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We present a method to calculate both the thermal and the structural damping of the multiple-
scattering (MS) contributions to the x-ray-absorption coefficient. In the thermal case the correlation
matrices between the coordinates of the atoms connected by MS paths are calculated, in the har-
monic approximation, using the high-temperature expansion for the vibrational correlation func-
tion. When an additional structural disorder is present equivalent correlation matrices can be ob-
tained from proposed models. These matrices define the widths of the corresponding Gaussian
peaks in the n-body structural correlation functions. We present two different methods of calcula-
tion which can be generalized to non-Gaussian distributions: the first consists of a simple random
sampling over the distribution of displacements, the second uses the Taylor expansion of the MS
signal around the equilibrium position of the atoms in the path. The results are equivalent and indi-

cate that only for g2 the dominant damping is given by a simple Debye-Wailer-type correction in

the amplitude. Both for the g, and for the g4 signals, phase eftects become important and can alter
the effective damping. Implications on the convergence of the MS series will be discussed. In the
case of structural disorder we show how the MS signal present in the x-ray-absorption spectra is
capable of providing new structural information and will allow us to distinguish between various
proposed models.

I. INTRODUCTION

The possibility that x-ray-absorption spectra might
contain structural information beyond the pair correla-
tion function probed by the single-scattering extended x-
ray-absorption fine-structure (EXAFS) signal has been in-
dicated by several authors. ' In particular, Natoli and
Benfatto have pointed out that under certain conditions
the multiple-scattering (MS) series might be absolutely
convergent, so that on general mathematical grounds
they could predict three energy regions in an x-ray spec-
trum: a full —multiple-scattering region (FMS), generally
(but not necessarily —it might even be missing as in a
free-electron metal) at low energy, where many or an
infinite number of MS paths of high order contribute to
shape the absorption coefficient (depending on whether
the series converges or not), followed by an intermediate-
MS region (IMS), where only few paths of low order are
relevant (typically single-, double-, and triple-scattering
paths), with this latter region merging into a single-
scattering region (SS) where only the EXAFS signal is im-
portant. Consequently, the existence of the IMS region is
a necessary condition for obtaining information beyond
the radial distribution function.

In this respect several applications to simple, test sys-
tems have led to encouraging results. Detectable
double-scattering signals have been shown to be in
Mn04 ion in solution and crystal silicon, double and

triple-scattering signatures in ferrocene, and a triple-
scattering contribution in Cu(H20)6 + ion in solution.
In all these cases, however, the experimental analysis was
limited by our inability to assess the effect of the
configuration average with respect to the thermal spread
of the atomic positions on the amplitude and phase of the
MS signal. In fact a main point not yet clarified at the
theoretical level is the effect of the thermal vibrations of
the atoms on the various contributions to the MS series.
The effect on the EXAFS is the well-known Debye-
Waller factor. The exact damping on the EXAFS con-
tributions which takes also into account the exact
spherical-wave phase effects has been calculated and
shows only very small corrections from the simple
Debye-Wailer term. The effect of the thermal vibrations
on a general MS contribution is similarly expected to
reduce the amplitude of the signal, and therefore it is an
important phenomenon to be taken into account for its
effects on the convergence of the MS series and for the
quantitative analysis of the MS contributions. Moreover,
in the case of highly disordered systems the configu-
rational average is expected to modify substantially the
shape of any MS signal, so that a calculation for fixed
atom position is absolutely meaningless.

It is the aim of this paper to present a general method
to calculate the damping of the MS contributions, taking
into account, for the first time, both the correlation
effects in thermal and structural disorder and the curva-
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ture of the electronic propagators. This is performed in
Sec. II. In Sec. III we report a numerical application to
crystalline and amorphous silicon. In the latter case we
show that, in principle, it is possible to distinguish be-
tween various proposed models for an amorphous struc-
ture by looking at the shape and intensity of the MS con-
tributions. In another paper (referred to as Ref. 17 here)
the application to the analysis of the k edge of amor-
phous silicon is given. Section IV is reserved for the con-
clusions.

II. THEORY

A. Damping of the MS signals

It has been shown that any MS signal can be ex-
pressed in terms of two real (amplitude and phase) func-
tions

very good approximation in the case of thermal broaden-
ing at low temperature. In the case of structural disor-
der, as we shall see, the Gaussian approximation is
sufficient for the nearest coordination shells in a wide
class of covalent materials. A generalization to non-
Gaussian distribution is, however, possible.

The quantum statistical average of the MS contribu-
tion is the average over the distribution; that is,

—(r, M r)/2
&y„(k) &

=fdr
(2m )

~ det[(M)' ]
Xsin[kRp+P(k, r)] .

For small displacements, a Taylor expansion truncated
at some low order will be accurate enough. Therefore,

A(k, r)=A(k, O)+VA(k, r)~o r

g„(k)=A(k, r)sin[kR +P(k, r)] . + —,'(r, H A (k, r) ~or)+0( ~r~ ), (4a)

Here n is the number of segments (propagators) in the
path, r is a set of coordinates describing the geometry of
the n-segment path which can be selected among a wide
choice of displacement coordinates, both Cartesian or
curvilinear, like distances and angles, and k is the
momentum of the photoelectron. Let n & n be the num-
ber of scatterers (including the origin) in the path. The
minimum number of coordinates in three dimensions will
be 3 X m —6 for m )2 and 1 for n =m =2. Here we shall
not specify the coordinate choice. R is the total path
length which depends on r. The amplitude A(k, r) and
the phase P(k, r) are a cumbersome sum over angular
momenta and their exact expressions will not be con-
sidered in this section. The important fact is that A, P,
and R depend on the geometry, i.e., on the displace-
ments r from the equilibrium positions of the atoms.

Initially we will assume that the distribution of the
generalized coordinates r is Gaussian, namely

—(r, M r)/2
P(r)dr= dr. (2)

(2m. ) det[(M)' ]
In the above and successive expressions the quantities
(. . . ) are quadratic forms. A Gaussian distribution is a

P(k, r)=$(k, O)+V/(k, r)~0 r

+ —,'(r, HP(k, r) ~or)+ 0(
~ r ~'), (4b)

Vqo J.Rp I r =0 v~ v~ + ) (6)

v being the equilibrium versor of the jth segment in the
path. Each of the vectors (6) is orthogonal to the bisector
of the angle formed by the segments j and j +1 of the
path. In the following we will introduce the total phase
g(k, r)=kR +P(k, r) and its Taylor expansion
/=$0+/, r+ —,'(r, gzr)+; also, the coefficients of the
expansion for the amplitude will be indicated as A(), A &,

and A2.
The damped MS contribution, using the Taylor expan-

sions, can be reduced to a series of Gaussian integrals:

where H is the multidimensional second-derivative, or
Hessian, operator. Now the total path length can be ex-
panded in the same way:

Rp=Rpq+v r+ —,'(r, HR ~or)+0(~r~ ) .

In a Cartesian-coordinate system the first-order term v is
a vertical array formed by the vectors:

~
—(r, M r)/2

(y„(k))='T fdr, [Ao+ A, r+ —,'(r, Azr)]expIi[go+P, r+ —,'(r, gzr)]I(Zw)""det[(M)'" J

fdy[ Ho+i( 3 „Qg, ) ——,'(QQ„A2QQ, )+( A, +i A2QQ, ) y+ —,'(y, Azy)]

e-"' "" ig —(f,Qf)/2X 0 1' 1

(2m ) det[(M)' ]

Here Q is the complex matrix (M i/2) a—nd y=r i QQ, . After some sim—ple algebraic manipulations and limiting
ourselves to the first-order corrections, we obtain the following expression for the damped MS contribution, which
turns out to be

(A„Mg))
(y„(k) ) = A 1+

Ao
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The dominant damping term is due to the exponential
(p& Mf& )/2

factor e ' ' which reduces to the usual Debye-
Waller factor in the case of yz and constant P. The other
corrections for the amplitude and the phase are of the or-
der of 3, and are expected to be small.

In the EXAFS case, the path will be described by a sin-
gle coordinate: the displacement along the bond distance
and the matrix M will be simply the bond-distance vari-
ance 0. . The bond length R is counted twice in the path
length; therefore the derivative of the total phase will be
$,=2k+V/. Neglecting terms of the order of A, and
(VP), we get

(y2(k)) = Aoe ' " +" ~' sin(2kR +go) . (9)

An analytic expression in terms of the atomic phase shifts
for this EXAFS term will be derived in the Appendix.

In the general case the leading damping term is the ex-
ponential of —

—,'(ku+VQ, M(ku+VP)) which contains
both the contributions from the variation of the total
path length and from the change of the phase induced by
the change in the geometry. Now, the normal modes
which contribute to the first effect are mainly "high-
frequency" modes because they involve the stretching of
near neighbors. These modes also contribute to the VP
term, but the resulting effect is smaller. On the other
hand, there are several "low-frequency" modes which
contribute mainly to angle bending, which without
affecting the total path length can considerably deform
the path geometry and consequently produce changes in
the P term. These modes can provide, in general, an ad-
ditional non-Debye-Wailer —like damping, i.e., a damping
not simply proportional to k .

We can understand an important conceptual difference
which exists when going from single scattering to g3 and
to g„&3. In the first case these are no "low-frequency"
modes, in the sense specified above, which can produce a
large P-induced damping, because the geometry of the
path (segment) is rigid. As we go to y3 or even y„&3, in
the case of a nondegenerate path, these modes can have a
considerable role in the damping of the signal.

We conclude that the VP term may give an important

contribution to the damping of the g, ~ 3 terms of the MS
expansion. We also observe that the term VP does not
generally give rise to a Debye-Wailer —like damping and
consequently it could be effective even at small k values,
the region in which the convergence problems are more
critical.

B. Generalized non-Gaussian distribution

We obtain

(g„(k)) = & A, p( q, )@,(q )

i exp(—i/0), A, @,(g, )
1

(12)

Now, writing the characteristic function by means of the
multidimensional cumulant expansion, using the usual
convention on the repeated indexes, we have

e (t)=exp —'t't K' i —t'tjtkK—'&"—
C

+—~'~&I, 'I, 'Z' & "+1

4I 4 (13)

We get

The generalization of the previous treatment to non-
Gaussian distributions is performed as follows. We ex-
pand the signal to first order in both amplitude and
phase. For a generalized displacement distribution P(r)
we write

(y„(k))='T fdrP(r)Aoexp[i(go+/, .r)]

+ T fdr P(r)(r, A, )exp[i(fo+P, r)] .

(10)

This can be easily written in terms of the characteristic
function of the probability distribution:

4&, (t) = f dr exp(ir t)P(r) . (11)

(y„(k))= 7 exp(iso)@, (g, )[AD+i[A', K2jg+(i /2)A', K3j' PP, ,' A'K'j'"'g'P—"P—'+. ]J

I [A i
( A lKij kpqk)]2 +[( AiKi j p )(1 j3i)( A'iKl j k lp qkql )]2]i/2'

X exp[ —
—,'(PiK2'Wi )+(1j'4')(PiK4' "Pii)' i 4i )1

( A 'iKVki) ——,(A 'iK4'"Wilily)

Ao —
—,'( A 'iK3 j'"Pili)

Xsin kR +$0—
,

(g', K'3'J' +pi)+— (14)

We observe that in the case of a Gaussian distribution K2
is M, all the other cumulants are null, and we correctly
obtain, as a limit, the previous result of Eq. (8). The ex-
pression describes appropriately the damping expected in
the case of nonsymmetric distributions, where a non-

Debye-Wailer —like damping and a phase shift are expect-
ed. We observe that, in order to perform the calculation,
only the derivative of the amplitude and the phase are
again needed. Only the description of the probability dis-
tribution becomes more complex.
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C. Thermal correlation matrices for path displacements

In a previous paper one of us has presented the
method of the high-temperature expansion (HTE) for the
calculation of the vibrational correlation function (VCF)
in the harmonic approximation. The possible application
to calculate the thermal damping of the MS signals was
mentioned. In this subsection we outline this last appli-
cation in some detail.

For a general harmonic system described by a kinetic
matrix T and a potential matrix V it is possible to obtain
the high-temperature expansion for the VCF in the form

it may be easier to use a number larger than the minimal
one; for instance, it is possible to use 3 X n —3 coordi-
nates without taking into account the rotational invari-
ance of the path. In our thermal calculations, however,
we used a minimal set of relative Cartesian displacements
in which the first atom in the path lies always in the x-
axis direction and the second on the x-y plane. The gen-
eric Cartesian component will be indicated as r�-,
oj(1,2, . . . , 3n —6), and using a compact notation the
whole vector will be indicated as r. This set of relative
coordinates can be expressed as a linear combination of
Lagrangian coordinates, namely

( )=—V '+ T ' — [T '(VT ')]q'q&
=

P 12 720
ro .=gS IqI or r=Sq .

1

(16)

(pg )
2 Il

[T—
1( VT

—1)n —1]
(2n )!

(15)

The correlation matrix between the set of ro - can indeed
be calculated in a straightforward manner from the VCF:

M —( 1'o; 1"o ~ ) —g S; I ( q( qk )SJ. g
I, k

where p is the usual Boltzmann factor. The matrix VCF
contains all the correlations between any set of Lagrang-
ian coordinates I q,. I and consequently defines the thermal
width of any peak of any n-body structural correlation
function: g2(r), g3(r), r~, r3), . . . . In this regard we must
emphasize that this is certainly one of the main charac-
teristics of the HTE method. Some authors have used
the method of the continued-fraction expansion for the
diagonal elements of the Green's' function to calculate
mean-square relative displacements (MSRD's) of bulk
and surfaces in crystals. " This method requires the cal-
culations of the density of states, which is redundant in-
formation in our context. Here the calculation of the 21
elements needed for a y4 is simply performed at one time,
inverting the whole potential matrix in the HTE method.

Let us assume we have a set of d X(X—1) relative
coordinates. Let us further assume we are interested in
calculating the damping of an n-atom MS path starting
from the atom 0 to 1,2, . . . , n —1,0. The geometry of
the path would be univocally determined by 3Xn —6
coordinates in three dimensions. Now there are several
possible choices for the coordinates: they can be Carte-
sian or curvilinear according to convenience. Sometimes

M = (rr+ ) =S(qq+ )S+ .

(17)

This correlation matrix defines the shape of the
(3 X n —6)-dimensional Gaussian peak in the n-body
structural correlation function caused by the n-segment
path previously considered, given by Eq. (2).

The practical example that we will consider is the pro-
totype case of c-Si. In this case the VCF was calculated
with the method presented in Ref. 9 using a Keating po-
tential and clusters of up to 238 atoms. The values for
the force constants used in such calculations were
a = 145.5 N/m and p/a =0.16. The results for the
MSRD's of the first 12 shells are reported in Table I for
the temperatures 80, 300, and 500 K.

We also considered representative paths for higher-
order contributions to the MS series. The choice was
made among the major signals which contribute to the
shape of the photoabsorption spectrum. In Fig. 1 we
sketch the local order around a central atom (labeled 0)
where the paths are displayed by arrows. We selected a
3-segment path joining the atoms 0-1-2-0, belonging to
the first and second coordination shells of the crystal, and

TABLE I. MSRD's of the first 12 shells in c-Si at 80, 300, and 500 K.

Atoms Neighbor Distance (A)
MSRD (10 ' A )

.300 K 500 K

I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII

12
12
6

12
24
16
12
24
24
12
8

2.3520
3.8408
4.5037
5.4317
5.9191
6.6525
7.0560
7.6816
8.0336
8.5883
8.9045
9.4080

2.622
4.24
4.80
5.00
4.56
4.89
5.04
4.79
4.98
5.31
4.94
5.01

3.400
7.95
9.83

10.54
8.96

10.13
10.65
10.00
10.48
11.23
10.44
10.62

4.748
12.29
15.43
16.61
13.98
15.93
16.90
15.37
16.50
18.42
16.31
16.74
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FIG. 1. Local order of the c-Si structure. The g3 path 0-1-2-0
and the y4 path 0-1-2-3-0 are shown by the arrows.

the 4-segment path 0-1-2-3-0 which returns to the atom 0
through a further first-shell atom (labeled 3) in a stag-
gered position with respect to atom 2. In Table II we re-
port as an example the correlation matrices M between
the six Cartesian relative displacements which describe
the atom vibrations of the whole 4-segment path. Obvi-
ously the upper left 1 X 1 block, displayed by the first dot-
ted line, is the first-shell MSRD. The upper left 3X3
block, on the other hand, is the correlation matrix for the
3-segment path 0-1-2-0.

D. Structural correlation matrices in disordered solids

We shall focus our attention on a particular class of
disordered solids: the amorphous covalent solids and, in
particular, amorphous silicon (a-Si). This was chosen be-
cause we wanted to show in an explicit case the new in-
formation which can be gained by accurate data analysis
of a disordered system. On the other hand, the methods
which are presented here are very general and can be ap-
plied to other classes of materials.

Amorphous covalent solids are characterized by a
strong nearest-neighbor bond with a well-defined length
plus a slightly weaker bond angle determined by the hy-

bridization of the valence shell. For these reasons the ra-
dial distribution function resembles that of the crystalline
counterpart up to the second coordination shell. For in-
stance, in a-Si the first shell has an additional structural
contribution to the variance of the bond length which is
only of the same order of magnitude as the thermal one
at room temperature. The structural contribution for the
second shell peaks exactly at the crystalline value al-
though it is broadened by a structural contribution ap-
proximately 1 order of magnitude larger than the thermal
one. Starting from the third shell, the dihedral-angle
freedom distributes the neighbors over a wide range of
distances, washing out other relevant peaks in the g2(r).

Theoretical radial distribution functions can be ob-
tained from available models of a-Si systems. Since
Polk's pioneering ball-and-stick model, ' sophisticated
computer algorithms have been developed. Starting from
an empirical potential, one can perform, by means of a
switching-bond procedure, a Monte Carlo simulation of
the disordered network as in the Wooten-Winer-Weaire'
(WWW) model, or directly perform a molecular-
dynamics calculation as in the recent Biswas-Grest-
Soukoulis' (BGS) model. The final structure will depend
both on the potential model used and on additional con-
straints (i.e., four-fold coordination for the WWW model)
included in the procedure. Inspection of the models will
provide information on the static n-body correlation
functions. From this analysis it is possible to distinguish
the overlapping contributions from different neighbors.
For instance, it is possible to separate second neighbors
from third neighbors in the near-eclipsed position and
realize that the distribution of the former is very close to
a Gaussian shape, a fact that cannot be proven experi-
mentally because the two distributions overlap.

An analysis of the models at a level of higher-order
correlation functions has never been performed before
the present work. g3 is the distribution of the triangles
joining atom sites and can be expressed as a function of
any choice of three numbers which define the form of the
triangles. Just like g2, g3 will be composed of a few well-
defined peaks, as far as first or second neighbors are in-
volved, which merge into a diffuse uniform distribution
as the distances increase. In order to calculate the ex-

0
TABLE II. Vibrational correlation matrix, at 300 K, in units of 10 ' A referring to the g4 which

0
joins the atoms 0-1-2-3-0 of Fig. 1. The equilibrium coordinates of the atoms in A are 0,
(0.000,0.000,0.000); 1, (2.352,0.000,0.000); 2, (3.136,2.217,0.000); 3, ( —0.784, 1.108,1.920). The six rows
and columns in the matrix refer, from the top downward and from the left to the right, to the displace-
ment of atom 1 along the x direction, the displacement of atom 2 on the x-y plane, and the displacement
of atom 3 along x, y, and z. Because of the rotational invariance the axes are de6ned such that atom 1

always lies on the x axis and atom 2 on the x-y plane. The X&,X& term is obviously the first-shell
MSRD, while the upper-left 3 X 3 block is the vibrational correlation matrix for the g3 path 0-1-2-0.

Xl
X2
Y2

X3
Y3

Z3

X)

3.400
2.004
0.214
1.397
0.107
0.186

X,

2.004
17.50

—5.939
7.696
5.931

—0.172

0.214
—5.939

6.067
—2.603
—2.337

0.128

X3

1.397
7.696

—2.603
16.88

—1.446
7.941

0.107
5.931

—2.337
—1.447

19.88
—10.07

Z3

0.186
—0.172

0.128
7.941

—10.07
13.09
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FIG. 2. Three-dimensional views of the fundamental peak of
the three-body correlation function for the (a) Wooten-Winer-
Wearie model and for the (b) Biswas-Soukoulis-Grest model.
The peak refers to the basic triangle in the tetrahedron. The
coordinates are, resp'ectively, r01, the first bond length; I9, the
angle between the two bonds 0-1 and 0-3; and r03 is, the second
bond length (see Fig. 1). The peaks are evidently Gaussians and

0
are centered around the c-Si values of 2.352 A for the distances
and 109.47' for the angle. The difference between the two mod-
els is evident.

detail in Ref. 15.
We computed the distribution of triangles for the fol-

lowing a-Si or a-Si:H models: (1) the Henderson model';
(2) the Guttman-Fong a-Si:H model'; (3) the Wooten-
Winer-Weaire (WWW) model'; and (4) the Biswas-
Grest-Soukoulis (BGS) model. '

As an example we report in Fig. 2 a three-dimensional
view of g3(r„rz, 0) of the most recent models: the WWW
model in Fig. 2(a) and the BGS model in Fig. 2(b). We
note first that in such a coordinate choice the triangles'
distribution can be satisfactorily expressed by a Gaussian.
This is the proof that the Gaussian approximation for the
structural disorder is not meaningless, and also that the
present choice for the coordinates is appropriate. In
Cartesian coordinates the points are distributed along the
arc of a circle described by the angle fluctuations and fur-
ther terms in K& J' should be considered.

A further fact we would like to stress is that the two
models, which are among the most sophisticated avail-
able for a-Si, present large differences in the correlation
functions.

Because of the Gaussian shape of the g3 peaks and the
identity of the two nearest-neighbor bonds, the distribu-
tions are completely define by the average bond distance
R and angle 0 and four more parameters for the covari-
ance matrix M, namely the bond-length (o z =AM+ z )

and angle (a &=AM& z) standard deviations and the
bond-bond (pz z = Mz

& z2/o z ) and bond-angle [pz &

=M~ s!(o~ Xcrs)] correlations. These two parameters
are the additional information present in the g3 peak that
is not contained in gz. In Table III we report the values
for the four models considered. We see again that the
differences are large; besides the cr values, the correla-
tions also differ from model to model by a large amount,
indicating, for instance, that in the BGS (molecular-
dynamics) model bond-length Auctuations are less corre-
lated to both adjacent bond and angle fluctuations than in
the WWW or other models.

pected contributions arising from y3 paths, we shall con-
sider in this subsection the shape of the peaks of g3 due
to the basic triangle in the tetrahedron. We shall use as
coordinates the two first-shell bond distances and the an-
gle in between, whose average value should be the
tetrahedral value of 109.47; this choice will be justified
later. The same distribution, g3(r&, r2, 0), is useful for
two different kinds of g3 signals: the path, which will be
called g3„, within the tetrahedron (say 0-1-3-0 in Fig. 1,
not indicated with the arrows), and the already con-
sidered path g3z, which also involves the second shell
(the 0-1-2-0 in Fig. 1) and other y4 signals as discussed in

III. NUMERICAL CALCULATIONS

A. Computational methods

We used two different numerical methods of calcula-
tion of the damping effect. The first consisted in evaluat-
ing the integral in (3) generating a large number of paths,
sampling in a random way the known Gaussian distribu-
tion of displacements and adding the resulting contribu-
tions. While it is obvious that this is not the most clever
procedure, it must be considered that it is a safe method,
which can be generalized to the case of non-Gaussian dis-

TABLE III. Parameters for the first peak of the three-body correlation function in various models
for a-Si and a-Si:H.

Model

Henderson
Guttman and Fong
Wooten, Winer, and Weaire
Biswas, Grest, and Soukoulis

R (A)

2.348
2.341
2.354
2.329

0 (deg)

109.2
109.4
109.2
108.7

0.089
0.074
0.060
0.048

o. (deg)

12.3
12.0
1 1.3
15.1

PR, R

0.072
0.344
0.313
0.202

pR, o

0.184
0.108
0.145
0.048
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tributions, or which can be used directly on a given
structural model. It turned out that a good sampling of
the tails of the distribution is needed; otherwise the re-
sults are incorrect, especially at large k values. A reason-
able size for the random sampling for a g3 distribution is
1000. This can be done in approximately 3 h of CPU
time on a VAX 8650. In the case of wide distributions
typical of the amorphous materials a larger sampling is
needed. The application of this procedure to g& turned
out to be impossible since the time needed for the calcula-
tion of each gz contribution is = 3 min.

The second method consists of calculating numerically
the gradients of the amplitude and the phase of the MS
contribution and successively calculating the damping
factor using Eq. (8) of the previous section. This second
method was considerably faster and suitable for general
use. However, the results are consistent only if the order,
to which the Taylor expansion of the signal is truncated,
is sufficient. In the calculations that we have performed
we monitored the consistence of the results using both
methods. First, the random sampling was used, increas-
ing the size of the sampling, up to the convergence of
both the actual covariance matrix and calculated spec-
trum, after a calculation with the derivative method was
performed. The two methods give identical results, as
has been verified both for thermal and structural disor-
der. From this we conclude that the first-order Taylor
expansion of phase and amplitude is sufficient for our
purposes.

B. Calculation for the thermal disorder in c-Si
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FIG. 3. Comparison between typical undamped multiple-
scattering signals and their thermal averages at 500 K. From
the top to the bottom the signals refer to the second-shell
EXAFS or path 0-2-0 (g&), the double-scattering 0-1-2-0 (y3),
and the triple-scattering 0-1-2-3-0 (y4), as shown in Fig. 1.

We calculated the g2 signal due to the second coordi-
nation shell and the signals g3 and y4 due to the
multiple-scattering paths previously described at the tem-
peratures of 80, 300, and 500 K. In Fig. 3 we report the
comparison between the undamped signals and the
damped signals at 500 K for the three contributions. We
observe that the y2 and y3 oscillate almost in opposition
of phase; as already pointed out, as a consequence, the
eAect of the thermal damping is particularly important to
determine the shape of the total signal.

In order to compare the eftective damping at the vari-
ous temperatures we report in Fig. 4 the logarithm of the
ratio of the damped amplitudes with the undamped am-

plitudes versus k for the three signals (solid lines). The
dotted lines represent the damping coming from the Auc-

tuation of the total path length only, neglecting all the
phase corrections (gI = A, =0): the so-called "geometri-
cal" contribution. These are easily calculated with the
machinery of the HTE for the VCF. In a pure Debye-
Waller —like case these plots should look like straight
lines through the origin with a slope of —20p (7p being
an equivalent MSRD for the path which actually is —,

'

times the variance of the vibrational displacement of the
total path length R . In the case of the gz signals the
damping is very close to the geometrical one, indicating
that the phase efT'ects are negligible. This result seems to
be a general situation in agreement with the exact calcu-
lation of Ref. 7 and with the approximate treatment

given in the Appendix. On the other hand, in the y3 and
y4 cases the global behavior of the damping is di6'erent
from the simply geometrical one as shown in Fig. 4 by
the evident departure of the solid lines (which give the to-
tal damping) from the dotted lines. This is due to the
effect of the VP term. Nevertheless, looking at the ener-
gy region between 10 and 50 A, it is possible to make a
linear fit of the solid lines in order to extract approxi-
mately an eff'ective MSRD (i.e., cr ) for the studied MS
contributions. In our case the results so obtained are
about 20% more than the geometrical values for all the
paths.

For comparison, these results are reported in Table IV
together with the values of the geometrical MSRD. We
would like to emphasize that in this case the real damp-
ing for y„&z is surprisingly smaller than the second-shell
MSRD which damps the g2 signal. An explanation of
this nonevident behavior lies in the fact that in the g3
considered the strongly vibrating second-shell bond is
counted only once, while the same bond enters twice
(with a total contribution of 4 in the MRSD) in the
second shell, g2.

C. Calculations for the structural disorder in a-Si

In this subsection we report the results obtained for the
two models of amorphous silicon: WWW and BGS. We
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FIG. S. Effective dampings for the three relevant multiple-
scattering paths in the a-Si structure besides the trivial first-shell
EXAFS. They are the second-shell y& signal and the y» and

g» double-scattering signals as described in the text. On the y
axis we report the logarithm of the ratio between damped and
undamped amplitudes and on the x axis the square of the photo-
electron momentum. The solid hnes refer to the Wooten-
Winer-Weaire model, while the dashed lines refer to the
Biswas-Soukoulis-Grest model. The difference between the cor-
responding signals is evident.

FIG. 4. Effective dampings for the three prototypical
multiple-scattering, y~, y„and y4, paths described in the text.
On the y axis we report the logarithm of the ratio between
damped and undamped amplitudes and on the x axis the square
of the photoelectron momentum. In each plot three curves are
reported which refer to the temperatures of 80, 300, and 500 K,
as indicated in the plot for g~. The dashed lines refer to the
pure geometrical damping, while the solid lines refer to the total
effective damping which also takes into account the phase term.

have calculated the second-shell g2 signal and the g3g
and y3~ signals previously described in Sec. IID. The
reason for considering these contributions is that they
contribute to the fine details besides the trivial first-shell
EXAFS in the a-Si photoabsorption spectrum. The con-
tribution from the y4 path considered for the c-Si case is,
for instance, strongly washed out by the continuous
dihedral-angle distribution.

In Fig. 5 we report the logarithm of the ratio of the
damped to the undamped amplitudes for the three signals
for the WWW model (solid lines) and for the BGS model
(dotted lines). In this amorphous case the larger width of

the Gaussian distribution resulted in larger damping of
the signal, and in a very slight distortion due to the V(t
term also in the yz case. Moreover, contrary to the
thermal case, the phase effects in the y3 are very impor-
tant. It is no longer possible to approximate the damping
with a linear fitting and, at the same time, the term
( 2 ] Mg~ )/2 p in Eq. (8) becomes relevant, producing a
dephasing between damped and undamped signals. This
fact makes a phenomenological damping of Debye-
Waller type in highly disordered cases completely mean-
ingless. We also observe how the damping for the two y3
signals is considerably different even though their geome-
trical damping is identical (same triangle). This effect is
totally due to differences in the phase contribution.

As clearly shown by Fig. 5, the two models give really
different signals. The main effect is due to the larger an-
gular spread in the BGS model than in the WWW model;
however, there are other differences. If the two sets of
lines were scaled to make the two g2 dampings coincide,
the y3 damping lines would still not coincide. This effect

TABLE IV. Effective D%' factor for several multiple-scattering paths at 300 K in c-Si. The geome-
trical contribution is reported for comparison. The total values refer to a linear fit in the region 10—50
A

Path
Path

length (A) Degeneracy
Effective MSRD at 300 K. (10 A )

Geometrical Total

y2 0-2-0

y3 0-1-2-0
y4 0-1-2-3-0

7.682
8.545

11.56

12
24
48

8.08
5.35
6.03

7.99
6.38
6.46
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IV. CONCLUSIONS

In this paper we have presented the theory of the vi-
brational and structural damping of the general term of

must be also attributed to the difference in the correla-
tion, which is the new information contained in g3, as al-
ready pointed out in Table III.

In Fig. 6 we report, for completeness, the comparison
between the mentioned signals calculated for the two
models (the solid line refers to the WWW model). As ex-
pected, the signals show differences both in amplitude
and in phase. The magnitude of these differences is well
beyond the usual noise level in x-ray-absorption spectra.
In order to make a real comparison with an experimental
signal, a complete analysis of all MS paths and a good
treatment of the inelastic losses in the solid medium
should be performed. This work is presented in a subse-
quent paper, Ref. 15, where the x-ray-absorption spec-
trum of a-Si materials is interpreted in terms of single-
and multiple-scattering contributions configurationally
averaged on the basis of the present theoretical approach.

These results suggest that additional information
beyond the radial distribution function can actually be
obtained by means of a multiple-scattering analysis of the
experimental signal and can open the way to the use of
the x-ray-absorption spectroscopy as a means for under-
standing the local order in amorphous systems and
discriminating among different models for amorphous
structures.

the MS series. The importance of our formalism, concep-
tually easy to understand, lies in the fact that for the first
time the correlations effects are included in the calcula-
tion. They are in the matrices M. Numerical results on
the thermal effects in crystalline silicon and on the
structural effects in amorphous silicon have been report-
ed as protoypical cases. Nevertheless, our method is
quite general and can be applied to other cases.

We have shown that the main vibrational damping is
due to the geometrical Debye-Wailer factor only for the
y2 terms. On the contrary, phase corrections become im-
portant in the g3 or g4 terms and account for a large per-
centage of the total damping.

As a result of our analysis it is now clear that the gen-
eral belief that the vibrational damping is stronger in

) 3 than in a single scattering signal is not well found-
ed. In fact, we have presented an explicit case in which
g3 has a smaller effective damping than y2 ~ This is not a
peculiarity of the systems considered; its origin lies in the
low correlation present in the displacements of adjacent
bonds compared to the total correlation present in the
same bond which is counted twice in a general single-
scattering path.

The application of our method of analysis to investi-
gate structural disorder, using two recent models for
amorphous silicon, has led to interesting results. The
larger damping makes in this latter case g2 and y3 com-
parable in amplitude in such a way that the total signal
turns out to be very sensitive to the differences in the
structure, providing a way for discriminating different
models of disorder. The experimental application of our
method to the analysis of the E edge of amorphous sil-
icon is given in Ref. 15. This research allows for the use
of x-ray-absorption spectroscopy as a probe of higher-
order correlation functions in various kinds of condensed
systems.
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APPENDIX

In this appendix we derive an analytic expression in
terms of the atomic phase shifts for the damped EXAFS
signal using, for the spherical-wave propagators' between
sites i and j, the simple approximation

Ip .

GI.I. =4mYL, (R&~ ) YL'(R,i )
. fa (P,J ),

Plj

where p =kR, L —= ( l, m ) is a collective angular-
momentum index, and
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i a&&, /2p

Here aI& =l(1 +1)+I'($'+1). This simple approxima-

tion reproduces quite well the exact EXAFS term both in
amplitude and phase. Following the same procedure
used by Beni and Platzrnan, it is easy to obtain an ex-
pression for curved EXAFS which accounts quite well for
the Debye-&aller factor. The final result is

&a

I' 2p J~

where I is the angular momentum of the final state, o . is the usual MSRD of the jth atom, and

pfi (k)=2k aI( Ik—R

Di6'erent calculated cases, which have not been reported here, are in agreement with the calculations described in the
main text both in amplitude and phase behavior.
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