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Effect of disorder on the Mott constant in n-type semiconductors
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We have extended our calculation of the Mott constant in n-type semiconductors based on the
Krieger-Nightingale model incorporating the effects of disorder through a model statistical impuri-
ty potential. Several impurity potentials are considered. Donor binding energies, {7?), and the ra-
dial probability density are presented as functions of the impurity concentration. The Mott con-
stant obtained with disorder included agrees better with experimental results. The donor binding
energy as a function of the impurity concentration is fitted to a power law, and the least-squares es-

timates of the fitting parameters are given.

1. INTRODUCTION

The metal-insulator (MI) transition in doped semicon-
ductors has been a subject of intense study for over thirty
years.! In the original Mott picture,? the transition was
considered to be due to electron correlation and would
occur when the interimpurity separation approached the
effective Bohr radius a *.

Mott’s model was extended by Krieger-Nightingale?
using screened impurity potentials and including the
many-valley nature of the conduction band-minima in sil-
icon and germanium. The present authors* used impuri-
ty potentials incorporating an effective dielectric function
of the host crystal and impurity electrons and calculated
variationally the donor binding energy for different im-
purity concentration, n, and obtained the Mott constant
a*n!”? in silicon. The effect of electron-mass anisotropy
was also considered in a subsequent paper.” Numerical
integration®” of the relevant Schrodinger equation yield-
ed values for the Mott constant much higher than the ex-
perimental value.

Another approach to estimate the critical concentra-
tion at which the MI transition occurs is based on the
Hubbard model and the calculations involve the esti-
mates of the on-site Coulomb repulsion between two elec-
trons and the transfer integral in a lattice of impurities.
The results obtained by Berggren’s calculations,® using
isotropic single-particle wave function yielded reasonable
value for the critical concentration n,. More exact calcu-
lations,’ taking into account the anisotropy in the donor
ground-state wave functions in Si, gave somewhat higher
value for n,.

In the Anderson model disorder plays the essential role
in the MI transition. In this picture a sufficiently large
random potential makes the system an insulator. Scaling
ideas are used for MI transition in such disordered sys-
tems.!® Assuming that the MI transition is arising due to
topological disorder, Bauer et al.!! estimated the Mott
constant around 0.22 to 0.26 depending on the form of
the off-diagonal matrix elements assumed.

The purpose of the present paper is to report the re-
sults of our calculations based on the Krieger-

40

Nightingale model but incorporating disorder in the im-
purity distribution. In Sec. II we give the model used;
Sec. III contains numerical results and Sec. IV gives dis-
cussions and conclusions.

II. THEORETICAL MODEL

The concentration-dependent donor binding energy is
calculated by solving the Schrddinger equation in the
effective-mass theory

[(—=#/2m*)V2+v (r)JY(r)=Ey¥(r) , (1)

where the potential energy v(r) is the 3d Fourier trans-
form (FT) of

V(q)=—4me’/Ke.4q)qg? . (2)

€.(q) in Eq. (2) is the effective dielectric function given
by

eq)=¢€,(q)+€,(q)—1, (3)

where €,(q) is the dielectric function for the host semi-
conductor having a value K as ¢ —0 and €,;(q) is that due
to the impurity electrons treated as a free-electron gas.

The disorder due to the random distribution of the im-
purities is introduced in the above potential as follows
and the new potential is written as v;. The impurity po-
tential v () is treated as a statistical quantity with p (¢)dt
giving the probability of finding the given value of v (r)
within the interval ¢ and ¢ +dt, where t =|v(r)|. We take
the probability density function'? p (¢) as

p()=(1/wlexp(—t/u), 4)

where p is a parameter of the distribution. p may be ob-
tained as the first moment of the distribution:

u=nf|v(r)l41rr2dr s (5)

where 7 is the concentration of impurities. If the integral
in Eq. (5) does not converge, u is taken as the square root
of the second moment o given by

0=nflu(r)l247rr2dr . (6)
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We write

v, =XP(X]), (7)
where X =v (r) at a given value of r and

pUxD= [ par . (8)

One gets the potential which incorporates the disorder of
impurities, based on the distribution in Eq. (4):

va(r)=v(r){1—exp[—lv(r|/ul} . )

III. NUMERICAL RESULTS

The unit of energy used is the effective rydberg

*=m*e*/2%?K ? and the unit of distance is the effective
Bohr radius a* =K#?/m*e?. The energy eigenvalues of
Eq. (1) are obtained by numerical integration of the resul-
tant radial Schrodinger equation by the Runge-Kutta
method with “matching in the middle.”!**

The potentials v (7) used in our present work are listed
in Table I with relevant typical values of u. The donor
energies are obtained for various values of a*n!/3 until
the energy becomes very near to zero, thus finding the
value of Mott constant @ *n. /3.

Calculations are done with v,(r) of Eq. (9) in the radial
Schrodinger equation and also with v (r) [vy(r)—v (r)

TABLE I. Potentials used in this work.

1. Thomas-Fermi potential

V(r)=(—2/rexp(—r/L), p=8wnL?
L*=@3a*/v)'3/(12ma*n'"?)

v is the number of valleys

a*n!”? 0.05 0.10
u (v=1) 0.0051 0.0206

2. Hubbard-Sham potential

0.15 0.20 0.24

0.0464 0.0824 0.1187

v(r) is the Fourier transform of {—8w/q*[€,(q)+€,(q)—1]}

€,(q) is taken as a constant=1

1 vd? 1 ¢ k
€r(q) Ny 2>+ kE+57) Figkr)
4kE—q? | 2kp+gq
=1
f (@ k) 2+ 8krq In 2kr—q

8*=4(3n /vm)\3/a*, kp=Q3w*n/v)'/?

kr is the Fermi wave number

a*n!’? 0.05 0.10

u (v=1) 0.1256 0.2740
u(v=4) 0.1134 0.2475
u (v=6) 0.1112 0.2429

0.15 0.20 0.25
0.4324 0.5981 0.7699
0.3905 0.5399 0.6941
0.3833 0.5298

3. Effective Hubbard-Sham potential v(7) as is defined in part 2

and €;(¢g)—1 as is given in part 2.

1 =14+ qu _ Kqu _ KBq2
Eh(q) q2+a2 q2+BZ q2+,}/2

K A B

12.0 0.0726 0.0107
a*n!”? 0.05 0.10
p (v=6) 0.1858 0.4737

a B Y
26.635 36.674 12.132
0.15 0.20 0.25
0.8633 1.3032 1.7973
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TABLE II. Values of Mott constant a*n}’>.

Potential No. of valleys a*nl”?
v(r) v with disorder without disorder

Thomas-Fermi 1 0.24 0.35%
4 0.09 0.13
6 0.07 0.10

Hubbard-Sham 1 0.29 0.43*
4 0.25 0.30*
6 0.24 0.29*

Effective

Hubbard-Sham 6 0.25 0.41°

(Silicon)

Experimental value of a*n!”*=0.26°

2Reference 7.
bReference 6.
‘Reference 15.

when p—0]. In the case of Thomas-Fermi potential, if
the value of the Mott constant for a semiconductor with
v, valleys is obtained, the value of the Mott constant for
another semiconductor with v, valleys can be calculated
using the relation

*,1/3
ang |with v, valleys

=(v,/v,)*%a*n}"3| (10)

with v, valleys *

Our results for a*n)’® are presented in Table II which

also shows earlier estimates. Typical results of donor
binding energies as functions of a*n!/3 for the semicon-
ductors using the above-mentioned potentials with and
without disorder obtained are presented in Figs. 1-3.

We have also plotted r2|R (r)|? for different concentra-
tion using potentials listed in Table I. Typical results for
silicon (v=6) are presented in Fig. 4. {r?) for silicon as
functions of a*n'/? are also obtained and presented in
Fig. 5.

Binding energy (R¥)

FIG. 1. Variation of donor binding energy with impurity
concentration in a single-valley semiconductor for the
Hubbard-Sham potential; dashed curve denotes no disorder;
solid curve denotes disorder.

Binding energy ( R‘)

0.0 0. 0.2 0.3 0.4
ot nl/3

FIG. 2. Variation of donor binding energy with impurity
concentration in a four-valley semiconductor for the Hubbard-
Sham potential; dashed curve denotes no disorder; solid curve
denotes disorder.

Binding energy ( R¥)

0.0 0.1 0.2 0.3 0.4
ot n1/3

FIG. 3. Variation of donor binding energy with impurity
concentration in a six-valley semiconductor. Curve 1 represents
the effective Hubbard-Sham potential. Curve 2 represents the
Hubbard-Sham potential. Dashed curve denotes no disorder.
Solid curve denotes disorder.
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FIG. 4. Radial probability density vs radial distance 7 in sil-
icon. The numbers by the side of a curve give the value of
a*n'”3. The results are for the effective Hubbard-Sham poten-
tial with disorder.

The concentration-dependent donor binding energies
are fitted to a form
4

’ an

nC
—<—1
n

_E _
E,—E
where E|, is the binding energy for n=0 and n, is the

critical concentration. The least-squares estimates of 7
and § are given in Table III.

IV. DISCUSSIONS AND CONCLUSIONS
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3.0

2,0 f

log<r 2,

0.0 0.1 0.2 0.3 0.4
a*nll3

FIG. 5. Variation of {r2?) with impurity concentration ex-
pressed as a*n!/3, Curves 1 and 2 represent the Hubbard-Sham
potential. Curves 3 and 4 represent the effective Hubbard-Sham
potential. Solid curves denote disorder. Dashed curves denote
no disorder. The results are for silicon, a six-valley semiconduc-
tor.

agreement with the experimental value'® of 0.26, for the
Thomas-Fermi potential for the single-valley semicon-
ductor, for the Hubbard-Sham potential for multivalley
semiconductors, and for the effective Hubbard-Sham po-
tential for silicon. However, in the case of the Hubbard-
Sham potential for the single-valley semiconductor,
a*n!’® comes out as 0.29 while without disorder the
value was 0.43. For v=4 and 6 the Thomas-Fermi po-
tential does not yield acceptable values for the Mott con-
stant even when disorder is included.

Figures 1-3 show that the effect of disorder becomes
important as the impurity concentration is large. In the
case of extreme dilution there is no difference in the bind-

From Table II we find that when disorder is included
the Mott constant a*n!/3 at which E is zero is in good

TABLE III. Values of fitting parameters 17 and {. The values given within the parentheses are for

the potentials without disorder.

Potential and

No. of valleys 7 (1073) ¢
Thomas-Fermi .
v=1 26.5 +1.1 1.21 £0.05
(13.161+0.06) (0.9011+0.004)
Hubbard-Sham
v=1 70.18+0.41 0.972+0.005
(37.76+0.03) (0.972+0.001)
v=4 569 t1.1 1.21 +0.02
(47.59+0.29) (1.109+0.006)
v=6 56.5 +1.4 1.21 £0.03
(46.371£0.43) (1.153+0.009)
Effective
Hubbard-Sham
v=6 91.1 £1.1 1.07 £0.02
(55.96+0.09) (0.985+0.001)

ing energies with and without disorder. Once the disor-
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der becomes important (as seen from the large difference
in the binding energies with and without disorder) the na-
ture of the potential used seems to be not so important.

The radial probability distribution plotted in Fig. 4 in-
dicates the delocalization of the electron near the critical
concentration. The radial probability density, however,
has its peak value at about the same radial distance for all
concentration. The results are qualitatively the same for
all the potentials used.

Figure 5 shows the divergence of (7?) near the critical
concentration n.. Since (r?) is qualitatively related to
the donor polarizability,!® our results indicate the non-
linear increase of donor polarizability.

Table III shows that the value of { is around 1.0. With
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the effective Hubbard-Sham potential, { turns out to be
1.07. The value of 7 is systematically larger for the disor-
dered case than for the case neglecting disorder. Critical
exponents for the binding energies have not been report-
ed earlier. The exponents for the conductivity data and
the dielectric susceptibility! are, respectively, 0.55 and
1.15.
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