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A new pseudopotential expansion theory is developed for nearly-free-electron alloys. This theory
includes local-density-dependent corrections to the usual pair potentials, to take into account long-
wavelength charge-density fluctuations. A simplified treatment of the nonlocality of the pseudopo-
tential is presented as well. Using this theory, the heat of formation and lattice constant are calcu-
lated for several ordered and disordered phases of Al-Li alloys. The importance of the local-density
correction and the nonlocal pseudopotential terms to the atomic bonding in these alloys is analyzed,
and the results are compared with experiments. The dominant exothermic contribution to the heat
of formation comes from the nonlocality of the Li pseudopotential. Inclusion of the local-density
and nonlocal pseudopotential terms results in considerably improved heats of formation. The con-
centration dependence of the calculated heats of formation and ordering energy is consistent with
experiment and more accurate density-functional band-structure calculations. The results for the
lattice constants of the ordered compounds agree well with experiment, and the experimentally ob-
served lattice contractions of the solid solutions are also found. However, the failure of our method
in constructing an accurate phase diagram from the calculated heats of formation indicates that fur-
ther improvements, including higher-order terms in the strong Al pseudopotential, are needed.

I. INTRODUCTION

The properties of Al-Li alloys are currently attracting
attention from both the materials-science and physics
communities. Besides being promising lightweight alloys
for the aerospace industry, ' they show several properties
of fundamental interest. Some examples are the lattice
contraction of the Al-rich solid solution relative to the
Vegard's-law prediction, the possible existence of a mis-
cibility gap in the random solid solution according to
simple -model calculations, and more recently observed
Al-Li-Cu quasicrystal structures. A quantitative under-
standing, at the microscopic quantum-mechanical level,
of the Al—Li bond is important for understanding all of
these properties of Al-Li alloys. In this paper we pre-
sent a theoretical model for Al-Li alloys based on the
local pseudopotential expansion theory with two
modifications: local electronic-density-dependent correc-
tions, and a simplified treatment of the nonlocality of the
pseudopotentials. Although the usual pseudopotential
expansion theory has been quite successful in dealing
with simple nearly-free-electron metals and some of their
alloys, we face two main difFiculties in applying the
theory to Al™Lialloy systems. First, the high electronic
density of Al (z =3) and the large difference in electronic
densities of Al and Li (z~~

—zL; =2) render the second-
order perturbation expansion insufficiently accurate to
reproduce the actual local electronic density distribution
and bonding energy in the alloy system. Second, the im-
portance of the nonlocality of the pseudopotential, espe-
cially for Li, causes some commonly used local model po-
tentials "to fail in dealing with several alloy properties.

The above difhculties have been discussed by several
authors' ' . For example, a fourth-order local pseudo-
potential expansion has been used to study the atomic-
volume contraction of a single Li atom soluted in Al
solid. ' Hafner' has developed a method for construct-

ing optimized pseudopotentials for alloy systems which
are alloy-composition dependent. Another method has
been developed' ' for treating the high-order nonlinear
screening effects on the basis of a self-consistent density-
functional calculation. These methods have been em-
ployed in calculations for Mg-Li alloy systems. ' ' The
results, such as the heat of formation and the phase dia-
gram of random solid solution, agree well with experi-
ments. However, applications of these methods to alloy
systems have been limited and it is often hard to glean
from the calculations the underlying physics which
governs the atomic bonding. To our knowledge they
have not been applied to Al-Li alloys.

We develop in this paper a simple method which ad-
dresses in a transparent fashion two important aspects of
atomic bonding in Al-Li alloys: the effect of the local
density on the one-body terms and pair potentials, and
the effects of the nonlocality of the pseudopotentials of Al
and Li. It was pointed out by Harrison' that there may,
in general, exist a local-electronic-density-dependent in-
teratomic pair potential which takes into account the
nonlinear screening effects beyond the second-order
terms in perturbation theory. In this paper we show (Sec.
II) that by introducing an intermediate Hamiltonian for
the alloy system and performing successive second-order
expansions, we can actually construct such local-density-
dependent pair potentials for alloys. We also develop a
simplified scheme for including the effects of the pseudo-
potential nonlocality on the bonding energy. We con-
struct (Sec. III) new nonlocal model pseudopotentials for
Al and Li from ab initia calculated pseudopotentials'
and compare them with some previously used nonlocal
model potentials. ' The importance of the above effects
for the Al-Li bonding are evaluated through explicit cal-
culations and discussed in Sec. IV. Calculations are per-
formed for the heat of formation and lattice constant of
several ordered and disordered phases of Al-Li alloys,
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and the results are compared with experiments. Finally,
Sec. V summarizes our conclusions and discusses future
extensions and applications.

II. LOCAL-DENSITY CORRECTIONS
TO SECOND-ORDER PERTURBATION EXPANSION

The usual second-order pseudopotential expansion
theor 5~ 6~ 8~ 20theory ' ' ' for an A-8 alloy gives an expression for the
total energy of the following form:

E =Eo(po)+E, (po, s),
with

Eo(po) =zE, (p o)+ ,'u. &, (p—o)
/

+ —,'[c„gb,(R=O)+csPb, (R=O)], (2a)

FICi. 1. Illustration of intermediate Hamiltonian. Solid
curve, actual density p», dotted curve, density in intermediate
system p, dashed curve, uniform electron gas po.

1
E, (Po,s)= g g n (R)n~(R')P ~(Po, R—R'),

ion RWR' aP

(2b)

pb~(po, R)= f d r d r'y[po, r r'] —u, (r) u~(r' R)—,
(2c)

and
Z~zp

P ~(p R)= +P ~(poR) . (2d)

Here p0 is the average density of conduction electrons,

EJ(po) and BJ(po) are the total energy and bulk modulus
of jellium at this density, U, is the average atomic volume,
z =c„z~+c&z~ is the average number of conduction
electrons, a and P are labels for the two types of ions, i.e.,
a,P= A or 8, and n (R) are distribution functions of
ions of type a: n (R)=0 or 1 depending on the ionic ar-
rangement. The subscripts "bs" and "ps" denote "band-
structure" and "pseudopotential, " respectively.

The main difhculty in applying the second-order ex-
pansion formalism given by Eqs. (1) and (2) to an alloy
system results from the fact that local-electronic-density
fluctuations from the average bulk density are often large
(they are large in the Al-Li alloy since z~~

—zL; =2). Such
large density Auctuations render the second-order expan-
sion from the jellium electron-gas model insu%ciently ac-
curate to reproduce the real electronic density of an allo
system. The basic idea behind our method for obtaining
corrections to the usual second-order expansion is illus-
trated in Fig. 1: We introduce an intermediate system be-
tween the jellium electron-gas potential and the complete

I

ionic pseudopotential. This intermediate system has a
nonuniform positively charged background and has an
electronic density p; which is closer than the uniform
electron gas to the real density p. The density p; gen-
erates an intermediate pseudopotential and Hamiltonian.
We perform successive second-order expansions from the
jellium electron gas via this intermediate system, to ob-
tain corrections to the usual second-order expansion re-
sults,

and

E [ V,. ]=E [ Vo ]+f d rp oh V;

+ ,' f d3r d r'y[p—o, r, r']b, v;(r)b, v, (r') . (4b)

Here b, V = V —V;, 6 V; = V; —V0, and y denotes the elec-
tronic susceptibility of the inhomogeneous and uniform
electron gases, respectively, in Eqs. (4a) and (4b). Substi-
tuting Eq. (4b) into Eq. (4a) and using .(r )

3 I — I I
p; I

d r y[po, r, r ]b, V;(r'), we obtain an expression for

the total energy E [ V]:

0;=T+V, ,

where T is the electron kinetic-energy operator. The
forms of the intermediate pseudopotentials u,.(r) used in
our calculations will be specified later.

With the intermediate Hamiltonian H; defined, we thus
obtain

E[V]=E[V;]+f d r p;b V

+ ,' f d r d —r'y[p,, r, r']Ev(r)hv(r'), (4a)

E[V]=E[Vol+ f d'rpob, vo+ ,' f d 'r d'r'y[po, r r']b, —VO(r)b,VO(r')—
+ ,' f d r d r'(y[p, , r—,r'] —y[po, r, r'])b, v(r)aV(r') .

(5a)

(5b)

The first part of E [ V], Eq. (5a), is the same as the re-
sult from the usual second-order expansion in Eq. (1), and
the second part of E [ V] gives correction terms due to the
local-density Auctuations in alloys. The total energy per
ion E can be written as

E =Eo(po)+E. (po s)+ ~Eo(po p )+~E (po p

where Eo and E, are defined in Eq. (1). Here the correc-
tion terms AE0 and AE, are given by
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X hu, (r —R)hv~, (r' —R') (7c)

and Av, =v, —v;.
To apply Eq. (6) to a physical system, one needs to

choose an approximate form for y[p;, r, r'], and to inake
a particular choice of V;. For the susceptibility, we make
the ansatz

y[p;, r, r'] =y"[[p,(r)+p, (r')]/2, r —r'],

bEO(po, p;)= g g n (R)Ap (pv, p;, R,R'), (7a)
2%ion R a

AE, (po, p;,s)= g g n (R)n~(R')1

R+R

Xb,p ~(po, p;, R,R'), ('7b)

where

b p ~(po, p;, R,R' ) = f d r d 3r '(y[p, , r, r']

—y[po, r, r'])

where the homogeneous dielectric susceptibility y is ob-
tained ' from the free-electron jellium model. 3 This
ansatz has previously been used successfully for studies of
metallic surfaces and molecular hydrogen. '

The intermediate potential is chosen such that it pro-
duces an electronic density which approximates the exact
density better than does the uniformly averaged bulk
electronic density, and which has less rapidly oscillating
features than the exact density. The alloy-induced elec-
tronic density fluctuations are dominated by wavelengths
larger than the Wigner-Seitz radius. Therefore, a plausi-
ble way to construct the intermediate potential for an ion
of type a, u; (r), is to smear out the ion charge +z uni-
formly into a sphericalized atomic cell with volume equal
to v . This definition of the intermediate potential im-
plies that u, (r) —u; (r)=0 in the region outside the
atomic-volume sphere r )R . Using the ansatz in Eq. (8)
we can then write the pair-potential correction in Eq. (7c)
as

Ap ~(po, p;, R, R')= f d r f, d r'Ig"[[p;(r+R)+p;(r'+R')]/2, r —r'+R —R']

—g"[po, r —r'+R —R']ID,u, (r)b, up, (r') . (9)

p, (r —R)=f d r'y"[po, r —r']u; (r' —R) . (10)

Then we define an averaged "central density" p, (R) and
an averaged "tail density" p, (R) as

An important simplification can be obtained by observ-
ing that the pair-potential correction term
b p ~(po, p;, R, R') depends only on the densities p; (r+ R)
and p;(r'+R') inside the Wigner-Seitz spheres r ~ R, and
r' ~ R„where the two ions a and P are centered, respec-
tively. Since the electronic density in these two regions is
determined primarily by the contribution from the center
ion and the tails from its nearest neighbors, we replace in
Eq. (9) the densities p;(r+R) and p, (r'+R'}, which de-
pend on locations of all the other ions, by approximate
averaged local densities p; (R) and p~(R'), which depend
only on the nearest neighbors. The averaged density
p; (R) in the atomic cell ~r —R~ ~R, of an ion of type a is
defined as follows.

First, we define an electronic density p; (r —R) induced
by a single ion o. at R,

p, (R)= f d r p, (r —R)
a

p, (R)= f d r p;(r —R)
a

(1 la)

(1 lb)

The averaged local density ap;(R) is simply equal to
its central density plus the tail densities from its nearest
neighbors, i.e.,

1p;(R)=p, (R)+ g g n~(R+RNN)p~(R+RNN),
NN RNN

(12}
where NNN is the number of neighboring ions around ion
a and RNN are the neighboring ion-position vectors.

Using p;(R) in Eq. (9), we now have a simplified ex-
pression for the correction term in the form of a pair-
potential correction bp ~(po, p; (R), p~(R'), R —R'),
which depends on the bulk averaged density po as well as
on the local averaged densities p;(R) and p;(R') deter-
mined by the charges of ions a and f3, and their nearest
neighbors:

bp ~(po, p, (R),p~(R'), R—R'}=f d r f d r'Iy [[p, (R)+p;(R')]l2, r —r'+R —R']
r~R r'~R~

—y"[po, r —r'+R —R']Jbv~, (r)oui„(r') . (13)

III. PSKUDOPOTKNTIAL MODEL
AND NONLOCAL CORRECTIONS

The pseudopotentials we use for Al and Li are adapted
from the ab initio calculations by Bachelet et al. ' For
simplicity, we make the following modifications.

(a) We approximate the pseudopotentials v&(r) by the

u (r)= '

zlr, r)R—,
where

(14)

I

approximations v&(r), which have the form of some stan-
dard model potentials

—Vl(R, ), r ~R,
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—V&(R, )= f d r vI(r)
C

4a
3 c (15)

u„=v...(r)+ av „,.,
We take

(16)

vi„(r) = V) o("=)=
—Vo(R, ), r ~R,
—z/r, r)R, (17)

so that

l, m

(18a)

b, u&(r)= .
—b, V)(R, )

—= —[ V)(R, ) —Vo(R, )], r ~R,
(18b)

0, T)R

The local pseudopotential v)„(r) will be treated in the
total-energy calculations using the formalism developed
in Sec. II. The total energy per ion due to the nonlocal
part AU„]„ in the elemental case, is calculated using a
first-order perturbation expansion from the uniform elec-
tron gas, i.e.,

Here, R, is the "core radius, " which will be determined
later.

(b) With uI(r) defined in Eqs. (20) and (21) we write the
pseudopotential U, as a local potential plus nonlocal
corrections inside the core region, i.e.,

age bulk electronic-density parameters r, for the pure
metals (or, equivalently, the lattice constants) to the ex-
perimentally measured values, which are 2.06 for Al (fcc)
and 3.25 for Li (bcc).

The values of R, and VI(R, ) determined for Al and Li
are for Al, R, = 1.846 a.u. , Vo(R, ) = 1.347 a.u. ,
b, V, (R, )=0.343 a.u. , and b, Vi(R, )=1.194 a.u. ; and for
Li, R, =1.910 au. , Vo(R, )=0.167 a u. , bV, (R, )=0.803
a.u. , and AV2(R, )=0.342 a.u. (We use atomic units
throughout this paper: A= m, =e = 1; distance, 1

a.u. =0.529 A; energy, 1 a.u. =27.2 eV.)

As a check on the accuracy of our method, we have
calculated the bulk moduli of Al and Li, at their equilib-
rium densities. We obtain BA, =2. 15X10 a.u. and
BL; =4.27X10 a.u. , which are within 20% of the ex-
perimental results, B~)=2.70X10 a.u. (at T=0 K),
and Bi;=4.49X10 a.u. (at T=78 K). Note that for
both Al and Li, the nonlocal p component —hV, is at-
tractive. This will be shown later to be very important in
describing the atomic bonding in Al-Li alloys. We also
note that band-structure calculations have shown that
the Fermi energies for both Al and Li are lower than the
free-electron estimates: eF —ez = —0.0228 a.u. for Al
and —0.0539 a.u. for Li. In a lowest-order perturbation
calculation these shifts come only from the nonlocal
part of the pseudopotentials. An estimate of these re-
ductions from our model potentials gives heF
-=(kF~bu„')„' ~kz) = —0.0135 a.u. for Al and —0.0199
a.u. for Li. These estimated values, though they account
for only about 50% of the correct magnitudes, and show
that the nonlocal pseudopotentials for Al and Li from
our model have the correct signs and relative strengths.

IV. CALCULATIONS FOR Al-Li ALLOYS

EE„„,(p0) = g ( No~Du„„, (r —R) ~4&o),
1

ion R
(19)

&@olau.).,(r —R)l@o)=2 g ge, (k),
k~kF I

e)(k) = 4mb Vi(R, )(2l —+ 1)II(k),

I,(k) =
—,'R, [j)(x) jr —)(x)g)+ i(x)] x =kR

(20)

where j&(x) are spherical Bessel functions.
To include the local-density corrections in the alloy, we

replace kF in Eq. (20) by a local Fermi wave vector k~(R)
which is determined by the local density p; (R) defined in
Eq. (12). The nonlocal correction to the total energy
from the ion at site R is then given by

(No~A, v„)„(r—R)~C)o) =2 g g E&(k),
k ~ kF(R) 1

(21)

where e&(k) is defined in Eq. (20).
(c) The core radius R, is determined by fitting the aver-

where ~4&o) is the ground-state wave function of the,
noninteracting electron gas and

A. Random solid solutions, a phase

The Al-rich Li alloy a-phase Al, „-Li is a random
solid solution on a fcc lattice. The solid solubility of
Li in Al is 13.7% (atomic concentration) at T =600 C,
decreasing to 5.5% at 150'C. However, we show results
for the entire concentration range because they elucidate
the physical mechanisms underlying the bonding, and be-
cause metastable solid solutions and coherent ordered
structures can be prepared with much higher Li concen-
trations. We calculate the heat of formation b,H(c) per
atom as a function of the atomic concentration c of Li.

The interatomic pair potentials P
' '(r), P

' '(r), and
'(r) at c=0.25 are plotted in Fig. 2(a). The local-

density correction parts of the potentials b,P ~(r) at the
same concentration are plotted in Fig. 2(b). The Li-Li
correction b,P

' "'(r) is stronger than the other two for
both phases. This is due to the fact that inside the core
region r & R„~b.v~, ~

=
~u~,

—u, ~
for Li is larger on aver-

age than that for Al
The results for the heat of formation are plotted as

functions of c in Fig. 3. The solid (dashed) curve shows
the results calculated with (without) the local-density
corrections using Eqs. (1), (2), (6), (7), (13), and (21) [Eqs.
(1), (2), and (21)], including the nonlocal pseudopotential
corrections. The dotted curve shows the results with the
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FIG. 2. (a) Interatomic pair potentials for Al-Li alloy at
c=0.25 Li atomic concentration. (b) Local-density correction.

O

I I I I

0.2 0.4 0.6 0.8 l.O

FIG. 3. Heat of formation for random solid solution: Solid
curve, with both local-density and nonlocal pseudopotential
corrections; dashed curve, with only nonlocal pseudopotential
correction; dotted curve, with only local-density correction.

local-density corrections but without the nonlocal pseu-
dopotential corrections. The magnitude of the nonlocal
pseudopotential correction is clearly much larger than
that of the local-density correction. Note that without
the nonlocal pseudopotential correction the heat of for-
mation would be positive; this is also true if the heat of
formation is calculated with a local pseudopotential fitted
to the lattice constant (the local part of our pseudopoten-
tial will, of course, obtain an incorrect lattice constant).
The nonlocal pseudopotential correction provides a nega-
tive contribution to the heat of formation which is large
enough to make the total heat of formation negative as
well. This negative sign in the heat of formation is con-

sistent with the observed phase diagram. The exothermic
sign of the nonlocal contribution is due to the strongly at-
tractive p component of the Li pseudopotential. Upon al-
loying with Al, the average electron density at a Li site
becomes greater than in elemental Li. The p charge in-
creases rapidly with the electron density, resulting in an
exothermic contribution.

The local-density correction for the present model (cf.
Fig. 3) reduces the magnitude of the heat of formation.
We will show later that this reduction places our results
closer to those obtained from more accurate density-
functional band-structure calculations. The main contri-
bution of the local-density corrections to the total energy
in Eq. (7) comes from the one-body terms,

,' f—d'rd r'[y [p;(R), r —r']

—y [po, r —r']
J bv „,(r)bv „,(r')

[see Eq. (13)]. For the dielectric susceptibility one has
By"/Op&0, since y" &0 and a larger electron density
screens more effectively. Therefore the one-body correc-
tion term b,P

' ' for an Al atom lowers the total energy
since the averaged local density P; '(R) at an Al site is
larger than the averaged bulk density po. In contrast,
APL' ' for a Li atom raises the total energy since P,"'(R)
at a Li site is smaller than po. The one-body term for a Li
atom dominates over that for an Al atom since, as men-
tioned above, Au,' is larger than Au, ' inside the core re-
gion. The total energy with the local-density correction
is therefore higher than that without the correction.

A surprising property of the solid solution is the con-
traction of the atomic volume relative to the pure Al met-
al. Instead of an increase in the average atomic radius in
the alloy as predicted by Vegard's law (the atomic radius
of Li R '=3.2S a.u. , is larger than the atomic radius of
Al, R '=2.98 a.u. ), a decrease is observed. This was
studied previously using a pseudopotential expansion for
a single impurity, including third- and fourth-order'
terms. We find a contraction, relative to Vegard's
law, of (R, —R, )/R, =0.13c for c &0.10, where
R, is the atomic volume of Vegard's law. This is in
good agreement with the experimental result,
(R, —R, )/R, =0.11c (at 298 K).

A phenomenological model calculation has been re-
cently made for the metastable phase diagram of Al-Li al-
loys. In this model short-range order in the solid phases
was taken into account within the tetrahedron approxi-
mation of the cluster-variation method and the Ising pa-
rameters for the ordering energy were Atted to the ob-
served phase diagram. For the Al-Li fcc-based struc-
tures, the model parameters were fitted to the order-
disorder congruent temperature and other aspects of the
observed phase diagram, phase, and the experimental a
solvus concentration. The calculated free energy of the
fcc random solid solution implied the existence of a meta-
stable miscibility gap below 400 K. However, from our
calculated heats of formation shown in Fig. 3, there is no
evidence for the existence of this miscibility gap. On the
Al-rich side, the heat of formation is a monotonically de-
creasing function of the concentration with positive cur-
vature, which precludes a miscibility gap.
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B. Ordered structures

1. Al Li -phase (P)

The observed ordered stable Al-Li P phase has a B32
or Na-Tl structure, which is a superstructure of the bcc
lattice. For the heat of formation we find
b,Hii32= —11.70 mH/atom. The lattice contraction is
also found in the B32 structure, b,R '/R
[=(R,—R, ')/R, ']= —0.0123; the experimental result
is —0.0091 (calculated from the data in Ref. 26).

In order to compare the ordering energies we also treat
two other hypothetical ordered structures for Al-Li, the
CsC1 structure and AuCu structure. The heat of for-
mation is found to be —9.52 mH for CsC1 and —11.11
mH for AuCu. We find that' AH+3/ & AH««& AHc„, ,
is consistent with experiment. This ordering can be un-
derstood from the numbers of like and unlike neighbor
atoms in each structure: six and eight, respectively, for
the CsC1 structure (including both first and second neigh-
bors); four and eight for the CuAu structure; and four
and ten for the B32 structure. In the alloy, unlike neigh-
bors are preferred, explaining the stability of the B32
structure.

2. A13Li

This is a metastable ordered phase with the AuCu3
structure. The heat of formation we calculate is —9.68
mH for A13Li, and the lattice contraction (relative to
Vegard's law) we find for A13Li is b,R '/R '= —0.0103,
where the experimental value is —0.0096 (from data in
Ref. 26). For comparison we also calculate the heat of
formation of the hypothetical compound A1Li3 with the
same AuCu3 structure: hH = —5.69 mH.

3. Al&Li 9 5 phase

The atomic basis of the structure consists of 26
atoms, 8 Al and 18 Li. Each atom has 14 neighbors. All
Al atoms have 12 Li and 2 Al neighbors. For Li atoms
there are four different cases: 4 AL+ 10 Li, 5 Al+9 Li, 6
Al+ 8 Li, and 7 Al+7 Li. We find that hH = —5. 15 mH
(the random fcc solid solution at the same concentration
has b,H„„d, = —4.42 mH). The equilibrium atomic ra-
dius we find is R, /R;" '=0.992.

C. Discussion

In Fig. 4 we plot the results for the heats of formation
we calculate for ordered and disordered structures versus
atomic concentration. All of the ordered structures are
stable relative to the random solid solution with the same
concentration. Full potential linearized augmented-
plane-wave (FLAP W) density-functional-band structure
calculations have been performed for three ordered struc-
tures: A13Li, A1Li, and A1Li3. ' These results are plotted
in Fig. 4 for comparison. One can see that our results
overestimate the magnitudes of the heats of formation, al-
though the local-density correction has reduced the mag-
nitudes considerably (Fig. 3). However, the overall trend

-5
D

I

O

~ A13Li

+ A1Li (B32, FLAPW)

~ A1Li (CsC1)

~ AILi (AuCu)
~ A1Li (B32)

0.2 0 4 0.6 0.8 I.O

FIG. 4. Heats of formation of random solid solution and
several ordered structures: Solid curve, random solid solution
(fcc); 0, ordered structures; D, FLAPW calculations (Ref. 31).

of the present values agrees with the band-theoretic
values. We find the same asymmetry in both ordered and
disordered phases with respect to the equiatomic concen-
tration, with the Al-rich side having lower (more exo-
thermic) heats of formation. Similar asymmetries in the
heat of formation, with lower values on the side of the
higher valence element, have been found in theoretical
calculations ' as well as experiments for the random
solid solutions of A1Mg and MgLi. A major contribution
to this asymmetry in the case considered here comes from
the nonlocal pseudopotential contribution, which as men-
tioned above is the dominant exothermic contribution. A
first-order expansion of the spherical Bessel functions in
Eq. (21) shows that the slope of the heat of formation
from the nonlocal pseudopotential b, u i(r) part is propor-
tional to ~2kFIBc~. If one used Vegard's law, one would
have dkF/dc =5/3kF(bzlz+b, V, /V, ) cckz,' therefore
the more rapid change in kF with concentration for Al-
rich alloys will lower the heat of formation relative to the
Li-rich case.

The heat of formation EH~&2 for the B32 structure and
the ordering energy AH&32 —AHcsc& have previously been
calculated using several more sophisticated methods:
FLAP W by Guo et al. ,

' linear muftin-tin orbital
(LMTO) by Christensen, linear combination of atomic
orbits (LCAO) by Hafner and Weber, and a third-order
local pseudopotential expansion by Maknovetskii and
Krasko. Their results are compared with ours and ex-
periment in Table I. Our estimate of AHjp32 is within
30% of the experimental value and exceeds the FLAPW
estimate by 40%%uo. The ordering energy obtained by the
present method is 30% below the FLAPW result (which
is probably the most accurate). The third-order local
pseudopotential expansion and the LCAO calculations
obtain much larger discrepancies.

As another comparison of our results with experiment,
we estimate the ordering transition temperature of the
metastable ordered structure A13Li with an effective Ising
model for the order-disorder transition



986 DAN LU AND A. E. CARLSSON

TABLE I. Calculated heat of formation of
b,H (B32)—AH (CsCl).

the 832 structure and the ordering energy

Method

FLAP&'
LMTO'
LCAO'
Third-order pseudopotential
Expansion theory
This work
Expt. '

'Reference 31.
Reference 33.

'Reference 34.
Reference 35.

'Reference 36.

AH(832)
(10 hartree/atom)

-8.0
-7.75

-11.2

-11.70
-9.3

( T =298 K)

AH (832)—AH ( CsCl }
(10 ' hartree/atom)

-3.3
-2.9
-0.6

-0.3
-2.2

J
Earder ~ X ~i~j

l,j
Here 0., is defined as

r

2c for Al sites,
—2(l —c) for Li sites, (23)

V. CONCI. USIONS

In this paper we have developed a physically transpar-
ent pseudopotential expansion theory for nearly-free-

where c is the Li atomic concentration and only nearest-
neighbor contributions are included. The ordering ener-
gy per ion for A13Li is ——„'J. The ordering energy we cal-
culate is E„d„=—2.93 mH for A13Li, which yields
J=2.34 mH. The transition temperature is given by
'r, =0.935Jlk~ so that T, =690 K for A13Li. This is
quite close to the value estimated from the phase diagram
in Ref. 3, T, -=800 K.

The primary failure of our calculations for these struc-
tures is that we cannot construct an accurate phase dia-
gram for the Al-Li alloy. From the results shown in Fig.
4 we find A13Li to be stable and A14Li9 to be metastable
or unstable, inconsistent with the observed stability of the
A14Li9 phase. These discrepancies are probably due to
some inaccuracies in our method for dealing with the
strong scattering pseudopotential of Al. The local-
density-dependent corrections in our method include only
the higher-order terms due to the inhomogeneity of the
electronic density in the alloys. The remaining higher-
order terms will lead to three- and four-body potentials
or effectively angular forces. These are expected to be
very important in stabilizing complex chemically specific
structures such as the A14Li9 structure.

electron alloys. Our method includes important
modifications to the previously used local pseudopoten-
tial theories. We have used our approach to calculate the
heats of formation and lattice constants of several or-
dered and disordered phases of Al-Li alloys and found
considerable improvements over the previous ap-
proaches. Although our method does not have the quan-
titative accuracy required to calculate phase diagrams, it
has the advantage of being orders of magnitude faster
than band theoretic techniques, because no matrix diago-
nalizations are performed. Therefore believe that it can
be of considerable utility in treating other Al-Li alloy
properties, such as liquid structure and the atomic
configurations around dislocations and grain boundaries.
The local-density-dependent pair potential developed
here also has potential advantages for treating many oth-
er inhomogeneous electronic systems, such as metallic
surfaces and bulk solids containing point defects. For ex-
ample, it is well established that in the case of the Al
vacancy, neglect of local corrections to the pair potential
can lead to 1arge errors in the calculated formation ener-
gy. Because the standard pseudopotential expansion
theory does not treat strongly inhomogeneous systems ac-
curately, they have often been treated with empirical pair
and higher-order ' potentials, which are based on arbi-
trary assumptions about the functiona1 form of the poten-
tials. The analysis presented here may well provide a use-
ful alternative description for such systems.
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