PHYSICAL REVIEW B

VOLUME 40, NUMBER 14

15 NOVEMBER 1989-1

Empirical potential-based Si-Ge interatomic potential
and its application to superlattice stability

Tomonori Ito, K. E. Khor, and S. Das Sarma
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742-4111
(Received 6 April 1989)

A new empirical interatomic potential for Si-Ge alloy system is proposed based on the Khor—Das

Sarma universal interatomic potential for tetrahedrally bonded materials.

We modify the

Khor-Das Sarma potential and check its validity by calculating the elastic constants of Si and Ge
using the homogeneous-deformation method. The feasibility for applying this potential to binary
systems is tested by investigating pressure-induced phase transitions associated with isotropic
compression and tetragonal distortion. The new empirical potentials for Si, Ge, and Si-Ge are used
to calculate thermodynamic properties such as lattice parameters, bond lengths, and excess energies
for Si-Ge superlattices. The calculated results are shown to be in good agreement with available ex-
perimental data. We also calculate the phonon dispersion for bulk Si. The newly obtained empiri-
cal potentials for Si, Ge, and Si-Ge should be useful for investigating Si-Ge binary systems.

I. INTRODUCTION

Empirical interatomic potentials for Si have been ex-
tensively used for investigating many aspects of semicon-
ductor properties such as microcluster formation,!?
amorphous structure formation,>* epitaxial growth,>®
and surface reconstructions.” Although attempts at con-
structing such a potential for specific applications have
met with some success, most of the empirical potentials
used in these studies fail to predict correctly the relative
stability of various structures and give quantitatively
wrong results even for simple elastic constants.

Khor and Das Sarma® have proposed universal intera-
tomic potentials for elemental semiconductors based on
the idea that bonding energies of many substances can be
modeled by pairwise interactions. The interatomic po-
tentials for C, Si, and Ge provided a global fit to cohesive
energies for various structures. Furthermore, using this
Si interatomic potential, reconstructions on the Si(100)
and Si(111) surface have been studied. The calculated re-
sults are in good agreement with experiment and ab initio
total-energy calculations.® ! These results imply that the
Khor-Das Sarma potential gives the right order of stabil-
ity for various atomic configurations with large bond-
angle distortions, which is one of the more important cri-
teria for applying the interatomic potential to binary sys-
tems.

In this paper, we propose a new interatomic potential
for a binary system of elemental semiconductors based on
the Khor-Das Sarma potential. The new potential is ob-
tained by modifying the bond-bending term to calculate
the elastic constants for Si and Ge wusing the
homogeneous-deformation method. To check the feasi-
bility of applying the modified potentials for Si and Ge to
the binary system, a pressure-induced phase transition
with respect to isotropic compression and tetragonal dis-
tortion are investigated. In particular, energy changes as
functions of atomic volume and axial ratio are calculated
and discussed. Finally, the modified potential is applied
to the Si-Ge superlattices such as Si;Ge, and Si;Ge; using
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Si, Ge, and the newly determined Si-Ge interatomic po-
tentials. The versatility of these interatomic potentials is
established by calculating equilibrium states of these su-
perlattices.

II. POTENTIAL MODIFICATION AND ELASTIC
CONSTANTS FOR Si AND Ge

Cowley!! pointed out that none of the empirical poten-
tials, which have been proposed by Stillinger and
Weber, 12 Tersoff,!* and Biswas and Hamann,!* is com-
pletely satisfactory in the calculation of elastic constants,
in spite of their success in describing structural proper-
ties. This indicates that the calculation of elastic con-
stants is a severe test for the reliability of interatomic po-
tentials.

Elastic constants can be determined using either of the
following two methods. One is a static treatment, i.e., the
homogeneous deformation method, where ions are locat-
ed on the lattice points within the adiabatic approxima-
tion. The other is a dynamical treatment, i.e., long-wave
phonon velocity method, where ions are displaced around
the lattice points. It was shown by Wallace!® that, in
general, calculations of elastic constants using these two
methods are essentially equivalent. For simplicity, we
employ the homogeneous deformation method.

The independent elastic constants of cubic crystals are
given by considering the following homogeneous defor-
mations.'® Assuming uniform volume expansion denoted
by R;=v'”*R,,R;=v'”R,, and R;=v'”’R,, where R is
the lattice point, the bulk modulus B =(c¢;; +2¢,)/3 is
given by

— l dzEcoh

B
Q  dv?

, (1)
where E_, is cohesive energy and () is atomic volume.
Next, considering shear deformation in one plane, denot-
ed by R, =R, +v,R,, Ry=R, and R;=R,, where the
crystal volume is taken to remain constant, the shear
modulus ¢4, is obtained by
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Third, considering compression in one direction, denoted
by R;=(1+¢€)R,, R,=R,/(1+¢€), and R;=R,, where
the crystal volume is also maintained constant, the shear
modulus C'=(c;; —c,)/2 is defined by

,__1__ dzEcoh

=0 ae (3)

Cohesive energy E_, is obtained from the interatomic
potential V;; proposed by Khor and Das Sarma:®

Ecoh:% 2 Vi' ’ 4)
(il';bjj)
—ptr..— Y —0Or,. —Ar,.
V,= e By =R | e‘f—Boe ir; G(0) )
z
GO)=1+ 3 [cos(nA;)—1]. (6)
k (#i,f)

Here, r;; is the interatomic distance between an atom i
and a neighbor j,

Z;= 3 exp[ —B(r; —R;)"]
ij
gives the effective coordination number of atom i, R; is
the minimum interatomic distance of its neighbors, 7 is
the bond-bending constant, A6, =6, —0;, 0; is an equi-
librium bond angle, and 8 is the angle between ij and
Jk.

According to the valence-force-field (VFF) ap-
proach, !"!® the distortion energy corresponding to bond
bending is recognized to consist of two contributions of
(A6)> and (AOAr). However, the contribution of
(A6 Ar), which might be particularly important in the
calculation of ¢4y with respect to both changes of bond
angle and bond length, is not taken into account in G (9).
The function G (8) is modified without adding further pa-
rameters by introducing the (A@ Ar) term based on VFF
model as

_m_Ar

GO=1+ 3 =

k (#i,))

cos(n40 ;) —1—

Xsin(AOjik)] )

Ar;=r;—r, (7

ij ij e
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FIG. 1. Calculated elastic constants of ¢4y and C’ for Si (a)
and Ge (b) as a function of 7. Solid and dotted lines for ¢4, cor-
respond to the results using modified and previous interatomic
potentials.

The potential parameters 4, B, 6, A, , B, and y are
determined using our method previously reported.® The
elastic constants ¢4, and C' can be obtained as a function
of 1 using these potential parameters. Figures 1(a) and
1(b) show the values obtained for ¢, and C’ for Si and
Ge, respectively, based on the modified interatomic po-
tentials defined by Egs. (5) and (7). They are compared
with the c,, results obtained by the previous interatomic
potential (dotted line). It is clear that the modified poten-
tial gives a larger c44 than the previous potential because

1 6—A
re= 0—n aln(Z;)+In B of the contribution of (Ar A@) term. The differences be-
0 tween ¢, estimated from modified and previous poten-
TABLE 1. The values of potential parameters in Eq. (7) for Si and Ge.
4 (V) B, 6 (A" A AT a B ¥ n
Si 2794.2386 0.08251716 3.13269 1.341 46 0.624 909 6 25.44123 3.38218 0.893711
Ge 1498.7626 0.3837664 2.37239 1.63105 0.3426351 17.798 61 3.22877 0.670 128
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TABLE II. Elastic constants and those pressure derivatives at atmospheric pressure, SW, T, and BH
denote the results for Stillinger-Weber, Tersoff, and Biswas-Hamann potentials, respectively (Ref. 11).

Elastic constants are in units of 10! N/m?.

Si Ge
SwW T BH This work Expt. This work Expt.
i 1.514 1.044 1.71 1.689 1.657 1.346 1.289
2 0.764 0.597 1.00 0.626 0.639 0.481 0.483
Cya 0.564 0.390 0.92 0.754 0.796 0.613 0.671
(o 0.375 0.224 0.36 0.531 0.509 0.433 0.403
B 1.014 0.746 1.24 0.981 0.978 0.770 0.752
dcyy/dp 0.797 0.80 1.298 1.30
dC'/dp 0.086 0.075 0.272 0.34
dB /dp 3.831 4.24 3.581 4.60

tials are about 5% for Si and 8% for Ge.

The bond-bending constant 7 is determined to repro-
duce the pressure derivative dc,, /dp at atmospheric pres-
sure, since the pressure derivative is very sensitive to any
change in the value of 7. The values of the potential pa-
rameters and calculated elastic constants for Si and Ge
obtained by Egs. (1), (2), and (3) are listed in Tables I and
I1, respectively. In Table II, our calculated results are
found to be in excellent agreement with the available ex-
perimental data.!®?° This can be compared with the re-
sults obtained by Cowley for the other interatomic poten-
tials where the error in c4 for Si is in the range of
15%-50%. Therefore, the new interatomic potentials,
using the same formulation for Si and Ge, predict not
only the correct order of relative stability for various
structures but also produce good elastic constants.

The calculated phonon-dispersion curve for Si is shown
in Fig. 2, along with the experimental data. Good agree-
ment between theory and experiment for the acoustic
branch near the zone center reflects the fact that this in-
teratomic potential predicts correct elastic constants.
Our calculated phonon-dispersion results are comparable
to the results for the Stillinger-Weber potential, which
has been shown to give the best overall description of the

Frequency (THz)

Reduced Wave Vector

FIG. 2. Calculated phonon-dispersion curves for Si.
circles and triangles are experimental results.

Open

lattice dynamics in a comparative study of the empirical
potentials of Tersoff, of Stillinger and Weber, and of
Biswas and Hamann. !!

It is known that the valence-force-field (VFF) model
gives the phonon spectra of Si and Ge successfully.?!
Aside from the two primary (bond bending and bond
stretching) and one interaction (A6 Ar term) force con-
stants we have used here, the VFF model includes three
other interaction constants (Ar Ar’ and two AOAO’
terms). These extra terms can be taken into account in
Egs. (5) and (7) in a natural way; then, in principle, we
should be able to reproduce the correct spectra, including
the TA flattening.

III. PRESSURE-INDUCED PHASE TRANSITION

Interatomic distances of Si-Si and Ge-Ge in Si-Ge
binary systems are known to be different from those in Si
and Ge. The equilibrium interatomic distance in disor-
dered Si;_,Ge, is affected by the change of lattice pa-
rameter, which varies with x, and local lattice distor-
tion.?? The change in interatomic distances induced by
tetragonal distortion is also found in the strained layer
heterostructure such as Si,_,Ge,/Si.?* Both the pro-
cesses of lattice-parameter change and tetragonal distor-
tion occur in pressure-induced phase transition for bulk
Si and Ge.

It has been observed experimentally that group-IV ele-
mental semiconductors display covalent(diamond struc-
ture)—metallic(3-Sn structure) transition under high
pressure.?*25 This involves isotropic and tetragonal de-
formations, corresponding, respectively, to the variation
of cohesive energy with lattice parameter and axial ratio
c/a. Pressure-induced phase transition then is expected
to be a good test of the applicability of the new Si and Ge
interatomic potentials to Si-Ge binary systems.

In the calculation of the cohesive energy, we note that
there are two bond angles in the 3-Sn case, where interac-
tion between two bonds with the larger bond-angle does
not contribute to the bond-bending energy. For simplici-
ty, we assume this to be the case for ¢ /a5 1—this seems
to be a reasonable assumption if the difference between
bond angles is large.

Before discussing pressure-induced phase transition,
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FIG. 3. Calculated cohesive energy change for Si (a) and Ge
(b) as a function of axial ratio ¢ /a. The calculation is performed
at equilibrium atomic volume ¥V =V, under atmospheric pres-
sure. The cubic cell with axial ratio ¢/a=1 is taken as a unit
cell for diamond structure in this study.
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FIG. 4. Calculated pressure-volume relationship for Si (a)
and Ge (b) with diamond (“1”) and B-Sn(I) (“2”) structures.
Open circles and triangles are the experimental results.

we display the behavior of the calculated energy as a
function of the axial ratio c¢/a at equilibrium atomic
volume ¥V, for Si and Ge in Figs. 3(a) and 3(b), respective-
ly. As can be clearly seen, there are three local energy
minima in these figures, i.e., the diamond structure
(denoted by ““1” in the figures) with lowest energy, B-Sn(I)
(“2”) and B-Sn(II) (““3”) structures with higher energies.
The relative stability among these structures is recog-
nized to be reproduced using our new interatomic poten-
tials. However, axial ratio ¢/a=0.36 of B-Sn(I), where
the coordination number becomes equal to 6, is slightly

(a) -35

Energy (eV)

_5_0 .
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(b) -3:0

Energy (eV)

-4.5 N . .
o6 07 08 09 10 11
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FIG. 5. Calculated cohesive-energy change for Si (a) and Ge
(b) with diamond (“1”), B-Sn(I) (“2”) and B-Sn(II) (“3”) as a
function of volume ratio ¥V /¥,. Dotted line denotes the com-
mon tangent between diamond and 3-Sn(I) structures.
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different from the experimental axial ratio ¢ /a =0.39.26
Similar results were obtained in the calculation using
Dodson?’” and Tersoff?® potentials.

The pressure-volume relationships for Si and Ge are
shown in Figs. 4(a) and 4(b), respectively. They are com-
pared with experimental results.?>3 The results agree
well with experimental results, quantitatively for dia-
mond and qualitatively for [B-Sn(I) structures. The
volume-energy relationships for diamond (1), B-Sn(I) (2),
and B-Sn(II) (3) in Si and Ge are also shown in Figs. 5(a)
and 5(b). These figures suggest that the pressure-induced
phase transition only occurs along the common tangent
between diamond and pB-Sn(I) structures, since the
cohesive energies for B-Sn(Il) structure are higher than
those of B-Sn(I) structure over the entire atomic volume
ratio range. This is also consistent with experimental re-
sults.

Figures 6(a) and 6(b) show that the energy behavior for
Si and Ge as a function of axial ratio ¢ /a near V7, the
atomic volume for B-Sn(I) at the phase-transition point.
Comparing them with Figs. 3(a) and 3(b), the most stable
states are found to change from the diamond structure(1)
to the B-Sn(I) structure(2) in both Si and Ge. The
diamond-structure state is only an inflection point in
these energy curves, which has no activation barrier be-
tween diamond and B-Sn(I) structures in contrast to re-
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FIG. 6. Calculated cohesive energy change for Si (a) and Ge

(b) as a function of axial ratio ¢ /a near phase transition atomic
volume V= V2.
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FIG. 7. Comparison of the cohesive energy changes for Si as
a function of axial ratio ¢/a near phase transition atomic
volume ¥ =~ V'? using various interatomic potentials. Our calcu-
lated result (a) is compared with the results obtained from Dod-
son (b) and Tersoff (c) potentials.

sults for Si given by the Dodson and Tersoff potentials as
shown in Figs. 7(b) and 7(c), where another metastable
state emerges at ¢ /a=0.52 because of the activation bar-
rier at ¢ /a=0.45. Further, B-Sn(Il) structure never ap-
pears under high pressure, even if the energy of S-Sn(II)
is lower than that of diamond structure in Si, since there
is an activation barrier between these structures. It is
clear that our potential gives the correct predictions for
the pressure-induced phase transitions of Si and Ge. We
feel that the new Si and Ge interatomic potentials can be
applied to Si-Ge binary systems, which is discussed in the
following section.

IV. APPLICATION TO Si-Ge SUPERLATTICES

Si-Ge binary systems including Si;_,Ge,/Si strained-
layer heterostructure and superlattice have been subjects
of increasing interest in recent years.3! This is because of
their potential for tailoring optoelectronic properties of
the materials. In this section, we determine the Si-Ge in-
teratomic potential based on the Si and Ge potentials dis-
cussed in Sec. IT and attempt the calculation of thermo-
dynamic properties (e.g., lattice parameters, bond
lengths, excess energies, and interplanar distances) of
Si;Ge,;, Si;Ge,, and Si,Ge, superlattices and the rhom-
bohedral structure using Si, Ge, and Si-Ge interatomic
potentials.
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TABLE III. The values of potential parameters in Eq. (7) for Si-Ge. 7sgss, 7sgsg> and 1sggg denote 7 for bonds between Si-Ge

and Si-Si, Si-Ge and Si-Ge, Si-Ge and Ge-Ge, respectively.

A (V) B, ! AT

B Y 7sGss MsGsG MsGGG

6 (A ) AR
Si-Ge  1800.4512  0.2010204 2.70009  1.50521

0.484 5627

21.98182 331349 0.84725 0.79450 0.73546

The interatomic potential for Si;Ge; superlattice with
zinc-blende structure is determined to satisfy the average
values of the lattice parameters, the elastic constants of Si
and Ge, and the excess energy to be 10 meV, which is ex-
tracted from various first-principles calculations.3?34
The bond-bending constants 77 between Si—Si or Ge—Ge
and Si—Ge bonds are obtained as interpolated value of
Si, Si;Ge;, and Ge. The values of potential parameters
are summarized in Table III.

The unit cell of Si;Ge,;, Si;Ge;, and Si;Ge; are
schematically shown in Fig. 8. To determine the equilib-
rium structure, the distortion parameter & and lattice pa-
rameter a have been introduced in the energy calcula-
tions. There are two assumptions: One is that the axial
ratio ¢/a=1, and the other presumes that Ge and Si
atoms in Si;Ge, and Si;Ge; superlattices, respectively, are
displaced in the (001) direction and the other atoms are
located on the regular fcc sublattice.

The minimization of the cohesive energies for Si;Ge;
and Si;Ge; superlattices are carried out by varying the
parameters a and §. Figure 9 demonstrates the cohesive
energy for Si;Ge; superlattice as a function of the distor-
tion parameter 5. It is found that the energy decreases
with distortion and has the lowest value at 6=0.016,
which corresponds to the lattice points (a /4)(1,1,1.016)
and (a /4)(1,3,2.984) for Ge atoms.

Figure 10 shows the calculated equilibrium lattice pa-
rameters for Si-Ge superlattices. The lattice parameters
estimated theoretically conform to Vegard’s law and are
consistent with the experimental results for Si,_,Ge,
(Ref. 35) and ab initio pseudopotential calculation for Si-
Ge superlattices. 3

The calculated bond lengths are also shown in Fig. 11.
The bimodal distribution of bond lengths, which is in-
duced by the displacement of Si or Ge atoms in the super-
lattices, can be seen. The calculated results for the bond
lengths are slightly different from the experimental re-

o
S
e S
e—a—l
Si,Gey

Si;Ge, SiGe,

FIG. 8. Unit cell with axial ratio ¢ /a=1 for Si;Ge,, Si;Ge;,
and Si;Ge; superlattices used in this study. Lattice parameter a
and distortion parameter 8 are variational parameters in the su-
perlattice structures.

sults in disordered Si,_,Ge,.3! However, the discrepan-
cy between the calculated and experimental results does
not imply that the calculation has failed to predict the
correct bond lengths, since some first-principles calcula-
tions have demonstrated that the bond lengths in the su-
perlattice tend to be closer to the model of bond-length
conservation than those in the disordered alloy. 3¢’
Figure 12 shows the comparison between the excess en-
ergies calculated in this study and those estimated by the
regular solution model. It is clear that the behavior of
the calculated excess energies as a function of concentra-
tion is quite reasonable. Ab initio pseudopotential calcu-
lations have shown that the rhombohedral structure with
AB-B A stacking is more stable than the Si;Ge, superlat-
tice.3>3* The calculated excess energy of the rhom-
bohedral structure is found to be 3 meV lower than that
of Si,Ge, superlattice. This is also consistent with the re-
sults obtained by ab initio pseudopotential calculation.
Further confirmation for the versatility of these intera-
tomic potentials is demonstrated by the calculation of
interplanar distances for epitaxial Si,Ge, superlattice
grown pseudomorphically on a (001) oriented substrate
with lattice parameters of Si, Ge, and the average of Si
and Ge. The equilibrium structure of a Si,Ge, superlat-
tice is determined by minimizing its cohesive energy us-
ing two variational parameters such as axial ratio c¢/a
and relaxation parameter €, which specify the spacing
d,s between adjacent planes a and B as dug
=(c/4)(1+¢€). The calculated interplanar distances are
shown in Table IV with the equilibrium axial ratio ¢ /a
and relaxation parameter €. Our results are compared
with those obtained by the valence force field with ab ini-
tio parameters.’® Clearly, the agreement is good, al-
though our interplanar distances are slightly larger. This
is because ab initio pseudopotential total-energy calcula-
tions give smaller equilibrium lattice parameters of Si and

'-4.318

Si,Ge,
-4.319

-4.320

-4.321

Energy (eV)

-4.322

-4.323 + +
0 0.01 0.02 003
¢

FIG. 9. Calculated cohesive-energy change as a function of
the distortion parameter & in Si;Ge; superlattice.
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FIG. 10. Calculated lattice parameters for Si-Ge superlat-
tices. Solid line indicates the results conforming to Vegard’s
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FIG. 11. Calculated bond lengths for Si-Si (open square), Si-
Ge (open triangle), and Ge-Ge (open circle) in Si-Ge superlat-
tices. The experimental results for Si-Ge (solid triangle) and
Ge-Ge (solid circle) in Si;_, Ge, are also shown with their error
bars.
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FIG. 12. Calculated excess energies for Si-Ge superlattices.
Solid line denotes the results assuming the regular solution
model. Si;Ge,, Si;Ge;, and Si;Ge; are regarded to correspond
to Sig 75Geg 25, Sig sGeg s, and Sig ,5Geg 75, respectively.

Ge than the experimental lattice parameters employed in
this study.®

These newly derived interatomic potentials for Si, Ge,
and Si-Ge have been shown here to give reasonable ther-
modynamic properties of Si-Ge superlattices. Although
the reliability of these potentials should be tested from
various viewpoints, these preliminary calculations sug-
gest that the new interatomic potentials are applicable for
the thermodynamic study of binary systems consisting of
elemental semiconductors.

V. CONCLUSION

We propose new Si and Ge interatomic potentials
based on the Khor—-Das Sarma potential and check the
validity and feasibility of these potentials by studying Si-
Ge binary systems. Elastic constants and pressure-
induced phase transitions for Si and Ge, equilibrium
structures, lattice parameters, bond lengths, and excess
energies of Si-Ge superlattices are correctly predicted by
our potential. We summarize our main conclusions as
follows.

(i) The new Si and Ge interatomic potential give good

TABLE IV. Interplanar distances R, axial ratio ¢ /a, and relaxation parameter € for epitaxial Si,Ge,
superlattice grown pseudomorphically on a (001) oriented substrate with lattice parameters of Si (as;),
Ge (ag. ), and average of Si and Ge (@). The values in parentheses are the calculated results obtained in
valence-force-field geometry optimization using ab initio force constants (Ref. 38). Interplanar dis-

tances are in units of A.

A R(Si—Si) R(Si—Ge) R(Ge—Ge) c/a €si €Ge
as; 1.3566 1.4026 1.4482 1.0337 —0.0327 0.0327
(1.3488) (1.3926) (1.4378) (1.0300) (—0.0317) (0.0322)
a 1.3383 1.3821 1.4262 1.0000 —0.0318 0.0319
(1.3303) (1.3750) (1.4220) (0.9986) (—0.0329) (0.0337)
age 1.3207 1.3636 1.4078 0.9691 —0.0318 0.0321
(1.3112) (1.3568) (1.4057) (0.9680) (—0.0342) (0.0354)
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estimates of the various elastic constants and their pres-
sure derivatives.

(i) The new interatomic potentials for Si and Ge
reasonably reproduce the three stable and metastable
states such as those with diamond, 3-Sn(I), and B-Sn(II)
structures in the energy calculations as a function of axial
ratio. The calculated pressure-volume relationship for Si
and Ge are in good agreement with experimental results
in these with diamond and B-Sn structures. The relative
stabilities among three states are reasonably predicted at
the phase transition volume. These results suggest that
the new potentials are suitable for the energetic study of
the isotropic and tetragonal deformations, which are im-
portant in binary systems.

(iii) Equilibrium states of Si-Ge superlattices using Si,
Ge, and Si-Ge interatomic potentials agree with experi-
mental results. The calculated lattice parameters con-
form to the Vegard’s law. The calculated bond lengths

TOMONORI ITO, K. E. KHOR, AND S. DAS SARMA 40

reproduce the expected bimodal distribution. The con-
centration dependence of the excess energies agrees well
with the regular solution model. The calculated interpla-
nar distance for the superlattice grown pseudomorphical-
ly on (001)-oriented substrate agree well with the results
by first-principles calculation.

We conclude that these empirical interatomic poten-
tials can be applied to Si-Ge binary systems. We are
currently in the process of applying these potentials to
the molecular-dynamics calculation of Si-Ge superlattice
stabilities.
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