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Quasiparticle properties of a coupled two-dimensional electron-phonon system
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We calculate quasiparticle properties of a weakly polar two-dimensional electron gas by taking
into account both electron-electron Coulomb and electron —optical-phonon Frohlich interactions.
Electronic self-energy is calculated exactly in the leading order of the total effective dynamical in-

teraction. The total effective dynamical interaction is obtained within the random-phase approxi-
mation (RPA) by starting from the total bare interaction, which includes both Coulomb and
Frohlich interactions and then by screening it with all the bubble diagrams. Our theory thus treats
Coulomb and Frohlich interactions on an equal footing and includes all effects (within the RPA) of
Fermi statistics, Landau damping, plasmon-phonon mode coupling, phonon self-energy correction,
and dynamical screening. We include finite-thickness effects in actual GaAs-based semiconductor
microstructures by considering electron- and phonon- ("slab modes") confinement effects. Some of
our interesting results are (1) Coulomb and Frohlich interaction effects are nonmultiplicative, and
the actual many-body correction for an electron gas is substantially different from the one-polaron
result; {2) there are interesting and observable plasmon- and phonon-induced satellite structures in
the low-energy side of the electronic spectral function and the density of states; (3) at low electron
densities phonons tend to screen Coulomb interaction, whereas at large electron densities electrons
screen the Frohlich interactions; (4) our calculated effective mass and inelastic-scattering length are
consistent with the available experimental results.

I. INTRODUCTION

Artificially made semiconductor microstructures
(heterojunctions and quantum wells) constitute ideal sys-
tems for two-dimensional (2D) electron confinement' and
have been extensively studied during recent years because
of their fundamental and technological interest. The
modulation-doping technique allows spatial separation of
the ionized impurities from the conduction electrons
through the growth of an undoped spacer layer, giving
rise to a very pure two-dimensional electron gas (2D EG)
with extremely high mobilities. The reduced effect of the
impurities makes the 2D EG more suitable than the 3D
EG for the study of many-body effects. In spite of this,
there have not been studies of electron-electron interac-
tion effects in the 2D EG which are as complete as those
in the 3D EG. One of the objectives of this paper is to
provide, within the leading-order perturbation theory, a
fairly complete study of 2D quasiparticle properties. We
analyze the electron-electron interaction in the 2D EG
within the framework of the random-phase approxima-
tion (RPA) and find important departures from the
noninteracting 2D EG and the corresponding results in
the 3D EG.

Since the 2D semiconductor microstructures are made
of polar III-V or II-VI semiconductor materials the car-
riers interact with the longitudinal-optical (LO) phonons
via the long-range Frohlich interaction. The electron-
phonon interaction affects many of the electronic physi-
cal properties such as effective mass, inelastic (or phase-
breaking) carrier lifetime, density of states, etc. , and these
have recently attracted considerable experimental and
theoretical ' attention. Most of the theoretical studies

have been carried out in the one-electron approximation
(the so-called single-polaron limit) or including screening
via ad hoc approximations (involving mostly static
screening). This is in sharp contrast to the real situation,
where one has a finite electron density with the electron
Fermi and plasma energies being comparable to the LO-
phonon energy. A second objective of this paper is a fair-
ly comprehensive study of the coupled electron —I.O-
phonon problem for two-dimensional systems. Electron-
electron and electron-phonon interactions are treated on
an equal footing, our only approximations being the use
of the RPA and the neglect of vertex corrections. We
find that even in the weak-electron-phonon-coupling limit
the electronic properties can be substantially modified by
the Frohlich interaction, and, conversely, that the mea-
surement of phonon-related effects is greatly affected by
the Coulomb interaction between the electrons. So,
Coulomb and Frohlich interactions cannot be disentan-
gled in most of the experimentally interesting cases.
Thus the many-body renorrnalization effects in such a
coupled system are fundamentally nonmultiplicative in
nature. Preliminary resutls of our findings have recently
been reported.

In order to make direct connections with experiments,
we must take into account the finite thickness of the mi-
crostructures, namely the quasi-two-dimensional charac-
ter of the electron wave functions and the rich variety of
LO phonons (bulklike confined slab modes and interface
slab modes) which are allowed in such thin-film
geometries. Our third objective is to quantify the impor-
tance of the finite-thickness corrections on many-body
effects. We find that they are substantive in weakening
the electron-electron interaction and give rise to addition-
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al structure in the quasiparticle damping rate in narrow
quantum wells.

The motivation for this work is twofold. Intense,
current experimental activity in GaAs-based 2D micros-
tructures requires that detailed quantitative knowledge
about quasiparticle properties be available. For example,
quasiparticle effective mass is measured in cyclotron-
resonance experiments, whereas quasiparticle damping
can be measured in hot-electron spectroscopy. In spite of
this great current interest in polar quasi-2D EG existing
in GaAs quantum wells and heterostructures, there has
been no detailed quantitative study of 2D quasiparticle
properties including both electron-electron and e1ectron-
phonon interactions on an equal footing. One of our
motivations for this work is to provide such a detailed
quantitative study for this class of experimentally in-
teresting systems.

A second more general motivation of our work, which
is purely theoretical, is that we want to study a coupled
electron-phonon many-body system treating electrons
and phonons on an equal footing. Direct interaction be-
tween electrons via the Coulomb coupling and polar-
electron —optical-phonon interaction (which is, of course,
fundamentally Coulombic in origin, arising from the
dynamical interaction between charge carriers and lattice
ions) via Frohlich coupling are perhaps the two most ex-
tensively studied many-body interactions in solid-state
physics. Theorists have usually studied these two in-
teractions in separate models without considering any
mutual overlap between the interactions. Electron-
electron Coulomb interaction has been traditionally stud-
ied in the context of electron-gas models neglecting pho-
nons altogether, whereas Frohlich interaction has been
studied in the context of polaron models where only one
electron interacts with the LO phonons. The electron-
gas model has been helpful in understanding Coulomb in-
teraction effects in metals, whereas the single-polaron
model has been used in understanding carrier properties
in ionic crystals and undoped semiconductors. The only
important phonons for metals are acoustic phonons and,
even though electron-phonon interaction in metals is a
very extensively studied subject, the difference in energy
scales between electrons (Fermi energy and plasma ener-

gy of approximately a few eV) and phonons (Debye ener-

gy of approximately a few meV) allows one to study the
electron-electron and electron-phonon interactions total-
ly separately. Screening of the electron-phonon interac-
tion in metals can be quite correctly treated by the static
screening approximation since electron energy scales are
orders of magnitude larger than the phonon energies.
Thus, in the context of metal physics a detailed study of
the interplay between dynamical electron-electron and
electron-phonon interactions is not relevant (which is
perhaps the reason why such a calculation has never been
carried out in the 3D EG). Similarly, in ionic crystals or
in undoped compound semiconductors where Frohlich
electron —LO-phonon interaction is important, electron-
electron interaction can be safely neglected because it is
essentially a one-electron situation.

Intermediate between these two extremes (i.e., metals
and ionic crystals) is the doped polar semiconductor situ-
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FIG. 1. (a) Electron self-energy in leading order in the
effective dynamical interaction. (b) Effective dynamical interac-
tion (hatched lines) V,z calculated in the RPA. Dashed lines
represent the Coulomb electron-electron interaction Vq, wiggly
lines the LO-phonon-mediated electron-electron interaction
Vph and the bubble the irreducible polarizability g . Panels (c)
and (d) show higher-order self-energy diagrams neglected in our
calculation.

ation. In these systems Frohlich interactin is weak but
non-negligible, and the presence of a finite density of free
carriers makes Coulomb interaction significant as well.
To the best of our knowledge, however, quasiparticle
properties of such a polar electron gas have never been
calculated treating electron-electron and electron-phonon
interaction on an equal footing. At low electron density
(when the plasmon has much lower energy than the LO
phonon), screening is typically neglected, whereas at high
electron density, the plasmon energy being much larger
than the LO-phonon energy, one uses a statically
screened Frohlich interaction. The problem, of course, is
that in doped semiconductors, electron-energy scales
(Fermi and plasma energies) are comparable to the LO-
phonon energy and the usual arguments made for metals
simply do not apply. Clearly, a complete analysis based
on treating electrons, phonons, and plasmons equivalent-
ly within the same approximation scheme is needed. We
provide such an analysis based on the leading-order per-
turbation theory.

The diagrammatic theory used in our analysis is shown
in Fig. 1. We obtain the electron self-energy from the
effective dynamical electron-electron interaction. The
effective interaction is obtained from the Coulomb
electron-electron and the phonon-mediated electron-
electron interaction in the bubble-diagram approximation
("the RPA"). The justification for calculating the elec-
tron self-energy in the leading order in the effective
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dynamical interaction is twofold: (1) In the "high-
density" (low r,-) limit, that is known to be a good ap-
proximation for the Coulomb interaction, whereas for
weak Frohlich coupling (valid for most polar III-V or II-
VI semiconductor materials, but not for ionic crystals),
usually the leading-order self-energy is adequate, and (2)
the higher-order diagrams [such as (c) and (d) in Fig. 1]
are simply intractable.

Our theory is strictly a zero-temperature theory, but
we expect our results to be approximately valid at finite
temperatures, provided the temperature is low enough
such that k2i T «E~, Picot o (where T, Ez, and coi o are the
temperature, the Fermi energy, and the LO-phonon fre-
quency, respectively). At a typical low electron density
of 2 X 10"cm in a GaAs system, the Fermi energy cor-
responds to a temperature of 80 K ( =E~/klan), whereas
A'coio/k&=427 K for GaAs. Thus at low densities our
results are quantitatively valid up to about 20 K, whereas
at high densities ( = 10' cm ), our results should be val-
id up to about 100 K.

This paper is organized as follows. In Sec. II we devel-
op the formalism of the electron self-energy for the
Coulomb interaction and for the Coulomb-plus-Frohlich
interaction in the two-dimensional case. We present and
analyze results for the self-energy and spectral function,
and we discuss the validity of the plasmon-pole approxi-
mation for two dimensions. In Sec. III we calculate the
momentum distribution function and the renormalization
factor for different densities. In Sec. IV we present the
electronic density of states and discuss its experimental
implications. In Sec. V we calculate various quasiparticle
properties, namely the effective mass and the damping
rate, discussing, in particular, the nonmultiplicative na-
ture of the total renormalization, even in the weak-
coupling limit, and the implications of the mode-coupling
(also called plasmon-phonon coupling) phenomenon. In
Sec. VI we study how the finite-thickness effects modify
the results of the preceding sections. We provide a con-
clusion in Sec. VII. Throughout this article we refer to
the situation having both Coulomb and Frohlich interac-
tions as the coupled system, whereas the situation with
just the Coulomb interaction is called the uncoupled sys-
tem.

II. EX.ECTRON SELF-ENERGY

Our model consists of a two-dimensional electron gas
(2D ECx) coupled to bulk dispersionless longitudinal-
optical (LO) phonons at zero temperature. Electrons in-
teract among themselves through the Coulomb interac-
tion and through virtual-LO-phonon exchange via the
Frohlich interaction. The Coulomb potential in two-
dimensional Fourier space is Vq =2me /qe, where e is
the optical (high-frequency) dielectric constant of the
semiconductor. The LO-phonon-mediated electron-
electron interaction is wave-vector and frequency depen-
dent.

V h(q, co)=M D (co) .

M is the 2D Frohlich matrix element given by (6=1
throughout this paper)

Gogo E~~2—
q q

2n.a(co,o)'"
q (2m)'

(2)

Vq

et (q, 67)

where gp is the time-ordered irreducible polarizability of
the 2D EG. For co) 0 the noninteracting polarizability
(the "bare bubble" ) can be easily calculated' to be

N F q —(a2 —1)1/2+(a2 —1)i/2x'(q ~)=—

where N is the 2D electron density, a+ = (co+i y ) /
qvz+q/2k+, and the complex square roots are to be
chosen to be the branch with positive imaginary part.
Subscript F corresponds to quantities at the Fermi energy
(i.e., Er, kr, and vz are the Fermi energy, the Fermi wave
vector, and the Fermi velocity, respectively). For co&0
we have g (q, co)=g (q, —co). e, (q, co) is the total dielec-
tric function, which has an electron and a phonon com-
ponent:

1 e~ /e'0
e, ( q, co ) = 1 —

V~g ( q, co ) +
6'~ /Ep 6) /copo

(6)

The electron self-energy of the coupled system can be ex-
panded in the effective interaction V,z, and, neglecting
vertex corrections it is given by

X,(k,E)= Jd q Idaho V,s(q, co)G (k —q, E —co),
(2m )

(7)

where G is the Green function for the noninteracting
electron gas,

G'(k, E)= 1

E g(k)+i y sgn(k—k~)—(8)

with g(k) =(k —k~)/2m. Equation (7) [Fig. 1(a)] is the

where co1O is the LO-Phonon frequency, ep is the static
dielectric constant of the sexniconductor,
a=e Qm/2coto(1/e —I/ea) is the so-called Frohlich
coupling constant, which is a dimensionless measure of
polar coupling in the material, m is the bulk (band-
structure) elfective mass, and

240'~
D (co)=

co copo+ l g

is the unperturbed LO-phonon propagator (y =0+
throughout this paper). More details about our basic
model can be found in the literature (cf. Das Sarma and
Mason in Ref. 6) and are not given here.

The effective electron-electron interaction is obtained
in the RPA (Ref. 9) [Fig. 1(b)] by summing all the bubble
diagrams:

V~+ V~h(q, co)
V,it(q, co)=

1 —[ V~+ V~h(q, co)]y (q, co)
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basic starting point of this work.
V ff given by Eq. (4) can be written as

V M
V ff(qco) = + z D (qco),

e (q, co)

where e(q, co) = 1 —V~g (q, co) is the purely electronic
dielectric function and

(9)

2coI ()
D(q co)=

2 2
co —coLo —2coioM y (q, co)/e(q, co)

(10)

X(k,E)= f d2q fdco[ V /e(q, co)]Go(k q, E——co),
(2n)

and

X „(k,E)=,f d'q fdco[~, D(q, co)/e'(q, co)]
(2~)'

XGo(lc —q, E —co) .

The first term is the Coulomb (or electronic) contribution
to the electron self-energy and represents the self-energy
obtained when the electron gas is not coupled to phonons
(uncoupled 2D EG). As with the dielectric function, we
reserve quantities without subscript for purely the elec-
tronic contribution (i.e., when Frohlich interaction is ab-
sent). The second term is called the phonon contribution
to the electron self-energy. This name is, however,
misleading, because Xpj, has contributions from electronic

I

is the renormalized phonon propagator. The decomposed
expression of Eq. (9) indicates that the electron self-
energy X,(k, E) of the coupled 2D EG can be written as

X,(k, E)=X(k,E)+X „(k,E),
where

screening and is not a well-defined self-energy since it
does not fulfill the usual analyticity requirements (i.e., its
imaginary part is not always negative above the Fermi
energy). The expression for X i, has been used as a start-
ing point for making simple approximations, for example,
by setting e(q, co) =e(q, O) one gets the static screening ap-
proximation, and by setting e(q, co)= 1 one gets the un-
screened approximation. The calculation of dynamical
XpI1 is not convenient from the numerical point of view
because the singularities of 1/e are much more complex
to treat than the singularities of 1/e, . Therefore, we cal-
culate X and X„X„& can be obtained from their
di6'erence. We emphasize that X z by itself is not a physi-
cally relevant (or mathematically well-defined) quantity in
the dynamical situation since it might give rise to "nega-
tive damping rate. " X depends only on the dimension-
less interparticle separation parameter r, =(as&~K )

az =e /e m being the efFective Bohr radius. On the
other hand, X, depends on the electron density (or r, ),
the phonon and electron energy scales (through coLo and
EF ), and the electron-phonon —coupling strength (through
eo and e„).

For most of our numerical calculations we use the pa-
rameters corresponding to GaAs: m =0.07m, (m, is the
free-electron mass), co=12.9, e„=10.9, and coLo=36.8
meV. We emphasize that GaAs is a weakly coupled
electron-phonon system (cc=0.07 for GaAs). Our results
for X are generally valid for the uncoupled 2D EG, while
our results for X, are representative of the weakly cou-
pled 2D EG—phonon system. From now on we will mea-
sure wave vectors in units of 2k+ and energies and self-
energies in units of 4E+ [i.e., g(k) =k —0.25].

In order to calculate X, we erst separate out the
Hartree-Fock or the exchange contribution:

XHF(k)—

0.5+@—p (0.5 —k)m+ f dq arccos
0.5 —k

@+0.5 k + (q)—p dq arccos
k —0.5 2kq

k &0.5

0(k &0.5 (12a)

(12b)

p=r, /&2~ .

For the remaining part we perform the standard" contour deformation in the complex ~ plane and obtain a line and a
pole contribution:

X(k,E)=X "(k)+X (k,E)+X (k,E), (13)

X (k,E)=p dq dq dy . —1 Re
e(q, iy) I [k'+ g(q) —E+ iy]' —(2kq)'I '" (14a)

p k +&(p)+2k& 1 Q(E —y) —Q( —y)
k'+V ~i 2k~ e(q, E —y )-I(2kq)' —[k'+ g(q) —y]'I '" (14b)

The complex square roots are taken on the branch with
positive imaginary part throughout this paper. B(x) is
the Heaviside step function. For k=0 the angular in-
tegrations are easily done, with the result

X (k=0, E)=pf dq f dy . —1
o o

~

e(q iy)

X "(k =0)=—pm/2, (15a)
X,(15b)

[g(q) E] +y—
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X (k =0, E)=pir I dq —1
0.5 6 q, E (15c)

density and verifies the sum rule

E g (19)

where s(E)=B(0.25+E)&0.25+E. The self energy X,
of the coupled 2D EG is obtained by replacing e by e, in
(14) and (15). The integrals were numerically evaluated
using adaptive and open Simpson integration. '2 The
singularities of e were treated by the replacement—Vqg ~—V y +i5 with 5=0.001. The insensitivity of
the final results to the specific value of 5 was checked. A
further check was not to rely on the broadening parame-
ter 5, but to use the correct particle-conserving form of
the electron polarizability suggested by Mermin

(1+i/air)y (q, ui+i/r)Xc@~ =
1+(i/cow)y (q, &0+i/v)/y (q, O)

with y given by (5) and the impurity-scattering time 7. re-
lated to the mobility p, by 1/r =e /m)Lt. We chose
p =5 X 10 cm /V s (which is not a particularly high value
by the standards of GaAs technology), so that 1/v=0. 3
meV. Making this correction or changing 1/'r by small
amounts did not lead to significant changes in X or X,.

Quasiparticle excitation energies of the system are ob-
tained from the self-energy X by solving Dyson's equa-
tion:

E +p=g(k)+ReX(k, E),
where E is measured relative to the chemical potential p,
which is deterinined by setting E=O and k=0.5 in the
above equation.

The single-particle spectral function is given by

A kE=— ImX(k, E)sgn( E)—
rr [E+p—g(k) —ReX(k, E)] +[ImX(k, E)]

(18)

Its peaks correspond to the nearly undamped solutions of
Dyson's equation. The spectral function is a probability

In all our calculations, the sum rule (19) is fulfilled within
one percent. The same error may be taken as a measure
of the numerical accuracy of our results.

Figure 2 shows the typical behavior of the self-energy
and spectral function for uncoupled (thin lines) and cou-
pled (thick lines) systems in a low-density sample
(N=2X10" cm, r, =1.5). The intersections of ReX
and the straight lines E+p —g(k) indicate the solutions
to Dyson's equation. For the uncoupled 2D EG and the
lowest wave vector (k=0.1) there are three solutions. If
we enumerate them according to increasing distance
from E=O, the first is the regular quasiparticle solution
(i.e., a bare particle surrounded by a cloud of virtual
plasmons and particle-hole excitations) which is slightly
shifted from the noninteracting value E =g(k). Since the
imaginary part is much smaller than the real part, the
quasiparticle is a we11-defined excitation of the system
and shows up as a sharp peak in the spectral function.
The second solution is damped and gives no contribution
to A. The third solution is only weakly damped and pro-
duces a second peak in the spectral function. This solu-
tion which is well studied in three dimensions, has been
called a plasmaron and is interpreted as a hole coupled to
a cloud of real plasmons. In three dimensions it has
been shown that the plasmaron remains a well-defined
excitation of the system even after a second iteration of
Dyson's equation. The oscillator strength of the plasma-
ron for the conditions of Fig. 2 is significant when corn-
pared to that of the quasiparticle excitation (0.14 versus
0.42). For very small wave vectors the plasmaron be-
comes undamped, giving rise to a 5 function in A. For
wave vectors k +0.15 we no longer have three solutions
to Dyson's equation, as the straight line falls below the
minimuxn of ReX. The plasmaron is then a long-
wavelength excitation. For the Fermi wave vector

-2
2 (d)

k =O.l

(e)
k=0,5

(&)
k=0.7

Z)=0.59

W=0.O5

Ei

0
E

,
~4~

2 -2 -I 0
E

0
E

FIG. 2. (a)—(c) Self-energy X(k,E) and (d)-(e) spectral function A {k,E) as functions of the energy E for three Axed wave vectors
k=0.1, 0.5, and 0.7. Thin (thick) lines correspond to the uncoupled (coupled) 20 EG. The electron density is X =2X 10" cm
Wave vectors are measured in units of 2k+ =2.2X 10' cm ', energies and self-energies in units of 4E+ =27.4 meV, and spectra1 func-
tions in units of (4EF) . The LO-phonon energy is co„o=1.35. The straight lines are given by E+p —((k), and their intersections
with ReX indicate the solutions to Dyson's equation. (ImX( is plotted instead of ImX for clarity of the drawings. [ImX=+ ~lmX~
for E &0(E&0).]
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(k=0.5) there is only one solution to Dyson's equation
and a strong peak (5 function) in A since the quasiparti-
cle at the Fermi surface is undamped. The oscillator
strength of the quasiparticle is called the renormalization
factor Z. In Sec. III we give details of its calculation. Its
value is considerably smaller than unity, indicating that
the satellites of the quasiparticle have significant oscilla-
tor strength. For k=0.7 there is also only one solution to
Dyson's equation, the regular quasiparticle solution.

In the 3D EG (Refs. 2 and 14) the finite frequency of
the long-wavelength plasmon co produces a logarithmic
singularity in ImX and a finite discontinuity in ReX at
E =g(k)+co for k) 0.5 (k&0.5). In the 2D EG the
long-wavelength plasmon frequency vanishes and the
above structure is not present. However, there are weak-
er singularities where ImX has a sharp peak and ReX an
abrupt step. The locations of these singularities are not
associated with characteristic frequencies, but are ap-
proximately given by the solution to the following cubic
equation,

u —k u +0.4r ku+0. 35r k +0.01r =0, (20)

in the interval k & u &4/3k (k )u) for k) 0.5
(k&0.5), with u =E+0.25. In obtaining Eq. (20) we
have imposed the phase-space restrictions for plasmon
emission and used the long-wavelength form of the
plasm. on dispersion. The location of the singularity is
then accurately given by (20) only when a very small
momentum transfer is involved [ I

k —(4k —3u )
'

I /3
«1], which is satisfied for k )0.4. It can be seen from
Fig. 2 that, for k=0.7, Eq. (20) gives a good account of
the singularity, while for k=0. 1 it does not.

For the low-density sample of Fig. 2 (N=2X10"
cm ) the phonon energy is much larger than the Fermi
energy (toLo=1.35, in units of 4EF) and the phonon
structure is almost decoupled from the electron structure.
The electron structure (IEI & 1) of X, is similar to that of
X, the main difference being a rigid shift of the real part
towards more negative values. The phonon structure is
confined to IEI )coLo and has the same behavior as that
of a polaron (a single electron coupled to phonons). For
long wavelengths, 1/e, (q, cu) is singular at cuLo, causing a
logarithmic singularity in ImX, and a finite discontinuity
in ReX, at E =g(k)+co„o for k)0.5 (k&0.5). This is
similar to the structure found in the uncoupled 3D EG
case due to the finite frequency of the long-wavelength
plasmon. ReX, has weak logarithmic singularities and
ImX, has finite discontinuities at E =+cuLO. This singu-
larity appears whenever the system has a dispersionless
mode. For this low electron density the mode coupling
between phonons and plasmons is very small (see Sec. V)
and the phononlike mode remains close to coLo for all
wave vectors q. For the lowest wave vector (k=0.1)
shown in Fig. 2, 3, has three peaks. Starting from E=O,
the first is the quasiparticle, at almost the same energy as
that of the uncoupled 2D EG. The second peak
represents the plasmaron, which is more damped and
closer to the Fermi energy than the plasmaron of the un-
coupled 2D EG. The third peak is a 6 function and cor-
responds to an undamped solution of Dyson's equation

06
( )t

(c) '

-At
k =O.l

A

N = 5xlO cm N= IO crn

0.0
E

1.0 -I.O -0.5
I

00
E

0.5 I.O

FIG. 3. (a),(b) Self-energy X(k,E) and (c),(d) spectral function
A (k, E) as functions of the energy E for k=0. 1 and electron
densities X=SX10"cm [(a) and (c)] and %=10' cm [(b)
and (d)]. Thin (thick) lines correspond to the uncoupled (cou-
pled) 2D EG. The units are the same as in Fig. 2, but for
N=SX10" cm, 2k+=3.5X10 cm ' and 4E~=68.5 meV,
while for 1V =10' cm, 2kF=S.OX10 cm ' and 4E+=137
meV.

around E = —
coLO

—0.25 analogous to the plasmaron. Its
oscillator strength, indicated by 8' in Fig. 2, is very
small. However, its signature appears in the density of
states, as we discuss in Sec. IV. For the Fermi wave vec-
tor (k=0.5), A, has two peaks: the undamped quasipar-
ticle at E=O, and a sharp peak around E = —bozo —0.25.
The coupling to phonons is rejected in a slightly in-
creased renormalization factor (Z, =0.59), a smaller os-
cillator strength of the quasiparticle satellite for
0( IEI (toLo, and the new structure for IEI )coLo. For
k=0.7 the singularity associated with the plasmon emis-
sion is slightly shifted towards the Fermi energy since
the phonon screening reduces the plasrnon frequency.
ReX, diverges at E =+co„~ and ImX, diverges at

(k)+~~o
For a given wave vector, with increasing electron den-

sity the main change in the uncoupled self-energy is in its
scale (decreasing with r, ), but its general behavior
remains unaltered (Fig. 3). Small changes in the self-
energy may, however, have important effects on the spec-
tral function if they occur near the solutions of Dyson's
equation. For example, change in the electron density
can result in a loss of the plasmaron solution.

The self-energy of the coupled system is strongly
dependent on the electron density. As the electron densi-
ty is increased, the LO-phonon energy becomes compara-
ble to the Fermi energy and the phonon structure moves
towards lower energies, mixing with the electron struc-
ture. With increasing X the mode coupling becomes
stronger (see Sec. V) and the singularities at E =+coLo
weaker because the coupled plasmon-phonon modes are
not dispersionless. This behavior is illustrated in Fig. 3,
where X and A are shown for two electron densities at a
given wave vector.

We conclude this section by discussing the plasmon-
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pole approximation. The single-plasmon-pole approxi-
mation (SPP) has been extensively used both in the 3D
EG (Refs. 2 and 15) and the 2D EG. ' ' Its use in the
three-dimensional case has been justified by detailed cal-
culations of Lundqvist, where the SPP and RPA results
were compared. We do not know of an equivalent
justification in the 2D EG; consequently, in Fig. 4 we
compare SPP and RPA results for the electron self-
energy and the spectral function. The real part of the
self-energy is obtained, after doing a one-dimensional in-
tegral, using the formulas derived by Vinter. ' The imag-
inary part is straightforward and can also be obtained as
a one-dimensional integral. The chemical potential and
the spectral function are given by (17) and (18), respec-
tively. From Fig. 4 it is clear that the agreement between
the RPA and SPP approximation is much poorer in the
2D EG than in the 3D EG case. In particular, the
singularity around E = —1.0 is an artifact of the softness
of the plasmon dispersion in the 2D EG and gives rise to
two spurious solutions of Dyson's equation (one un-
damped and the other damped). The SPP approximation
then overestimates the plasm aron, giving it spectral
weight for wave vectors at which it does not exist. The
plasmon-pole quasiparticle solution is displaced with
respect to the RPA solution (except for k=0.5) and is
completely undamped. The spectral weight of the vari-
ous 5 functions cannot be directly extracted from the
plasmon-pole results. We have recently provided' an ex-
perimentally testable failure of the SPP approximation in
the context of band-gap renormalization of two-
dimensional semiconductor systems.

The use of the RPA itself is less justified in two than in
three dimension, ' since the interactions effects (as we
can see from this work) are more important as we go to
lower dimensionality. Theoretical efforts have recently
been made to go beyond the RPA by incorporating

local-field corrections in a consistent and tractable
fashion. ' However, these calculations were performed
within the framework of the SPP approximation and,
thus, the numerical results cannot be trusted. Any im-
provement of the RPA should start from the RPA itself
and not from poor approximations to it. For the
electron-phonon interaction the SPP approximation runs
into the difficulty that it cannot include Landau damping
for large-wave-vector plasmons.

III. MOMENTUM DISTRIBUTION
AND RKNORMALIZATION FACTOR

The momentum distribution

n(k)= f dE A(k, E) (21)

is shown in Fig. 5 for the uncoupled (n) and coupled (n, )

systems for various electron densities. These curves ex-
hibit the expected features, with states above the Fermi
surface (k )0.5) occupied and states below the Fermi sur-
face (k (0.5) unoccupied. The departure from the nonin-
teracting case becomes stronger as the density is de-
creased. Comparing the momentum distribution n of the
uncoupled 2D EG to the three-dimensional results of
Lundqvist, we see that for an equivalent r, the distribu-
tion function in the 3D EG is closer to the noninteracting
momentum distribution, indicating that many-body
efFects are more significant in two dimensions than in
three.

For a given electron density n, is very close to n, indi-
cating that the inclusion of the electron-phonon coupling
has a very small efFect on the momentum distribution for
weak electron-phonon coupling. However, this small
change is not uniform over all wave vectors. For low
densities (X =10" cm ), n and n, are almost equal, ex-
cept in the neighborhood of the Fermi surface, where n,

k =0.5

I.O =.

0.8

-2

(c) k=0,3 4 =0.5
n 0.6—

A

0.2—

0 I

FIG. 4. (a),(b) Self-energy X(k,E) and (c),(d) spectral function
A (k,E) as functions of the energy E for two fixed wave vectors
k=0.3 and 0.5. Solid lines correspond to the RPA results and
dashed lines to the plasmon-pole results. The units are the same
as in Fig. 2. The electron density is N = 10" cm and
4EF=13.7 meV. The arrows represent 6 functions, and their
heights do not indicate the spectral weights.

0.0
O.O 0.25 0.5

k

0.75 l.O

FIG. 5. Momentum distribution for the uncoupled (thin
lines) and coupled (thick lines) ZD EG. Dashed lines corre-
spond to N=10" cm, solid lines N=2X10" cm, and
dashed-dotted lines N=10' cm . The step function of the
noninteracting momentum distribution is indicated by a thin
solid line. Wave vectors are measured in units of 2kF.
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is slightly closer to the noninteracting case, showing a
sharper discontinuity at the Fermi surface. For the other
two densities of Fig. 5, n is closer than n, to the nonin-
teracting distribution, except in the neighborhood of the
Fermi surface, where their behavior is interchanged.

The size of the discontinuity at the Fermi surface is
given by the renormalization factor Z. It can be easily
seen ' that Z corresponds to the oscillator strength of

I

Z= I—
k =0.5, E=O

(1 yL yP) —1 (22)

As with the self-energy, we write the partial derivative
as the sum of a line and a pole contribution,

the undamped quasiparticle at the Fermi surface and can
be calculated as

OQ QQ +lyJ =p dq dy Re
0 o e(q, iy) [(q +iy) q]—[(q +iy) q]—' (23)

2 +1
arctan

1—arctan for P& 1, (24a)
11~=p dq

0 e(q, 0) q(1 —
q )' P P+1 —g 1+/

P+1+g 1 —g
ln for P(1,

where P=r, l&2 for the uncoupled 2D EG and
P= ( r, /&2 )(role ) for the coupled 2D EG,
/=~1 —P ~'~. The renormalization factor can also be
calculated by taking numerical derivatives in Eq. (14).
Both methods yield the same Z with 0.5%, giving anoth-
er estimate of the numerical accuracy of our results. In
Table I we give Z and Z, for different electron densities.
These values are consistent with the graphs of Fig. 5.
For the interval of densities considered, Z, is always
greater than Z and the difference increases as we go to
lower ¹

l

(within 2%) to the area below E=O for each of the in-
teracting cases. For the uncoupled 2D EG and the
lowest density considered (%=10" cm ), there is an
important departure from the noninteracting case. A
long tail develops and, consequently, the DOS at the Fer-
mi energy is considerably reduced (by about 42%) from
its noninteracting value. The peak around E = —1.0 is
associated with the plasmaron. Since the plasmaron is
undamped in a narrow energy region, the peak is very
sharp. For X =2X10" cm the results are similar, but
the tail is not as long, g(0)=0.65, and the plasmaron

IV. DENSITY OF STATES

The density of states (DOS) is given by

d kg(E)=2f A(k, E) .
(2m )

For a noninteracting 2D EG we have

0 if E (—0.25,
min. =go if E )—0.25 .g„;(E)=

(25)

(26a)

(26b)

0,8-

g 0.6— tW

I

Figure 6 gives the DOS for the uncoupled (g) and cou-
pled (g, ) systems, together with the DOS of the nonin-
teracting 2D EG (g„;). In all cases the DOS is normal-
ized with respect to g . The shaded area represents the
occupied states of the noninteracting 2D EG and is equal

0.2—

l

-0.5
E

OO 05

N(10" cm )

1

2
4
7

10

2.2
1.5
1.1
0.8
0.7

Z

0.503
0.574
0.646
0.701
0.734

0.522
0.591
0.657
0.707
0.737

TABLE I. Calculated values of the renormalization factors Z
and Zr ~

FICz. 6. Density of states for the uncoupled (thin lines) and
coupled (thick lines) 2D EG. Dashed lines correspond to
N =10"cm, solid lines N =2X 10"cm, and dashed-dotted
lines N =10' cm . The step function of the noninteracting
DOS is indicated by a thin solid line. The shaded area
represents the occupied states in the noninteracting 2D ECx.
Energies are measured in units of 4EF and densities of states are
measured in units of the noninteracting value g =2.9X10'
cm eV '. In our units, the LO-phonon energy for the above
densities is 2.69, 1.35, and 0.27, respectively.
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peak is smaller and closer to the Fermi energy. For the
highest density considered (X= 10' cm ) the situation
is closest to the noninteracting case, g(0)=0.80, and
there is no observable plasrnaron peak in the low-energy
tail.

When the electron-phonon interaction is turned on, the
change from g to g, is strongly dependent on the electron
density. For N =10" cm the phonon structure is far
from the Fermi energy (~E~ ) to„o=2.69) and is not visi-
ble in Fig. 6. At low densities the LO-phonon frequency
is much larger than the characteristic electronic frequen-
cies and the electron phon-on interaction is effective in
screening the electron-electron i nteraction. This is
reAected in a smaller low-energy tail, an enhancement of
the DOS at the Fermi energy [g, (0)=0.61], and the shift-
ing of the plasmaron peak towards the Fermi energy.
For N =2 X 10" cm the phonon structure is visible in
the interval —

cuLO
—0.25 ~ E ~~„0 and its sharp peak is

associated with the new solution of Dyson's equation in
the coupled 2D EG. The plasmaron is more damped
than in the uncoupled 2D EG and no longer gives a peak
in the DOS, but, instead, a cusp. The DOS at the Fermi
energy is slightly enhanced with respect to the uncoupled
case [g, (0)=0.68]. For X = 10' cm, g and g, are very
similar, indicating that at high densities the Coulomb in-
teraction screens the electron-phonon interaction.

To the best of our knowledge, a direct observation of

V. EFFECTIVE MASS AND DAMPING RATE

The effective mass is defined by

k =0.5

(27)

In leading-order perturbation theory the quasiparticle
energy is given by

Z(k) =g(k)+ReX(k, g(k)),

and, then,

(28)

m* +OX m BX
m BE k Bk k =-0.5, E =0

(29)

The momentum derivative does not give a pole contribu-
tion, so that I is still given by (24). The line contribu-
tion is

the plasmaron in the 3D EG has not yet been achieved.
However, in the 2D EG the plasmaron peak of the DOS
is considerably sharper than the corresponding three-
.dimensional one and its observation in tunneling or pho-
toemission experiments is expected to be easier.

00 oo 2qI =p dq dy . Re
o 0 e(q, iy) [(q +iy) q][(—q +iy) q]'— (30)

The effective mass for interacting electrons in the sur-
face inversion layer of silicon has been calculated by
Vinter' using the plasmon-pole approximation and a
diff'erent definition than (29), and by Ting, Lee, and
Quinn ' using the RPA and Eq. (29). The RPA results
are in good agreement with the experimental values, and
this agreement becomes even better after the assumptions
of the ideal 2D EG are relaxed by including finite thick-
ness, multisubband occupation, etc. in the theory.

Figure 7 gives m*/m for uncoupled (thin lines) and
coupled (thick lines) systems as a function of the interpar-
ticle separation parameter r, . The behavior for the un-
coupled 2D EG js similar to that of the 3D EG. How-
ever, for equivalent r, the 2D EG has a larger mass
correction ( ~

m ' —m
~
/m ) than the 3D EG, indicating

again that the many-body eFects are more important in
two than in three dimensions. The inclusion of the
electron-phonon coupling causes a small departure from
the previous case, reducing the mass correction for low
(r, ) 1.4) and high (r, (0.7) densities and enhancing the
mass correction at intermediate densities. The small
departure of the coupled results from the uncoupled ones
is an eQ'ect of the weak-electron-phonon coupling in
GaAs. The departure becomes increasingly more impor-

lOO IO

N(cm ~)
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l. lO

I.OO
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FIG. 7. ES'ective mass for the uncoupled (thin lines) and cou-
pled (thick lines} 2D ECi as a function of the dimensionless in-
terparticle separation parameter r, . On the upper horizontal
scale some values of the electron density X are indicated. (The
relationship between r, and X is given in the text. )
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tant as we go to higher couplings, as we discuss in Sec.
VII.

The damping rate is given by the imaginary part of the
quasiparticle self-energy I (k) = ~lmX(k, g(k)) ~. The
quasiparticle lifetime [21(k)] ' and the inelastic mean
free path li, =k/2I I (k) are of special experimental in-
terest. Figure 8 gives I (k) for uncoupled and coupled
2D EG's as a function of k for low and high electron den-
sities. At the Fermi surface the quasipaI'ticle is always
undamped and I (0.5)=0. For the uncoupled 2D EG
there are two kinds of processes that may cause scatter-
ing of the quasiparticle: excitation of electron-hole pairs
and excitation of plasmons. The former is the dominant
scattering mechanism for low k; the latter turns on at a
threshold wave vector k„giving rise to a sharp increase
of I (k), with k, =q, +0.5 (q, being the minimum
momentum transfer, where the plasmon dispersion curve
enters the electron-hole continuum). The main difference
between the low- and high-density cases for the uncou-
pled 2D EG appears in the scale of the damping rate
when expressed in units of 4Ez (in absolute units, howev-
er, this difference is small).

For the coupled 2DEG the quasiparticle can be scat-
tered either by the excitation of electron-hole pairs or by
the emission of a coupled plasmon-phonon (co+, co )

mode. For low densities the coupling is weak (lower
inset in Fig. 8), and the energies of the coupled modes
(co+ and co ) are close to those of the uncoupled ones
(coLo and co~ ). The first step corresponds to the co

emission threshold and is located below the k, of the un-
coupled 2D EG because co (co . The second step corre-
sponds to the co+-emission threshold and occurs at a
wave vector slightly larger than (toto+0. 25)'~ because
co + P coLQ For high densities there is a strong
coupling(upper inset in Fig. 8), and the threshold for the
co emission occurs at a wave vector slightly smaller than
(coLo+0.25)', which the co+-emission threshold is lo-
cated to the right of the k, for the corresponding uncou-
pled 2D EG.

For a given k the damping rate is calculated at the un-
perturbed energy g(k) instead of the quasiparticle energy
coming from Dyson's equation. However, the difference
between these two energies is small and has no important
consequence in the 6nal results. We emphasize that the
quasiparticle picture is meaningful over the whole range
of wave vectors in Fig. 8. With increasing k the quasi-
particle becomes more damped as the thresholds are
crossed, but it remains as a well-defined peak of the spec-
tral function.

.I2- o' —0.60
VI. FINITE- THICKNESS EFFECTS
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Until now we have been working in the ideal model of
a 2D EG interacting with 3D LO phonons. However, the
electrons in a quantum well (QW) are not confined to a
2D plane and their mave functions have a finite width of
the order of the well width. This effect weakens the
strength of the electron-electron interaction and is usual-
ly taken into account' by replacing the Coulomb poten-
tial V by V f, where f is the subband form factor.
For an infinite square-well potential of width d with only
the lowest subband occupied, the form factor is given by

0.02- —O. l
8, d+vr 4n(1 —e ~)

(31)2d2+4 2 8 qd 2d2( 2d2+4 2)

0.00
0.0

I

0.5
I

I.O

0.0
0.0

l.5
0.5 I.O

2.0

FIG. 8. Damping rate I {k} for the uncoupled (thin lines) and
coupled (thick lines) 2D EG given for two electron densities.
The insertions describe the mode coupling in the q-u plane.
The two upper curves, the upper inset, and the vertical scale on
the left correspond to N = 10' cm . The two lower curves, the
lower inset, and the vertical scale on the right correspond to
N =2X 10" cm . Wave vectors are measured in units of 2kF',
energies and damping rates are measured in units of 4EF. On
the upper horizontal scale some values of the electron kinetic
energy gik)=k —0.25 are indicated. For N=2X10" cm
and k&0.5 the coupled and uncoupled results are not distin-
guishable on the scale of the figure. For X= 10' cm,
2kF=5X10 cm ' and 4E+=137 meV; for X=2X10" cm
2k+=2. 2X10 cm ' and 4E+=27.4 meV.

f is always smaller than unity and approaches 1 in the
small-qd limit. In this section wave vectors q are given in
inverse length instead of in units of 2k~. The weakening
of the Coulomb interaction can be seen in the uncoupled
2D EG by a decrease in the mass correction (Fig. 9) and
in the damping rate (Fig. 10) when we go to wider well
widths for a given electron density.

The finite thickness of the QW also modifies the LO-
phonon spectrum and, consequently, the electron-phonon
interaction. A simple approximation which is widely
used (3D-phonon approximation) consists of ignoring
the change in LO-phonon spectrum and multiplying the
Frohlich coupling constant by the subband form factor
(the two-dimensional M~ is replaced by M f ). The
electron-phonon interaction is then reduced in the saIne
way as the Coulomb interaction. In particular, in the
limit of small mell widths this approximation reproduces
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The interface slab modes arise from the symmetric and
antisymmetric combinations of the individual modes at
the two interfaces of the QW. These modes have a slight
dispersion, with their energy varying between the LO-
and TO-phonon energies of the semiconductors inside
and outside the QW. The interface modes decay ex-
ponentially as one moves away from the interface accord-
ing to exp( —qz), where q is the magnitude of the in-plane
wave vector and z is the distance from the interface.
Both interface and bulk slab modes have been experimen-
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N=2xlO crn
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FIG. 9. Effective mass for the quasi-2D EG as a function of
the dimensionless interparticle separation parameter r, for three
well widths. Thin solid lines correspond to the uncoupled sys-
tem, thick solid lines to the coupled system in the 3D-phonon
approximation, and thick dashed lines to the coupled system in
the slab phonon model. For each well width the maximum elec-
tron density shown is that for which the second subband be-
comes occupied. The units are the same as in Fig. 7.

030—

0.20—

the model of a 2D EG coupled to 3D LO phonons.
A more realistic approach is to take into account the

e6'ects of the confining geometry in the LO-phonon spec-
trum. This has been the subject of extensive studies.
Most of these treatments ' rely crucially on the contin-
uum model or the Lorentz relation, which are not valid
close (of the order of the lattice constant) to the inter-
faces. The corresponding results are then valid only in
the long-wavelength limit and not for very thin QW's.
We will also take this approach and follow Wendler and
Pechstedt (WP) in their study of the single quantum
well (or double heterostructure), where the LO-phonon
spectrum is modified by the inclusion of the bulklike
confined slab modes and the interface slab modes (conse-
quently, this is called the slab phonon model). The form-
er ones, which from now on we will refer to as the bulk
slab phonons, are confined within the well, and the
boundary condition of zero parallel ion displacement at
the interfaces gives a quantization condition for their z-
component wave vector:
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where m is a positive integer and d is the well width. The
bulk slab modes are hence discrete and the magnitude of
their three-dimensional wave vector Q = (q, q, ) cannot be
smaller than m/d. Ignoring the slight dispersion of the
nonconfined LO phonons all the bulk slab phonons are
degenerate at uzi. The bulk slab modes with odd m are
symmetric and those with even m are antisymmetric with
respect to a reAection about the midplane of the well.

FIG. 10. Damping rate I (k) of the quasi-2D EG for X= (a)
2X 11"cm and (b) 10' cm . Thin solids lines correspond to
the uncoupled system, thick solid lines to the coupled system in
the 3D-phonon approximation, and thick dashed lines to the
coupled system in the slab phonon model. The units are the
same as in Fig. 8. The mean free path is obtained from the di-
mensionless values k and I (k) and from the Fermi wave vector
k„=V2mX by li =(I/2kF)[k II'(k)].
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tally observed via Raman scattering in thin GaAs quan-
turn wells.

The simultaneous inclusion of the LO-phonon-
confinin effects bt:yond the slab phonon model ' and
the many-body effects that we have discussed in the
preceding sections is a very difficult problem that we will
not address in this paper. However, Akera and Ando
have recently shown that because of the large gap be-
tween the optical branches in the GaAs/AIAs case, the
boundary conditions of zero parallel ion displacement at
the interfaces are appropriate, indicating the applicability
of the slab phonon model in our case. Moreover, the slab
phonon model has recently been applied to the problem
of hot-electron relaxation in narrow GaAs jAI Ga, As
QS's giving a good account of the available experiments.

The Frohlich coupling of the quasi-2D electrons to the
bulk slab phonons is obtained in a similar way as the
strictly 2D case, and is given by M P, where, for the
lowest electron subband, the structure factor p~ is given
by

p= gp
m=1

(33)

256 qd 1
odd mpm, ~2 q

2d2 +~2~ 2 ~ 2(4 ~ 2)2

0, evenm .

(34a)

(34b)

Since the electron wave function of the lowest subband
is symmetric, the electron-phonon matrix elements (and,
consequently, the structure factor p ) are nonzero only
for symmetric modes (odd m). In contrast to the form
factor fq of Eq. (31), pz vanishes in the small-qd limit in-
stead of approaching unity. Thus, for very thin quantum
wells the bulk-slab-phonon results do not reproduce the
model of a 2D EG coupled to 3D phonons. P rapidly
decreases with m since the nodes in the ion displacement
tend to weaken the coupling strength. The contribution
of the m = 3 mode is already negligible when compared to
that of the m = 1 mode.

The symmetry of the electronic wave function in a
symmetric rectangular well indicates that there is cou-
pling only with the symmetric interface phonons (s+ and
s modes in WP s notation). Since the dispersion rela-
tions co,+(q) and the coupling constants M, + of the sym-
metric interfaces modes are rather complicated and since
we are closely following %'P's notation, we will not ela-
borate on them in this paper. The properties of the inter-
face phonons depend on the semiconductor inside the
QW as well as on the one outside. For the latter we
choose Ga075A1025As, whose parameters are coLQ 46 7
meV, e' =10.2, and so=11.0.

With the coupling constants Mq of the slab modes, we
can again use the formalism of Sec. II to calculate the
electron self-energy of the coupled system, the spectral
function, the quasiparticle properties, etc. In this section
we concentrate on the quasiparticle properties. Figure 9
gives the effective mass as a function of electron density
and well width for the uncoupled and coupled quasi 2D
EG (the latter calculated in the 3D-phonon approxima-
tion as well as taking into account the slab modes). From

these graphs we conclude that the main effect of the finite
width is a reduction of the Coulomb interaction. Except
for very narrow QW's (thinner than 20 A), the diiT'erence
between 2D and quasi-2D uncoupled results is always
larger than the corrections obtained by the inclusion of
the electron-phonon interaction (in any approximation).
For wide QW's (thicker than 100 A), the 3D-phonon ap-
proximation gives almost the same results as these with
the slab modes. Below 100 A the 3D-phonon approxima-
tion overestimates the phonon correction, and this
discrepancy increases as we reduce the well width.

For low densities [Fig. 10(a)] and a very thin (20 A)
QW the damping rate for the slab phonon model (dashed
thick lines) is between the results of the uncoupled quasi-
2D EG (solid thin hnes) and of the coupled quasi-2D EG
in the 3D-phonon approximation (solid thick lines), indi-
cating again that the 3D-phonon approximation overesti-
mates the LO-phonon contributions in narrow wells. We
point out, however, that for very thin wells the continu-
um approximation inherent in our theory may break
down. In the damping-rate curve of the slab phonon
model (Fig. 10) the emission threshold of various modes
can be seen: the plasmonlike mode co (between the steps
of the uncoupled quasi-2D EG and of the 3D-phonon ap-
proximation), the m, mode [around g(k)=&@To], the
bulk slab modes [around g(k) =coLo], and the co, + mode
[around g(k)=coLo]. It is important to notice that the
scattering of the m, + mode dominates over the scattering
of the bulklike modes. However, the total damping rate
is close to that of the 3D-phonon approximation. The
necessary conditions for the interface modes to dominate
the bulklike ones are thin wells and low electron densi-
ties. This is obvious from the fact that the interface
modes decay as exp( —qz) as one moves away from the
interface. Thin wells keep z small, while low densities
keep kF, and therefore, the momentum transfer q, small.
For a thick QW the 3D-phonon approximation gives re-
sults very close to those of the slab phonons. In the
damping rate with the slab modes the threshold for the
co, +-mode emission can be seen around g(k) =coLo.

For high densities [Fig. 10(b)] the 3D-phonon approxi-
mation is good for all well thicknesses. The thresholds
for the co,+-mode emission, which are below the k, of the
plasmon emission, do not give rise to sharp steps in I (k)
and cannot be easily resolved, as in the low-density case.

For very energetic electrons the mean free path is
roughly linear in the kinetic energy g. For N=2X10"
cm and a well width of 20 A, taking into account the
slab modes, lk goes from 260 to 470 A when g goes from
2eLQ to 4eLQ, while for a 150-A-thick well the change in

0
the same energy interval is from 390 to 710 A. For
% =10' cm in the interval 2mlQ —4mLQ, lk goes from
180 to 260 A for a 20-A-thick well and from 300 to 450 A
in a 150-A-thick well.

Sawaki has calculated the damping rate in a superlat-
tice and found that the scattering rate is reduced by in-
creasing the well width in the 3D-phonon approximation,
and the opposite behavior in the slab phonon model. On
the other hand, we always have a reduction of the damp-
ing rate by increasing the well width. There are, howev-
er, important differences between Sawaki's work and
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ours: the former is a one-electron problem, whereas we
consider the total damping rate where plasmon and
quasiparticle scatterings are very important. Also, the
single QW has a different LO-phonon spectrum from that
of a superlattice.

Finite-thickness effects do not significantly modify our
previous results for the density of states. This is shown in
Fig. 11, where the DOS is given for N=2X10" cm
and various thicknesses in the 3D-phonon approxima-
tion.

VII. CONCLUSIONS

I.O—

0.8—

g 0.6—

0.4—

O.P—

O,O -I.O O.O O.S

FIG. 11. Density of states for the coupled quasi-2D EG with
X =2X 10"cm and various well widths (d) in the 3D-phonon
approximation. Solid line corresponds to d=0. Results for

0d=20 A cannot be distinguished from those of the 2D EG on
the scale of the 6gure. Dashed-dotted line corresponds to d= 80
0

~
0

A and dashed line to d=150 A. The units are the same as in
Fig. 6.

In this paper we have given our calculated results for
the low-temperature quasiparticle properties of a GaAs
microstructure-based 2D EG taking into account both
electron-electron and electron-phonon interaction effects
within the leading-order (in the dynamical effective in-
teraction) self-energy (both electron and phonon) dia-
grams. Our results should be directly (and quantitatively)
applicable to 2D EG systems in GaAs quantum wells and
heterojunctions. Our theory includes all the important
dynamical effects including dynamical screening,
plasmon-phonon —mode coupling, degeneracy, slab and
interface phonon modes, and finite thickness of the elec-
tron gas. Even though the theory is only a leading-order
(in the effective interaction) theory, it should be quite val-
id in GaAs-based 2D EG because GaAs has very weak
Frohlich coupling and its low effective band mass and
high-frequency dielectric constant (e ) make the
effective r, parameter quite small. Our theory based on
the RPA is exact in the limit of e «1 and r, «1, and,
for GaAs, a =0.07, whereas r, = 1.0 for X =4 X 10"
cm . Our experience from metal physics enables us to
trust RPA self-energy results for electron-electron in-

teraction even for r, ~1.0. On the other hand, a being
very small in GaAs, electron-phonon vertex corrections
are inherently negligible and our leading-order calcula-
tion should be adequate. Thus we speculate that our cal-
culated quasiparticle properties should be quantitatively
valid in GaAs down to N =10"cm (r, =2).

An important question is whether the plasmon struc-
ture ("plasmaron") and the similar phonon satellite found
in our calculated spectral function (and, therefore, in the
density of states) is a spurious consequence of our specific
approximation scheme. There is no doubt that these
structures exist within the RPA used in this paper-
plasmarons in a 3D EG have been extensively discussed
in the literature. Unfortunately, there is no systematic
and controlled approximation scheme for doing calcula-
tions beyond the RPA because the diagrams involved
[shown as (c) and (d) at the bottom of Fig. 1] are simply
intractable. A definitive answer to the question of the ex-
istence of these additiona1 spectral structures beyond the
RPA, therefore, cannot be provided at the present time.
One can, however, convince oneself that the structures
exist even if one calculates the self-energy self-
consistently, i.e., one uses the fully renormalized Green
function G in Eq. (7) instead of G . This is done by re-
peatedly iterating Eq. (7) and the Dyson's equation,

G=G +G XG,
simultaneously. Thus diagrams of the sort shown as (c)
in Fig. 1 preserve the plasmaron and the phonon satellite
structure. Whether vertex corrections [shown as (d), for
example, in Fig. 1] wash out these satellite structures or
not is not known and is beyond the scope of this study.

We believe that our theoretical results should be quali
tatiUely valid in all polar 2D EG systems provided r, and
a are not too large. For stronger electron —LO-phonon
coupling there is a problem arising from the unknown
contributions made by the vertex corrections. We em-
phasize that there is no Migdal's theorem for polar cou-
pling because electronic and phonon energy scales are
comparable (no problem arises from the low dimensional-
ity; however, Migdal s theorem is valid in a 2D EG as
long as co„h/Ez is very small).

In order to get an idea about how our results would be
modified for higher values of polar coupling, we show in
Figs. 12 and 13 our calculated numerical results for the
quasiparticle spectral function [Eq. (18)] and the effective
mass [Eq. (27)] for higher values of the Frohlich coupling
e, keeping all other parameters in the calculation exactly
the same as before. We achieve this by suitably adjusting
the static dielectric constant eo which enters only through
the definition of a, and not any other parameter of the
theory. Thus, even though these results with higher
values of a do not correspond to any real material, one
can get some idea about trends in quasiparticle properties
with an increase in electron-phonon coupling by compar-
ing results in Figs. 12 and 13 with the previous results
in this paper (for which a =0.07). One can clearly
see that various features associated with electron-
phonon —coupling effects as discussed earlier are now
more accentuated, and results depart even more from the
multiplicative renormalization result. With increasing a
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FIG. 12. Spectal function for the coupled 2D EG with
1V =2 X 10" cm and various coupling constants (u). Solid
line corresponds to ca =0.07 (appropriate for GaAs), dashed line
to a=0.2, and dotted line to a=0.3. The units are the same as
in Fig. 2.
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the electron structure of the self-energy is reduced with
respect to the phonon structure, and the spectral function
is dominated by the quasiparticle peak and the peak cor-
responding to the phononlike solution of the Dyson equa-
tion (which moves towards smaller energies with increas-
ing a). We should, however, caution that, for higher a,
effects of electron-phonon vertex corrections may very
well be significant. We speculate that our results are ap-
proximately valid for a & 0.25.

Comparison between our calculated results and experi-
ment is difFicult, due mostly to the paucity of relevant ex-
perimental results. Most of the e6'ective-mass measure-
ments (e.g. , cyclotron resonance, Shubnikov —de Haas) are
in the presence of strong magnetic fields and it is not at
a11 clear to what extent a zero-magnetic-field theory is
applicable to those situations. Besides the measured
phonon-induced effective mass, renormalization in GaAs
microstructures is quite small (l%%uo or less) and is totally
consistent with our calculated results. We have recently
applied' this theory to the problem of band-gap renor-
malization in GaAs quantum wells, and the agreement
with experimental results is very good. Finally, some
preliminary measurements of IneIastic mean free path in
6aAs microstructures are now available and our
theoretical results are consistent with measured values.
The structures in which those experiments are carried
out are quite complicated and the direct applicability of
our theory to these experiments is questionable.

There are a number of predictions in this paper which
are, in principle, experimentally testable. EfFective mass
can be obtained from specific-heat measurements,

FIG. 13. Effective mass for the coupled 2D EG and various
coupling constants (a). The units are the same as in Fig. 7.

whereas tunneling studies could give the electronic damp-
ing. The interesting structure in the electronic density of
states is another experimentally testable feature of the
theory.

In summary, we have calculated the quasiparticle
properties of a coupled two-dimensional electron-LO-
phonon system by treating the Coulomb and Frohlich in-
teractions on equal footing. Our theory includes the in-
teraction between electrons, LO phonons, and plasmons
within the RPA (for dynamical screening and phonon
self-energy correction) and within the leading-order self-
energy diagram in the effective total interaction. Our re-
sults should be quantitatively valid for GaAs-based 2D
EG in quantum wells and heterojunctions. We find that
Coulomb and Frohlich renormalizations are nonmultipli-
cative. We also find interesting structure in the calculat-
ed density of states that should be experimentally observ-
able. On a general, qualitative level, our results are valid
for a 2D EG interacting with Einstein phonons via a
long-range interaction.
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