a complex line spectrum can be -ob-
served,!>!2 of which two lines are attributed to TO(T)
phonons. Moreover, the structure of the Raman spectra
varies with temperature'> and applied hydrostatic pres-
sure.!*!> As an explanation, additional off-center posi-
tions for the copper atoms were supposed, giving rise to a
second TO(T") mode.!>»1%17 Other models propose a reso-
nance between the bare TO(I') phonon and the two-
phonon density of states.” 121518

The electronic band structure of the copper halides has
been calculated within the framework of the density-
functional theory in the local-density approximation
(DFT-LDA).! Results of non-self-consistent KKR cal-
culations as well as of a self-consistent linear-muffin-tin-
orbital atomic-sphere (LMTO-ASA) calculation for CuCl
were compared to some measured optical properties.
Since the DFT is by construction a ground-state theory,
the excitonic effects could only be moderately described.

In our paper, we present ab initio calculations of the
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I-point phonon spectrum and elastic properties of the
copper halides CuF, CuCl, CuBr, and Cul. They were
done within the DFT-LDA, using a full-potential linear-
muffin-tin-orbital (LMTO-FP) method. The frequencies
of the transverse-optical I'-point phonons, their volume
dependence, and the corresponding mode Griineisen pa-
rameters could be determined. As our calculations yield
directly the bare TO(T") phonon frequency, all difficulties
related to the evaluation of the Raman experiments were
avoided. The proposed Cu off-center model for CuCl
(Refs. 16 and 17) is reviewed critically. To describe the
behavior of the acoustic-phonon branches, we determine
the bulk modules, the piezoelectrically stiffened shear
modules c¢2,, and the corresponding internal strains as
well as their mode Griineisen parameters.

After reviewing in Sec. II the LMTO-FP method, we
present in Sec. III the results for the TO(I") phonon, the
corresponding mode Griineisen parameters, and deal in
particular with the special situation for CuCl. The elastic
properties of the copper halides are discussed in Sec. IV:
we give our results for the lattice constants, the bulk
modules, the internal strain related to a rhombohedral
shear, the piezoelectrically stiffened shear modules, and
their variations under hydrostatic pressure. Finally, a
summary concludes the paper.

II. THE FULL-POTENTIAL LMTO METHOD

The theory of the LMTO-FP method has been de-
scribed in full detail elsewhere.’’ Therefore we shall
confine ourselves here to emphasizing its general proper-
ties, which are crucial for the validity of our results.

Most important is, that our LMTO version takes into
account the full potential without any shape approxima-
tion. We use the density-functional formalism in the
Kohn-Sham scheme to get a single-particle Schrodinger
equation, whose solutions allow the construction of the
electronic ground-state density. Using the Born-
Oppenheimer approximation, the obtained Kohn-Sham
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total energy represents the ground-state energy of the
various forms of lattice distortions we will ‘deal with.

Within the LMTO-FP, the effective potential ¥ in the
Schrodinger equation is described as a sum of localized
parts ¥ and a smooth pseudopart V. Denoting the posi-
tion of the atoms in the primitive cell by Q, the transla-
tion vectors of the lattice by T and introducing L =(I,m)
as angular momentum index, we can write

Vin)=3 3 Polr—Q—T)+ 3 P(G)e'0" o)
T Q G -

where the Fourier-expanded part extends over the whole
lattice. The localized part is nonzero only inside spheres
around atomic sites and vanishes differentiably at the
sphere boundaries. It is given by

Po(n)=3 Por(nY, (). 2)
L

This decomposition in spherical harmonics and
Fourier series is overcomplete inside the atomic spheres,
so we used in our calculations only the L =0 terms in (2),
which means that the whole nonsphericity of the poten-
tial is described by plane waves. The Fourier expansion
of ¥V was limited to |G| <10(27/a) (with a denoting the
lattice constant), thus retaining 1067 coefficients.

The solutions of the Schrodinger equation are ex-
pressed in a LMTO basis set, whose basis functions are
Bloch functions, consisting inside the atomic spheres of
solutions to the spherically symmetrized potential. At
the sphere boundaries, they match continuously and
differentiably to solutions of the Laplace equation. It is
this property which forces all our solutions constructed
from the LMTO basis to have zero kinetic energy in the
interstitial region. As we shall see, this restriction seems
not to influence the accuracy of the results presented
below, which has partly been stated earlier.?!

To reduce the interstitial space in the zinc-blende
structure, in addition to the Cu atom at the origin of the

elementary cell and the halide atom near (1,1,1)a, two
empty spheres were inserted at (,1,1)a and (3,3,3)a.

The common radius of all four MT spheres was chosen in
such a way that no overlap occurred, even in distorted
configurations, resulting in a space filling of 59.4%.

The employed LMTO basis consisted of s, p, and d or-
bitals at each atomic and empty site, giving a total of 36
basis functions. For a better representation of the band
structure, we used two panels to linearize the energy
dependence of the wave functions. The lower one con-
tained the halide s orbital, whereas its p and the copper d
electrons were in the upper panel. All other electrons
have been taken into account by a frozen atomic core, re-
normalized to the MT sphere.

Copper fluoride, which has the smallest Cu MT radius,
has been used to test the influence of the core size and the
effect of the core renormalization. We included in addi-
tion the Cu 3p electrons in the band calculation, without
seeing any remarkable change in the relative energies.

Integrations over the Brillouin zone were performed
using the method of special k points;?>?* depending on
the symmetry of the lattice, we took one to three k
points. Test calculations with a larger set of k points
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gave no improvements of the relevant total-energy
differences.

Starting with a potential of the form (1), we calculate
solutions of the DFT-Schrodinger equation and express
them as sums of localized parts and a pseudowave func-
tion. Summing up over all occupied orbitals, a new non-
spherical density is calculated and—in the frame of the
LDA —a new potential is constructed. This cycle is
iterated until self-consistency is achieved, i.e., the total
energy is converged.

III. THE TO(T') PHONON

A. Frozen-phonon calculation

To determine the frequency of the TO(I') phonon, we
proceeded as in Refs. 20 and 21. The origins of the fcc
Cu and halide sublattices were placed at

(0,0,0) and (1+7)(L,1,1)a , (3)

respectively, and the LMTO-FP total energy for these
configurations has been calculated. To account for the
phonon anharmonicity, positive as well as negative values
for y were chosen; in most calculations we used
¥ ==0.02. The resulting total-energy differences be-
tween the distorted and the undistorted configuration
were typically of the order of 3 meV, corresponding to a
temperature of some 30 K. This indicates that the ap-
plied phonon amplitudes are of reasonable order to com-
pare our results with experiments carried out at low tem-
peratures.

Expanding the total-energy increase AE in a Taylor
series with respect to the phonon amplitude u, we obtain

2 3
AE=4|% | +B %
a a
: B
u u
=42 h+2 |& 4
1 4)

and with the reduced mass u, the phonon frequency vt
is given by

vT0=—2—71?a—\/A 72 . (5)
Equation (5) shows that the relative errors in the phonon
frequency are only about half as large as those in the
total-energy differences.

Our results for 4, B, B/ A, and the calculated as well
as the experimental phonon frequencies are given in
Table I for the four copper halides and in addition for Si,
ZnSe, and ZnTe. With the exception of the special situa-
tion for CuCl, which will be discussed in detail below, the
agreement between the calculated vyg and the experimen-
tal values is excellent. This indicates that the LMTO-FP
method yields reliable results not only for group-IV and
III-V semiconductors as already shown before, but also
for transition-metal compounds. It should be emphasized
that—in contrast to methods using a plane-wave basis
set—our calculations for the copper halides require
essentially the same computational effort as those for sil-
icon.
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TABLE 1. Calculated second- and third-order coefficients 4 and B (in keV) as well as the degree of
anharmonicity B/ A of the potential for a TO(I")-phonon distortion. The calculated and experimental
phonon frequencies vy are given in THz. The slight differences to the values given in Ref. 21 result

from an improved total-energy convergency.

A B % Y10 ‘V'ro(expt.)
Si 0.8214 —7.88 —9.6 15.57 15.46*
ZnSe 0.3944 —5.949 —15.1 6.49 6.39%
ZnTe 0.4245 —6.368 —15.0 5.69 5.312
CuF 0.401 —9.55 —23.8 13.59
CuCl 0.1194 —3.10 —26.0 4.68 4.47 (B)®
5.19 (y)°
CuBr 0.1564 —3.60 —23.0 4.08 4.08%
4.20°
CuJ 0.2162 —4.86 —22.5 4.14 3.99°
4.02%

2Reference 8.
"Reference 13.

B. The TO(I') phonon in CuCl

For a harmonic crystal with zinc-blende structure,
group theory predicts only one TO(I") phonon, whereas
in CuCl a complex line spectrum has been observed with
ir, Raman, and neutron scattering experiments> 2~ !° (for
further references see, e.g., Ref. 7). Two lines of this
spectrum, labeled B and ¥, are considered to be TO pho-
nons. Several models have been developed to explain this
phenomenon.

Vardeny and Brafman'® supposed that there are four
equivalent off-center minima for the copper position.
They should be displaced from the ideal sites in a direc-
tion parallel to one of the cube diagonals toward the
“holes” in the zinc-blende structure, i.e., versus our emp-
ty sphere positions. The potential curvature at the ideal
sites should determine the ¥ lines, whereas the 3 peaks
arise from the off-center positions. In a later paper,!’
there was also proposed an explicit potential function for
the Cu elongation. '

Our calculated TO(I') frequency of 4.68 THz is far
away from the y line at 5.19 THz. Moreover, for such a
potential with several minima, a strong anharmonicity
should be expected. The B/ A values in Table I quantify
the correction to the harmonic potential by third-order
terms. An increasing anharmonicity can be seen from sil-
icon over ZnSe, ZnTe to the copper halides. Though
B/A for CuCl is slightly higher than for the other
copper halides, this difference seems not to be significant
enough to justify the proposed potential.

To further investigate this problem, we calculated the
total energy for a series of Cu sublattice displacements in
the direction of the supposed off-center minimum. These
configurations correspond to a collective movement of all
copper atoms, neglecting the fact that different Cu atoms
could occupy different minima. This simplification had
to be made, to maintain lattice periodicity. Nevertheless,
this scenario should be covered exactly by the model in
Ref. 17, where neither a relaxation of the CIl sublattice
nor a possible correlation of the positions of neighboring

Cu atoms has been considered.

We calculated the Cu displacement potential for Cu
positions described by y values [Eq. (3)] of up to 0.23, i.e.,
with amplitudes more than ten times as large as used for
the frozen-phonon calculations. To avoid any overlap it
was necessary to shrink the radius of the MT spheres
used in all other calculations and thus to reduce the space
filling by about 2%. As a test, we repeated the TO(I")-
phonon frequency calculation with the smaller MT
spheres, obtaining nearly exactly the same result as
above. .

Over the whole range, our calculated displacement po-
tential (Fig. 1) can be satisfactorily approximated by a po-
lynomial with second-, third-, and fourth-order terms, as
indicated by the solid line in Fig. 1. For a comparison,
we have also depicted the potential given in Ref. 17. Ob-
viously, in our ab initio potential there is no evidence at
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FIG. 1. Off-center displacement potential for CuCl. Our cal-
culated values are indicated by asterisks, the solid line
represents a fit with a fourth-order polynomial. For compar-
ison, the proposed potential of Ref. 17 is also shown (dashed
line).

Cu displacement



40 . FIRST-PRINCIPLES LATTICE DYNAMICS OF ALMOST- . . .

all for an off-center minimum, so we believe that this
model can be ruled out.

Another model to explain the Raman spectrum of
CuCl was given by Krauzman et al.'>? They proposed a
resonance between the TO(I')-phonon and the two-
phonon density of states. Fitting their model to the mea-
sured line shapes, they derived the frequency of the bare
TO(T") phonon to be 158 cm ™~ !=4.74 THz, which is in
excellent agreement with our calculated value of 4.68
THz.

Recently, this model has been refined by calculating
the Raman and neutron spectra in the frame of a
valence-shell model.” Kanellis et al.!® could explain the
TO(T")-phonon line shapes for CuCl, CuBr, and Cul, tak-
ing into account the leading third-order anharmonic cou-
pling terms.

C. Mode Griineisen parameter

The frozen-phonon calculations described in Sec. III A
were repeated for different lattice constants. This gives
the dependence of the TO(T )-phonon frequency v from
the unit cell volume V. Therefrom, the mode Griineisen
parameters ¥; can be obtained directly via

Vi T By ' ©

To keep the required numerical effort in reasonable

limits, in most cases we calculated vq for three different

lattice constants: the experimental value, a compressed,

and an expanded configuration. With each pair of fre-

quencies, the derivatives in (6) can be approximated by
two-point formulas:

ok In(v/V)
Yi=VYi ln( V/V’) (7)
or
~ptt=_ 1TV
Yi~yi l_VI/V * (8)

In most cases, the ¥ and y[* were quite different, so we
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had to use all three vy values to apply a three-point
derivative formula.

Our results for the mode Griineisen parameters are
shown in Table II. An estimation of the technical errors,
introduced by the not fully converged total energy and
the discretization of the derivative, is also given.

In the case of Si, ZnSe, and ZnTe, the agreement of our
values with the experimental results is very good. The
calculation by Nielsen and Martin?* has been done by an
ab initio pseudopotential method; all the model calcula-
tions mentioned in Table II contain parameters, which
were fitted to experimental data.

For the copper halides, the experimental values of the
Griineisen parameter were obtained from Raman scatter-
ing measurements under hydrostatic pressure.!*!> The
TO(I') peak in Cul and—for low temperatures—in
CuBr, can be determined unambiguously. But for CuCl,
there is a complex Raman spectrum, and the determina-
tion of v1o depends on the fit to a model, as discussed in
Sec. III B. Moreover, these experiments give only the
pressure derivative dv/dp, which has to be transformed
via the bulk modulus into the required volume derivative.
This introduces additional uncertainties due to the tem-
perature and pressure dependence of the bulk modulus,
as discussed below in Sec. IV A.

With this background, we understand the reasonable
agreement of our results for Cul and CuBr with the ex-
periments and the larger discrepancy for the CuCl value.
As we obtain from our calculations the frequency of the
bare TO(I') phonon without any additional model as-
sumptions and we do not have to use other material pa-
rameters, our results should be more reliable. Further
support for our higher ¥ty comes from a recently per-
formed independent valence-shell-model calculation.?’

IV. ELASTIC PROPERTIES

As is widely known, the linear-muffin-tin-orbital
method (LMTO) in atomic-sphere approximation?®
(ASA) yields accurate band structures, lattice constants,
and bulk modules. Ves et al.!® applied this method to

TABLE II. Calculated and experimental TO(T" )-phonon mode Griineisen parameters ¥ to(r) togeth-
er with results from other ab initio and model calculations. For our calculations, the technical errors

are indicated.

YTo(r) YTo(r)(expt.) Other calc. Model calc.

Si 0.94+0.01 0.98+0.06* 0.9° 1.06*

ZnSe 1.55+0.01 1.4° 1.224

ZnTe 1.5040.02 1.7° 1.5
1.6+0.1* 1.44

CuCl -3.240.25 2.4¢ 3.4f

CuBr 2.840.15 2.4¢8

CuJ 2.540.25 2.28

“B. A. Weinstein and G. J. Piermarini, Phys. Rev. B 12, 1172 (1975), and references therein.

YReference 24.

°M. Cardona, J. Phys. (Paris) Colloq. 45, C8-29 (1984).
9D. N. Talwar, M. Vandevyver, K. Kunc, and M. Zigone, Phys. Rev. B 24, 741 (1981).

“Reference 15.
fReference 25.
8Reference 14.
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compute electronic band structures for copper halides in
the zinc-blende and the high-pressure rocksalt “phase.
Simulating the effect of hydrostatic pressure by varying
the lattice constant, they obtained reasonable results for
the deformation potential.

On the other hand, experience shows that the LMTO-
ASA method yields decreasing energy variations, if
nonhydrostatic pressures or phonon distortions are ap-
plied. This is an effect of the spheroidization of the
charge density inside overlapping spheres and the result-
ing errors in the Hartree part of the total-energy func-
tional. If the spheroidization of the charge density is
avoided, this unphysical instability is removed, but due to
the still spherical potential, the calculated shear con-
stants and phonon frequencies are too high.

Accurate shear constants and phonon frequencies are
obtained, if also the nonspherical part of the potential is
taken into account and the spheres are not overlap-
ping.2>21:27  Performing these calculations, we have to
take special care to avoid volume changing distortions.
The reason lies in the incompleteness of our LMTO basis
set in the interstitial region: if, e.g., the volume is
compressed, either the MT spheres shrink proportionally,
with the effect that more charge lies in the less accurately
represented interstitial region, or the space filling ratio of
the MT spheres has to be changed. In the former case,
we have a tendency to higher energies at small volumes,
in the latter, the effect is inverse. As its magnitude can-
not be estimated in advance, the only way to eliminate it
is to keep the volume-—and thus the basis set—constant.

A. Lattice constant and bulk modulus

We normally use the LMTO-ASA method to produce
a start potential for our LMTO-FP self-consistency itera-
tion cycle. As a byproduct, it was easy to obtain theoreti-
cal lattice constants and bulk modules. To that purpose,
we calculated self-consistent LMTO-ASA ground-state
energies E,, for various lattice volumes around the ex-
perimental value. The equilibrium lattice volume is given
by the zero of the applied hydrostatic pressure p(¥), with

V)= 9E o 9)
pPVI==— -

It turned out that it was sufficient to have the ground-
state energy for a few values of V, approximate the func-
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tion E, (V) by a polynomial of third or fourth degree,
and to determine its minimum. The resulting lattice con-
stants are given in Table III together with the experimen-
tal values. All results have an error of less than 1.2%,
which is quite common for the ASA method and contrib-
uted mostly to the local-density approximation.

The adiabatic bulk modulus B is given by

_ _,4dp _ dZEtot
By VdV v v (10)
Again, the derivative was calculated from an approximat-
ing polynomial; but to get consistent results, higher-order
polynomials, i.e., more points E, (V) needed to be taken
into account.

We have an excellent agreement of our CuCl result
with the bulk modulus gained from inelastic neutron
scattering at 4.5 K.* For further comparisons we have
only experiments at significantly higher temperatures at
hand (see Fig. 2). Ultrasonic measurements at 300 K
gave bulk modules, which are as much as some 40%
(CuCl) and some 25% (CuBr, Cul) smaller than our re-
sults. Also a result from inelastic neutron scattering at
77 K yielded a 19% smaller B, for CuBr.

This strong temperature dependence of some of the
elastic constants has already been discussed in Ref. 4,
where it has been attributed to the strong anharmonicity
of the Cu potential. In Secs. IIT A and III B we examined
the potential of the TO(T")-phonon elongation and found
a relatively large anharmonicity common to the copper
halides. Moreover, we can understand from our B/ A4
values (Table I), that the temperature dependence of the
bulk modulus should be strongest in the case of CuCl.

In the same manner as described above, we also ob-
tained values for the pressure dependence dB /dp of the
bulk modulus

-1
] . )

With the exception of CuBr, these values are consider-
ably larger than, e.g., for Si, where a value of 4.15 has
been measured.

d’E
dv?

d3E
dv?

4B _
dp

B. Calculation of shear modules

The calculation of elastic constants is in principle
straightforward: for a suitable chosen strain tensor g, the

TABLE III. Lattice constants @ (in A) and bulk modules B (in Mbar), calculated with the LMTO-
ASA method and experimental values. The calculated pressure dependence dB /dp is given in the last

column.
dB
aasa Qexpt Basa Beypt —‘ﬁi
CuCl 5.35 5.412 0.66 0.654 [4.5 K]° 6.2
0.38 [300 K]°¢
CuBr 5.63 5.69% 0.54 0.436 [77 K]° 3.7
0.39 [300 K]°¢
Cul 6.01 6.04% 0.48 0.355 [300 K]° 8.0

aReference 8.
-PReference 3.
‘Reference 10.
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FIG. 2. Temperature dependence of the bulk modulus for
CuCl (&), CuBr (O), and Cul (A). Values for =0 are calcu-

lated, others taken from elastic constants in Ref. 8. Straight
lines connect the points belonging to the same material.

ground-state energies of a strained and an unstrained
crystal configuration are determined. The desired com-
bination of elastic constants is now directly related to the
difference of the ground-state energies and the elements
of €. , ‘

Proceeding as just outlined, some technical as well as
physical peculiarities have to be taken into account. One
of them is, that, as already discussed, we have to restrict
€ to volume conserving strains, so we need

det(l+e)=1. (12)

Another crucial point is the choice of the reciprocal
lattice points used to represent the Fourier-expanded
parts of the potential [Eq. (1)], wave functions, and elec-
tron density. Reliable total-energy differences can only
be obtained if the set of G vectors in the strained and un-
strained configuration remains, apart from the distortion,
identical; similar observations have also been made for
pseudopotential calculations.?* So we use the cutoff pro-
cedure given in Sec. II only once and then strain the G
mesh.

For the calculation of c 44, a strain of the form

1 1
€1 7€ €5

Im
[

%e 6 €y %e 4 ( 1 3)
%95 -;—e4 e 3
with

e, =e,=ej;=:'; e, =es=eg=:e (14)
proved to be favorable. It corresponds to a stress,
stretching the cubic elementary cell in the direction of
the [111] space diagonal, producing a rhombohedral
strain.

The volume conservation (12) yields
e'=1e?+0(e?) . (15)

This formula serves to evaluate the elastic energy,
whereas for the determination of the distorted crystal
configuration, we use the exact value of e’, to have the
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best possible volume conservation.

Expressing the deformation energy AE of a lattice with
volume ¥V in the framework linear elasticity theory yields

U==-AVE-‘—“%CTQe=%c44e2+%Be4+O(e5). (16)

The terms of order e* and higher in (16) can safely be
neglected, as the bulk modulus B is roughly of the same
magnitude as cyy, and we always choose e =0.02. Then
the shear modulus c44 can be obtained via

2AF 1

Cyy = 3V e 2 " (17)

Comparing this result with (4) and (5) we see that the
relative error in the elastic constants is of the same order
as for the total-energy difference AE and not only about
the half, as for vyg. It is mainly due to that reason, we
have to take into account the relative minor technical
effects discussed above.

C. Internal strain and piezoelectrically stiffened
shear modulus

Applying the rhombohedral strain discussed above to
the zinc-blende structure, the position of the atom near
(1,1,1)a /4 is no longer fully determined by symmetry, as
it is in the normal configuration, where this atom lies ex-
actly in the center of the tetrahedron, formed by the four
neighboring Cu atoms. There is an additional degree of
freedom in the [111] direction, the internal strain £&. The
position of the halide atom can now be described by

[1+(1—§)(e’+e)](1,1,1)% ) (18)

If the parameter § is zero, the atom follows completely
the applied strain, whereas £=1 corresponds to the situa-
tion where the Cu-halide bond in the direction of the
space diagonal remains unchanged. Normally, one would
expect £ to be anywhere in this interval; for silicon, ex-
periments and calculations yielded £~0.5.%

To obtain the parameter £, we made for each material
three complete total-energy calculations for the rhom-
bohedrally distorted configuration, using the internal
strains £=0.0,0.5,1.0. Then, £ was determined as the
minimum of the total energy with respect to the internal
strain; the applied procedure was similar to the one dis-
cussed above for the lattice constants. The energies in
the different runs were typically less than 1 meV apart,
which gives rise to possible uncertainties in £, whereas
the value for the energy minimum is quite stable. Com-
paring it with the energy in the unstrained case yields the
distortion energy AE, and finally c,, [Egs. (16) and (17)].

For piezoelectric semiconductors with zinc-blende
structure, two different shear constants, namely c%, and
the piezoelectrically stiffened constant c2, can be mea-
sured.?® The frequency of a transverse-acoustic phonon
propagating along one of the cubic axes is determined by
ck, whereas an acoustic phonon in the [011] direction
with polarization along [100] gives rise to a piezoelectric
effect, and thus sees c4D4.

Our rhombohedral strain corresponds to the long-
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wavelength limit (k—0,u-k=const) of a superposition of
three phonons of the latter type. By writing for the re-
sulting elongation u

u,;(R,t)=usin[k(R,+R;)—Qt]
— u sin(—Qt)+uk(R,+R;)cos(Qt)+0(k?)

—

(19)

and cyclically for u, and u;, respectively, we can calcu-
late the elements of the strain e to be

ou
e\ =27—=0, (20)
1
_ Ouy  duy
®47 3R, ' 3R,
=uk {cos[k(R,+R;)—Qt]+cos[k(R;+R,)—Qt]}
k—>02ukcos(ﬂt)+0(k2) ‘ 1)

and analogously for the other components of e.

Identifying e in (14) with the term 2ukcos(Q¢) in (21),
we see that we have the same strain tensor, if the small
diagonal elements e’ [Eq. (15)], coming from the volume
conservation, are neglected. Also, the homogeneous dis-
tortion u resulting from the strain [Eq. (13)]

R,+R,
u=¢gR+u,=1e |R;+R; |+u, (22)
R,+R,

can be identified with the limit in Eq. (19).

The results at the experimental lattice constant for the
internal strain parameter £ and the elastic constant c2,
are shown in Table IV together with experimental results.
Our elastic constants differ by only about 1% from the
measured quantities. The internal strain, where no exper-
imental data seem to be available, lies in the expected
range and shows a pronounced tendency to higher values
with increasing ionicity.

D. Rhombohedral shear under hydrostatic pressure

We repeated the internal strain calculations and the
determination of cZ, for the copper halides under hydro-
static pressure. To get the volume dependence of these
variables requires a considerable numerical effort, as for
each lattice volume four independent self-consistent full-
potential runs had to be made. Therefore we treated only
three to five different lattice constants for each material,
which turned out to be sufficient to elucidate the physical
behavior.

TABLE 1IV. Internal strain parameter £ and piezoelectrically
stiffened shear constant ¢, (in Mbar).

§ ci cP(expt)
CuCl 0.57 0.162 0.1635%
CuBr 0.45 0.151 0.1492°
Cul 0.40 0.187 0.1852°

2Reference 4.
bReference 10.
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FIG. 3. Calculated internal strain parameter & of CuCl (),
CuBr (O), and Cul (A) as function of the relative volume
change. The solid curves only serve as a guide to the eye.

In Fig. 3, the internal strain in relation to the relative
volume change is depicted. We state a similar behavior
for all three copper halides; with increasing lattice
volume the internal strain decreases monotonically. The
physical interpretation is, that the more the lattice is
compressed, the more there is a tendency to keep the
length of the [111] copper-halide bond constant, when
the strain (13), (14) is applied.? In contrary, if the lattice
is blown up by more than about 5%, the ions follow
closely the applied strain, expressed through £=~0; the
slightly negative values for £ we got in our calculations
can be attributed mainly to extrapolation errors.

Evaluation of our results for the volume dependence of
¢ (Fig. 4) shows up a different behavior of the three ma-
terials in question. In the case of Cul, we see an approxi-
mately linear dependence. Determination of the corre-
sponding mode Griineisen parameter, which is given by

dln(cfy)
Yy p=— 1_19M¢C4) 23)

Ca4 6 2 dIn(V)
yielded a value of 1.7, which is larger than the experimen-
tal c44 Griineisen parameters for other materials, as cited

e.g. in Ref. 9.

For CuBr, the situation is characterized by a
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FIG. 4. Calculated shear modulus ¢, of CuCl (), CuBr (0),
and Cul (A) as function of the relative volume change. The
solid curves only serve as a guide to the eye.
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significant flattening of the volume dependence of c2,
when the lattice is compressed. Equation (23) was evalu-
ated by a polynomial fit to our calculated cZ, values with
a procedure similar to the one described in Sec. IIIC.
This yields a Griineisen parameter of about 1.2.

The nonlinear behavior of c¢2, was strongest for CuCl,
in agreement with experiments,” which observed a
significant second-order term. From our results, we get a
maximum of c%, for a lattice constant corresponding
nearly to the zero-pressure volume V. So, our mode
Griineisen parameter is very close to zero, when Eq. (23)
is evaluated at V. But we can clearly see that ¢, de-
creases under hydrostatic pressure, leading to a negative
mode Griineisen parameter, as it has been measured.’
This contributes, together with the negative mode
Griineisen parameters for c%; and ¢;; —c,,, to the nega-
tive thermal expansion coefficient of CuCl at low temper-
atures.

V. SUMMARY

In this paper, the recently developed LMTO-FP
method has been applied to transition-metal compounds.
The TO(I") phonon frequencies we obtained for Si, ZnSe,
ZnTe, CuBr, and Cul agree very well with the measured
values. In the case of CuCl with its double TO(I") line in
the Raman spectrum, our calculated frequency matches
the bare phonon frequency derived from a one-
phonon—two-phonon interaction model.!> For the Cu
off-center model,'® which has been proposed as an alter-
native, we recalculated ab initio the suggested displace-
ment potential,!” but could not confirm the predicted
double minimum structure.

By varying the lattice constant in our calculations, we
determined directly the mode Griineisen parameters for
the TO(T") phonon. For Si, ZnSe, and ZnTe, the results

are within the error margins of the available experimental
data. Our mode Griineisen parameters for the copper
halides are without exception larger than the given mea-
sured values, showing up the greatest discrepancy for
CuCl. Due to the experimental difficulties discussed
above, we believe that our values are more reliable, which
is also confirmed by a model calculation of yyo for
CuClL.»

With LMTO-ASA calculations, we could determine
the lattice constants of all copper halides as well as the
T =0 bulk modulus of CuCl with an accuracy of about
1%. For CuBr and Cul, where no low-temperature mea-
surements of the bulk modulus seem to be available, we
predict a stiffening of this elastic constant, as is the case
for CuCl. ‘

Applying a rhombohedral shear, we calculated the
elastic constants c2,, differing by less than 1.2% from the
measured values. The dependence of the internal strain
parameter and of ¢, from an additional hydrostatic pres-
sure has been determined.

With the preceding results, we have shown that the
LMTO-FP method can be successfully applied not only
to materials which have covalent bonds, but also to the
more ionic transition-metal compounds. We obtained ac-
curate results, which reproduced very well the experi-
mental data. Moreover, properties whose measurement
is difficult or nearly impossible could be reliably calculat-
ed. '
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