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Microscopic nature of coordination defects in amorphous silicon

Martin Stutzmann
Max Pla-nck Ins-titut fiir F'estkorperforschung, Heisenbergstrasse I, Postfach 800665, D-7000Stuttgart 80,

Federal Republic of Germany

David K. Biegelsen
Xerox Corporation, Palo Alto Research Center, Palo Alto, California 94304

(Received 9 June 1989)

Si spectra of the g=2.0055 spin resonance in undoped hydrogenated amorphous silicon contain-
ing the natural abundance of the Si isotope have been measured with a sufficient signal-to-noise ra-
tio to allow a quantitative modeling of the underlying hyperfine and g tensors. These experimental
results are used to discuss the microscopic origin of the main deep electronic defect state in a-Si.

I. INTRODUCTION

It is well established that the electronic properties of
hydrogenated amorphous silicon (a-Si:H) are strongly
influenced by a dominant localized defect level in the mo-
bility gap of this material. This electronic defect essen-
tially determines the lifetime of excess charge carriers in
undoped a-Si:H and, consequently, limits the perfor-
mance of a-Si:H thin films for many applications. The
fingerprint of this defect is a characteristic electron-spin
resonance signal with a g value g =2.0055, ' which is
generally observed in undoped, a-Si and a-Si:H, and
whose intensity can be used as a convenient measure for
the quality of a given amorphous silicon specimen.

As far as the microscopic origin of this defect and of
the g =2.0055 resonance is concerned, until recently it
was more or less tacitly assumed that this defect state was
that of a threefold-coordinated, neutral silicon atom Si(3),
whose fourth atomic sp hybrid orbital had remained un-
bonded because of the lack of bonding partners in a
heavily distorted network such as a-Si:H. Consequently,
the resulting electronic defect level was given the descrip-
tive name "dangling bond, " in analogy to similar defect
states at surfaces or grain boundaries of crystalline sil-
icon. ' In fact, for most properties of a-Si:H, the micro-
scopic origin of the g =2.0055 defect level is much less
important than the energy position in the gap and the
dependence of the defect density on deposition parame-
ters. During the past few years, however, there have
been more and more attempts to describe the macroscop-
ic electronic properties of device-grade a-Si:H within the
framework of unifying microscopic structural models,
such as the negative-U model, ' the thermal equilibra-
tion model, ' or the weak-bond dangling-bond conver-
sion model. ' The common point of all of these micro-
scopic pictures is that they rely to a certain extent on an
as-yet unproven hypothesis, namely, that the dominant
structural defect in a-Si:H is indeed the silicon dangling
bond.

It is, therefore, understandable that in 1986 Pantelides
attracted a considerable amount of attention when he

proposed that not Si dangling bonds, but instead over-
coordinated Si atoms with five nearest-neighbor atoms
are the microscopic origin for the main coordination de-
fect state in amorphous silicon. " Pantelides also coined
the name "floating bond" for this defect. A brief com-
parison between the predicted qualitative properties of
dangling bonds and floating bonds is given in Table I.
According to Table I, for a distinction between these two
types of defects in amorphous silicon, it is necessary to
obtain a detailed picture of the electronic wave function,
especially a quantitative measure for the defect localiza-
tion and the state of hybridization. In principle, this in-
formation can be obtained from a correct analysis of the

Si hyperfine structure of the g =2.0055 defect reso-
nance in undoped a-Si:H. The observation of this
hyperfine structure was first reported in 1986 by the
present authors, ' and it was argued that this structure
was indeed compatible with the assignment of the under-
lying defects to Si dangling bonds. ' This view was criti-
cized by Pantelides" and Stathis and Pantelides, ' who
claimed that the observed hyperfine structure of the
g =2.0055 ESR spectrum appeared to be more in favor
of the floating bond model, instead. Subsequent theoreti-
cal investigations by a number of difFerent groups have so
far been unable to provide clear evidence for or against
either of the two topologically distinct microscopic mod-

15—1S

In this paper, we present a careful analysis of the Si
hyperfine spectrum in undoped a-Si:H containing the nat-
ural abundance of the Si isotope ( =4. 5%%uo ). This
analysis comprises the measurement of the weak Si
hyperfine satellites with a sufFicient signal-to-noise ratio, a
quantitative description of the "central" g =2.0055 ESR
signal due to Si and Si defects, and the extraction of
the Si hyperfine parameters via numerical simulation of
the hyperfine spectra. In this study we have purposely
avoided the use of isotopically ( Si) enriched samples,
since our earlier work' has shown that high Si contents
lead to a loss of spectral details in the hyperfine structure
because of isotr'opic interaction with an unknown number
of nearest- or second-nearest-neighbor Si atoms.
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TABLE I. Proposed properties of dangling and Aoating bonds in amorphous silicon.

Crystalline analog
Network mobility
Occurrence in
Chemical notation
Charge
Coordination number
Orbital type
Localization
Energy level
Symmetry

Dangling bond

Si vacancy
low

low-density regions
Sl(3)

0
3

Atomic orbital (Si sp )

strong
mid gap
trigonal

Floating bond

Si interstitial
high

high-density regions
Sio(, )

0
5

Molecular orbital
weak

mid gap
'?

II. DATA ACQUISITION AND SIMULATION

g(Y)= 3(g)(+2gl)+ 3 Y(g)) gl. )

A ( Y) A jsp + YA gggso (2)

where the principal g values
g~~

and g~ and the isotropic
and anisotropic hyperfine interaction constants A;„and
A,„;„are the input parameters of main interest for the
microscopic interpretation of the ESR data. [It should be
noted that Eq. (1) for the efFective g value is only correct
in the limit of small g shifts, g ( Y)—go «go
=2.002319. . . which is generally the case in ci-Si:H.]
The variable Y'appearing in Eqs. (1) and (2) is determined
by the angle 8 between the external magnetic field and
the defect symmetry axis,

The samples employed in this study were deposited
from undiluted SiH4 or SiD& (with D= deuterium) by a
standard rf glow discharge at a substrate temperature of
230 C. Typical spin densities were about 10' cm, so
that relatively large sample volumes (=0.1 cm ) were
necessary to obtain a sumcient signal-to-noise ratio. Spin
resonance spectra were recorded at room temperature in
the X band, using low microwave powers (1 m%) and
small field-modulation amplitudes (4 G peak to peak at
100 kHz) in order to prevent artifacts due to saturation
and overmodulation. Signal averaging was performed
during approximately 4 h with an on-line computer.
After each run, the spectrometer background was record-
ed under the same conditions, but with an empty sample
tube.

Numerical simulations of the experimental spectra
were performed by assuming a defect wave function with
the same axial symmetry for both the g tensor and the
hyperfine tensor. The angular dependences of the
eft'ective g value g and the hyperfine interaction A can
then be approximated by

The ESR intensity versus magnetic field H is then deter-
mined by (i) calculating the resonance field Ho as a func-
tion of Y for the central ( Si) resonance
[Ho, =ficojpiig ( Y)] and for the two Si satellites
[Ho Hr =Ho+ ,' A(Y)],—(ii) convoluting with a suitable
Gaussian broadening function

F(H Ho) ~—W 'exp —ln2

T

H —Ho

(where W represents half-width at half maximum), and
finally (iii) summation over all values of Y' according to
the powder pattern Eq. (4) and taking into account the
natural abundance of Si.

In general, the width 8'of the shape function F in Eq.
(5) will be an unknown function of the angular parameter
K In the present paper we have assumed that there are
two contributions to 8' one coming from the g-tensor an-
isotropy, and a second one accounting for random Auc-
tuations of the hyperfine interaction constant A ( Y).
Both contributions (for reasons which are discussed
below) are approximated by linear functions of Y'

W( Y)= W;0+ Yb W;,

where the index i denotes either the g tensor or the
hyperfine tensor contribution. In the case of the central
( Si) resonance, only the g-tensor contribution has to be
considered, whereas for the simulation of the Si
hyperfine satellites both contributions need to be taken
into account. In this latter case, we have calculated the
effective width W( Y) of the line-shape function F in Eq.
(S) via the geometric mean of the two components in Eq.
(6), as appropriate for statistically independent Gauss-
1ans~

W (Y)=+ W;(Y) .

Y=3cos 8—1 . (3) III. RESULTS AND DISCUSSIQN

( Y+1)—1/2
dF (4)

For a random orientation of the defect symmetry axes,
the probability density for Y (the "powder pattern") is
given by

A. The central resonance

%'e begin with a discussion of those defects in undoped
a-Si:H which are localized at Si or Si nuclei with nu-
clear spin I =0 and, therefore, do not experience a
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resolved hyperfine interaction. The corresponding spin
resonance signal is the usual ESR line with an effective g
value g =2.0055 and is shown by the solid curve in Fig.
1(a). This spectrum is found to be the same for a-Si:H
prepared under a large variety of conditions and for spin
densities from 10' to 10' cm . In addition to its g
value, the spectrum is characterized by a peak-to-peak
linewidth of AH = 8 G which is mainly due to g-value an-
isotropy, ' and by a specific asymmetric line shape of19,20

the ESR derivative signal: The amplitude of the high-
field peak is about 10%%uo larger than that of the low-field
peak. The simulation of this spectral line shape is possi-
ble with the following set of parameters:

g~~
=2.004, 8

~~

=3.8 G,
gq =2.008, 8'q =5.0 G .

Here,
~~

and l refer to the cases 8=0' and 90' in Eq, (3),
respectively. The unbroadened powder pattern [Eq. (4)]
corresponding to these principal values of an axially sym-
metric g tensor is shown in Fig. 1(b). Broadening of this
powder pattern by Gaussian functions whose half widths
at half maximum increase linearly from. 8'~~ to 8'~ as the
g value increases from

g~~
to g~ yields the theoretical ESR

derivative indicated by the dotted curve in Fig. 1(a). The
broadening 8'is taken to be linearly proportional to the g
shift g( Y)—go, because the g shift is a measure for the
spin-orbit coupling. The greater the coupling, the more
sensitive the site should be to local Auctuations of the de-
fect orbital. The agreement with the experimental curve
is satisfactory except for the extreme wings of the reso-
nance line. The fitting procedure is made easy by the fact

(0)

that a variation of the different parameters in (8) has
quite separate inAuences on the calculated line shapes.
Thus, the position of the low-field peak depends mostly
on g~, the peak-to-peak linewidth is given by the anisot-
ropy g~~

—g~, and the line-shape asymmetry (which is op-
posite to what could be expected from the unbroadened
powder pattern) is almost entirely determined by the ra-
tio W~~/8'~. This "orthogonality" of the effect of the
fitting parameters on the final line shape ensures that all
four parameters can be determined within a reasonable
accuracy (+5&o ).

From a microscopic point of view, we note that the ob-
tained fitting parameters in a-Si:H are in agreement with
Si dangling-bond defects in other systems. ' In particu-
lar, similar values of

g~~
and g~ have been observed for

SiH3 radicals trapped in Kr matrices at low temperatures
(g~ =2.007, g

~~

=2.003 ). Moreover, our value of
g~ =2.008 agrees well with experimental data for Si
dangling-bond defects at Si/Si02 interfaces.

B. Si hyperfine satellites

In Fig. 2, we show the ESR spectrum of the same sam-
ple as in Fig. 1, however with a sensitivity increased by a
factor of 100 and the magnetic field scale expanded by a
factor of 4. Under these conditions, two new resonance
signals can be observed on the left- and the right-hand
side of the central resonance. These two signals are the
hyperfine spectra of those defects which are localized on

Si nuclei. Si is a silicon isotope with a nuclear spin
I =

—,
' and a natural abundance of 4.7 at. %%uo . Th eassign-

ment of the satellite lines in Fig. 2 to Si hyperfine states
has been corroborated by Si enrichment studies report-
ed earlier. ' Similar hyperfine lines have also been seen
in electron-nuclear double resonance (ENDOR) investi-
gations of undoped g-Si:H.

A second possible hyperfine nucleus which is present in
intrinsic a-Si:H with considerable concentrations is 'H
(I =

—,', 100% natural abundance). In order to check for
any contributions of proton spins to the hyperfine struc-

F)
LU
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UJ

10G

Si- DILUTE

CENTRAL
LINE (1 X)

g~= 2.008 ~
Wj=5.0 G

(b)

~ g„=2.004
W0=3.8 G

HYPERFI j—2OG

MAGNETIC FIELD

FIG. 1. Experimental (solid curve) and theoretical (dotted
curve) line shape of the g =2.0055 spin resonance signal in un-
doped a-Si:H. (b) shows the underlying powder pattern of the g
tensor, with principal values g~~

=2.004 and g, =2.008. 8'~~ and
8'~ are the half-widths at half maximum of the Gaussian
broadening functions used in the line-shape simulation.

! I I I I I I I I I I I I I I I

MAGNETIC FIELD

FIG. 2. Si hyperfine structure of the g =2.0055 resonance
in a-Si:H containing the natural abundance of the Si isotope.
The central line corresponds to the experimental curve in Fig.
1(a).
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ture of the g =2.0055 resonance, we have also investigat-
ed the ESR response of deuterated amorphous silicon
a-Si:D obtained from deposition of SiD4. As demonstrat-
ed in Fig. 3, a-Si:D exhibits a Si hyperfine spectrum vir-
tually identical to that of a-Si:H, thus excluding any
first-order effect of H or D on the hyperfine structure of
the g =2.0055 resonance.

A very important feature of the Si hyperfine spectra
in Figs. 2 and 3 which will be exploited in the following is
the pronounced asymmetry of the two hyperfine satel-
lites. In the derivative ESR spectra displayed, the low-
field (left) satellite is clearly distinguishable from the cen-
tral resonance, whereas the high-field (right) satellite has
a much smaller peak-to-peak amplitude and seems to ex-
tend over a wider magnetic field range. This qualitative
difference between the two hyperfine lines can be easily
explained on the basis of Eqs. (1)—(4). According to Eq.
(1), the effective hyperfine splitting A ( Y) will be maximal
for Y=2 (8=0'),

hf+ g

l&

I
It
lc
I

I
I

~ max
= ~

~~

= ~ iso+ 2~ aniso (9a)

The minimum value of A ( Y) is obtained for 8=90%,
F= —1,

~ min
= ~ I = ~ iso ~ aniso (9b)

a-Si:D

CENTRAL

HY PERFIN
SATELLITE

M AGNETIC FIELD

FICx. 3. Same spectra as in Fig. {2),but for deuterated amor-
phous silicon a-Si:D.

For an axially symmetric hyperfine tensor, the probabili-
ty density of a given splitting between A

~~

and A~ will be
distributed according to Eq. (4), i.e., it will diverge for A i
(Y= —1). This situation is shown in the upper part of
Fig. 4. In addition to the hyperfine splitting, one also
has to take into account the anisotropic g shift in order to
determine the final resonance line shape. Again, for an
axially symmetric g tensor, the g values will be distribut-
ed between gI~ and gi, with a divergence at gi [cf. Eq. (1)
and Fig. 1]. This is depicted in the middle part of Fig. 4.
The final powder pattern for the two hyperfine
satellites are now obtained by adding the g shift and the
hyperfine splitting, as seen in the lower portion of Fig. 4.
The result is a narrowing of the left satellite, since here
the effects of the g tensor and hyperfine tensor anisotro-
pies have different signs, whereas the right satellite ex-

FIG. 4. Theoretical powder patterns caused by the hyperfine
and g tensors of randomly oriented, axially symmetric paramag-
netic defects: hyperfine tensor powder pattern (hf), g-tensor
powder pattern (g), and combination of both (hf+g}.

periences a broadening due to the additive superposition
of the anisotropy contributions. In a-Si:H, the g anisot-
ropy in the X band according to Fig. 1 amounts to about
6.5 G, so that we can expect the widths of the two Si
hyperfine absorption spectra to differ by at least 13 G.

Experimentally, the main difhculty in determining the
Si hyperfine line shape is the low natural abundance of
Si. In principle, it would be possible to improve this sit-

uation by using isotopically enriched a-Si:H, but our pre-
vious measurements have shown that this also leads to an
additional broadening mechanism due to unresolved
hyperfine interaction between the g =2.0055 defect state
and the nearest- or second-nearest-neighbor Si atoms.
The probability of occurrence of these nuclei will increase
very rapidly with the concentration of Si, so that the
observation of the unperturbed Si hyperfine interaction
is essentially restricted to the dilute case encountered in
a-Si:H with the natural abundance of Si. Thus, for the
experimental determination of the hyperfine line shapes
an essential point is the correct subtraction of the central
resonance in Fig. 2 or 3. This would require the
knowledge of the central resonance line shape in the re-
gion of the hyperfine satellites with an accuracy of about
10 times the central resonance amplitude„which is far
beyond the accuracy of any realistic simulation. Thus,
other ways have to be used for the subtraction of the cen-
tral resonance background in the experimental spectra.
For the present case, we have adopted the following pro-
cedure. The background was chosen as a smooth, struc-
tureless curve which joins the experimental derivative
spectra continuously and with the same slope on both
sides of either hyperfine satellite. Here, structureless
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means that the background curve decreases in a mono-
tonic manner away from the resonance center, with no
structure occurring in the second derivative over the re-
gion of the hyperfine satellites. The resulting background
was accepted when after subtraction (i) the first integral
of the hyperfine derivative spectra (i.e., the real absorp-
tion spectra) returned to zero for each hyperfine satellite
separately, and (ii) the second integral (i.e., the satellite
spin density) agreed to within better than 10% between
the two satellites. The entire procedure was tested on
three different experimental spectra, including the two
for which the result of the central-line subtraction is
shown by the solid curves in Figs. 5(a) and 5(b). In all
three cases the obtained hyperfine spectral shapes agreed
reasonably, with some differences occurring only in the
high-field wing of the right-hand satellite. For further
comparison, the first integral of the experimental spectra
in Fig. 5(a), is shown in 5(c), where the relative values I of
the second integral (i.e., the relative spin density corre-
spon is onding to each satellite) are also indicated.

The dotted curves in Fig. 5 indicate the results of the
line-shape simulation. For this simulation, the fitting pa-
rameters, Eq. (8), qf the central resonance were adopted
in order to correctly account for the g-tensor anisotropy
and broadening. The only additional fitting parameters
were the isotropic and anisotropic hyperfine constants

d 3 and an anisotropic hyperfine broadeningiso anlso ~

29S

o-si:w

a-si: D

width which was allowed to increase from 8
~~

to W~ with
increasing Y [cf. Eq. (3)] as in the case of the g tensor.
The microscopic origin for this broadening of the
h erfine interaction constants lies in the Auctuations of
the localization and s-p hybridization of the g-yper n

~ ~ ~ =2.0055
defects in a disordered environment. As before, we as-
sume here that these fluctuations will lead to a larger
broadening the larger the effective hyperfine coupling
constant A ( Y) in Eq. (2). The calculated curves in Fig. 5
were obtained for the following set of parameters:

A,„;s,=20 G, 8'i=5 G .
e

The corresponding values for A~~ and A~ are, according
to Eq (9) A = 110 G and A i =50 G. These values areto q.
shown in Fig. 5(d), together with the theoretical, un-
broadened hyperfine powder pattern underlying the ex-
perimenerimental curves in 5(a). It should be noted that, as in
the case of the central resonance simulation, the different
fitting parameters of the hyperfine satellites have charac-
teristic influences on the obtained line shapes. Thus, 2;„
and A,„;„aremainly refIected by the field position of the
extrema and zero crossings of the resonances, whereas
8' d 8' mainly inhuence the relative height of the ex-an pm

1
0

trema. This allows us to place the hyperfine coup ing
constants within the following limits: ~ =72+3 G,
A,„;„=18+3G. In particular, we can exclude the esti-

&8 G given in Ref. 14. This estimate wasmate aniso

based on the peak-to-peak width of the hyperfine absorp-
tion derivative or on the width of the integral spectrum
obtained by H-ENDOR detected ESR. However, it is
known from the literature, e.g. Ref. 24, that this may
severely underestimate the true anisotropic width of the
underlying powder pattern. This fact is already obvious
from Fig. 5: Taking the average peak-to-peak width of
the two satellites in (a) or the average FWHM in (c) we
would indeed obtain values for 3,„;„between 8 and 12
G, whereas the true anisotropy in (d) is 20 G.

1—
rA

ill
I—

LK

LU

20 G

C. Microscopic defect structure

Having determined the g tensor and hyperfine parame-
ters of the g =2.0055 resonance, one would now like to
translate these results into properties of the correspond-
ing defect wave function iD ). The most commonly em-
ployed procedure to do this has been proposed by Wat-
kins and Corbett and makes use of the linear combina-
tion of atomic orbitals (LCAO) expansion of iD ),

Ai=50 G

Afi 110G

MAGNETIC FIELD

FICs. 5. Si hyperfine spectra deduced from the experimental
curves in Figs. 2 and 3. Solid and dotted curves in (a) and (b)
denote experimental and simulated line shapes, respectively.
Solid curves in (c) are the integral of the spectra in (a. " ' is
the relative, integrated spin density of each hyperfine satellite.
The powder pattern used for the line-shape simulation is indi-
cated in (d).

where is ) and ip ) denote the atomic 3s and 3p orbitals of
Si, i indexes all atoms within the extent of the wave func-
t' iD) and the projection coefficients a;, o;, and ~;ion
oey eb th normalization conditions g, a, =, o;+n;=.

llfor all i. For a strongly localized wave function, usua y
one atom in Eq. (11) will contribute more to the sum than
the rest of the atoms, and this center of localization will
be given the index i =0. It is then possible to determine
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0,0, o.o, and mo from the experimental hyperfine constants
through the relations

aoo 0= A;„/A (s),
aom~() = A,„;„/ A (p ),
0 +77 =1

(12)

where A (s) and A (p) are the hyperfine constants for
pure ~s) and ~p) orbitals, respectively. To the extent
that further interaction constants can be resolved, e.g., by
ENDOR measurements, it is possible to also determine
coefficients for nearest, next-nearest, . . . , neighbors and
thus to map out the defect wave function.

The LCAO approach as described above has two prob-
lems. First, it requires the knowledge of the atomic in-
teraction constants A (s) and A (p) of the atoms in ques-
tion, i.e., silicon in our case. Except for the cases where
they have been determined experimentally, the atomic
hyperfine constants are usually calculated from Hartree-
Fock orbitals. Different values for A (s) and A (p) used
in the literature for Si are listed in Table II. For
the following discussion, we will use the values given in
Ref. 25, namely, A (s)=1490 G and A (p) =36 G, since
these are the numbers most commonly employed for the
defect analysis in crystalline Si. Besides, they correspond
roughly to the average of the interaction constants in
Table II. However, it is obvious from this table that the
constants which are used for the hyperfine data reduction
according to Eq. (12) vary by as much as 30% among
different authors. This makes a direct comparison uncer-
tain, especially as far as the localization parameter 0.'0 in
Eq. (12) is concerned. [Since the ratios A (s)/A (p) in
Table II are approximately the same, the hybridization
parameters o 0 and no are much less affected, ]

The second problem of the LCAO approach is that'it
identifies the net charge density of the paramagnetic de-
fect wave function with the net spin density. As pointed
out recently by Cook and White, this identification can
break down mainly because of two resons: (i) the un-
paired spin in the valence orbitals can produce a nonzero
spin density in atomic core levels, thus causing additional
hyperfine splittings not accounted for by the simple
LCAO picture (spin polarization), and (ii) the bonding in-
teraction within an atomic cluster may perturb the shape
of the pure ~s ) and ~p ) orbitals, so that estimates for
A (s) and A (p) obtained for isolated atoms may not be
correct for the same atoms embedded in a solid matrix.
For the case of Si dangling bonds at the crystalline
Si/SiOz interface, Cook and White have shown that a

more sophisticated analysis may indeed differ from the
LCAO picture significantly, especially as far as an esti-
mate of the amount of s character 00 on the central atom
is concerned.

However, for our case of the g =2.0055 resonance in
amorphous silicon, both deficiencies of the simple LCAO
analysis are less disturbing in view of the larger error bars
of the experimentally determined hyperfine constants,
and as long as we are only attempting a semiquantitative
description of the defect state. With this caveat in mind,
we can calculate the following projection coefficients
(ao, oo, no) from the experimental data and the LCAO re-
lations, Eq. (12),

cxo =0.45 0.65

00=0.07 0. 1 1

mo —0.89—0.93 .

(13)

TABLE III. Experimental and theoretical (Refs. 31 and 32)
ESR parameters for the g =2.0055 resonance in amorphous sil-
icon (SHF, superhyperfine interaction; ao, localization parame-
ter).

This set of parameters is the characteristic signature of a
silicon dangling-bond defect, as it has been observed in
many other systems. ' The hybridization of =10% s
character and =90% p character indicates that the cen-
tral Si atom has relaxed back towards the three nearest-
neighbor atoms to form an almost planar structure. [In
fact, according to the more sophisticated analysis in Ref.
29, oo in Eq. (13) should only be regarded as an upper
limit for the true s character of the defect wave function. ]
About half of the wave function is localized at the central
atom, with the remaining charge density distributed onto
the nearest- and next-nearest-neighbor atoms. From our
earlier work on Si-enriched specimens' we know that
the wave-function overlap with the neighboring atoms
produces a superhyperfine interaction of about 25 G, re-
quiring that about 10% of the total defect charge density
is localized on a sp hybrid of at least one Si neighbor.
This is entirely compatible with the estimate ao 65%
for the charge density on the central atom. A similar
superhyperfine interaction has also been observed for
dangling bonds at the Si/Si02 interface, ' ' with a mag-
nitude of approximately 15 G. Thus, we may conclude
that the g =2.0055 defect state in amorphous silicon is
structurally very similar to the Pb defect at the Si/Si02
interface, which is probably the most studied example of
a Si dangling bond. The main difference between these
two defects is their degree of localization on the central

~(s) (G)

1640
1490
1206

A(p) (G)

40.5
36.0
31.0

Refs.

26
25

4,27

TABLE II. Hyperfine interaction constants for 3s and 3p
atomic orbitals of Si (equivalence between the units: 1

G=2.802 MHz=9. 346 X 10 cm ').
Parameter

gal

gx
~ iso

~ aniso

SHF
2ao

Experiment

2.004
2.008

70—75 G
15—20 G
20-30 G
0.45 —0.65

Theory

2.003
2.008

70-110 G
13—20 G
5—30 G

0.48—0.73
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atom: o.o=0.55 in a-Si:H versus ao=0. 7 at the c-Si/Si02
interface.

A second possible way to demonstrate the dangling-
bond character of the g =2.0055 defect in a-Si:H which
does not rely on the LCAO analysis employed above is to
compare the experimental raw data with predictions of
model calculations for dangling-bond defects. Such cal-
culations have actually been performed by Ishii and co-
workers long before the Si hyperfine structure in a-Si:H
was observed experimentally. ' The comparison in
Table III demonstrates the good quantitative agreement
between experiment and theory, thereby giving additional
support to the dangling-bond model.

IV. CONCLUSION

We have performed a detailed investigation of the
g =2.0055 resonance in amorphous silicon, with special
emphasis on the Si hyperfine interaction in samples
with the low, natural Si isotope concentration. The
principal components of the g tensor and the hyperfine
tensor were obtained by computer simulations of the cen-
tral resonance and the hyperfine satellite line shapes. We
obtain values of g~~:2 004 g~:2 008 2'„:73+3 G,
and A,„;, =18+3 G for the g-tensor components and the
isotropic and anisotropic hyperfine constants, respective-

ly. These results agree quantitatively with predictions
from previous calculations for Si dangling-bond defects.
A simple LCAO analysis of the hyperfine constants
shows that the underlying defect wave function is mostly
localized on one Si atom and has almost pure p character.
The structural parameters deduced for the g =2.0055 de-
fect agree very well with those of Si dangling bonds at the
Si/Si02 interface. We are, therefore, led to the con-
clusion that there are no compelling reasons to abandon
the dangling-bond picture of the principal defect state in
amorphous silicon. On the contrary, in conjunction with
recent calculations of the electronic structure of over-
coordinated silicon atoms' ' our results suggest that the

Si hyperfine structure is actually incompatible with the
floating bond model. According to these calculations, a
floating bond wave function has much less weight on any
Si atom than a dangling-bond state, due to the delocal-
ized nature of a floating bond. Thus, Fedders et al. find
less than 25%%uo of the total wave function on a given Si
atom, which is a factor of 2 smaller than the lower limit
obtained in our analysis.
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