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Molecular-dynamics study of the reconstructed Au(111) surface: Low temperature
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We study the stability and dynamics on the reconstructed Au(111) surface using three-
dimensional molecular-dynamics simulations. The small-amplitude surface-phonon dispersions are
calculated along the (110) direction and compared with inelastic-He-scattering data. The agree-
ment with the experimental data is remarkable, given that the parameters of the surface interatomic
potentials are chosen solely to reproduce the size and type of the observed surface dislocations.
Low-lying localized modes (soliton modes) appear in all three polarizations and localized modes
with polarization in the sagittal plane are observed around the K point with energies of about 8

meV.

I. INTRODUCTION

It has been amply demonstrated over the past two de-
cades that the structure of clean surfaces usually deviates
from that of the bulk. The deviation is identified as ei-
ther a relaxation or reconstruction depending on whether
it involves changes in the interlayer distances near the
surface or it incorporates a deviation of the structure and
geometry of the surface layer itself from the bulk mor-
phology. Extensive studies of various systems exhibiting
such deviations have been reported in the literature and
were predominantly measured by low-energy electron
difFraction (LEED).' Among the systems studied are
the close-packed (111) surfaces of fcc metals. Although
quite a few such surfaces involved some degree of relaxa-
tion, gold was found to be the only metal in this group
that exhibits the phenomenon of reconstruction of the
(111)surface. '

Recent application of helium-atom scattering (HAS)
and transmission electron microscopy (TEM) to the
study of the gold (111) reconstruction have confirmed
that the reconstructed unit cell has a periodicity of
(22+1)X+3. Furthermore, a TEM (Ref. 7) result sug-
gested that the reconstruction involves an ordered array
of boundaries between surface regions of ABC and ABA
stacking. HAS, with a high degree of spatial resolution
and surface sensitivity to allow the detection of surface
corrugation of about 0.02 A, was able to provide a more
detailed picture of the reconstruction: on the one hand,
it furnished information about the shape of the boun-
daries suggesting that they can be modeled by sine-
Gordon (SG) solitonlike profiles, and thus a SG soliton
lattice, and, on the other hand, showed that the width of
the regions with ABA stacking are not equal to those
with ABC stacking. Since a SG soliton lattice is charac-
terized by equally spaced SG solitons, belonging to the
class of connoidal solutions to the sine-Gordon equation,
the second observation posed an apparent contradiction.
This problem was resolved by the introduction of the
double-sine-Gordon (DSG) soliton model which, in
efFect, incorporates a lattice of bound pairs of SG soli-

tons. The proposed DSG model allows for the coex-
istence of ABC and ABA stacking with difFerent domain
widths with the ABA-stacked domain being located be-
tween the bound-soliton pair (which hereafter will be re-
ferred to as subsolitons). Recent scanning-tunneling-
microscopy (STM) experiments' provided a detailed pic-
ture of the real-space atomic arrangement in the recon-
structed surface which corroborated the picture obtained
from the DSG model. Moreover, an accurate measure of
the size of AB A stacking regions relative to ABC stack-
ing regions ca,n be easily extracted from these results, giv-
ing a ratio of 0.50.

The significance of the DSG model goes beyond just
being a convenient picture of the surface structure. In
fact, it provides a framework within which a clear and
straightforward connection between the details of the ob-
served structural features and the underlying energetics
that produces them. Consequently, it has the unique
power of establishing a model Hamiltonian based on
definite relationships between the structural length scales
of the soliton lattice and the energy parameters that enter
into it. In turn, the established Hamiltonian can be used
to study the dynamical properties of the associated sys-
tem, namely, the reconstructed Au(111) surface. It is one
of the main goals of this work to demonstrate the poten-
tial of such a model.

In the past five years the experimental study of surface
phonons of transition and noble metals has been conduct-
ed by means of high-resolution He-atom spectroscopy"
(HRHAS) and high-resolution electron-energy-loss spec-
troscopy (HREELS). ' Recent HRHAS (Ref. 13) experi-
ments have revealed some unusual features in the surface
dispersion curves of noble metals: Cu(111) and Ag(111)
show, in addition to the Rayleigh mode, an anomalously
soft resonance that was not predicted in all previously
published lattice-dynamical (LD) calculations based on
force constants determined from a best fit of bulk disper-
sion curves. ' ' Since the Ag(111) surface was known
not to reconstruct, the new mode was attributed to a
"peeling ofF" of a mode from the longitudinal bulk band
edge analogous to the well-studied "peeling ofF" of the
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Rayleigh mode from the transverse bulk edge produced
by the boundary conditions at the surface. As in the
Rayleigh mode, the vibrational amplitude at the surface
is expected to increase with increasing shift in frequency.
Bortolani et a/. ,

' working within the framework of a
force-constant LD slab model, have proposed an ad hoc
softening of the in-plane surface force constants as a pos-
sible source of the anomaly. This was more directly sup-
ported by extensive comparison between calculated and
experimental time-of-fiight (TOF) spectra. ' ' Several
speculations as to the origin of this softening has been re-
ported and all seem to focus on the role of the sp elec-
tronic states. Bortolani' has attributed the softening to a
weakening of s -d hybridization. The presence of hybridi-
zation usually enhances the d occupation, and for nearly
full d bands it tends to increase the short-range repulsion
between neighboring d shells. The presence of the
surface-vacuum interface reduces the hybridization and
tends to decrease the d-d repulsion from its nominal
value in the bulk. The decrease in repulsion is thus
rejected in the reduction of the in-plane surface force
constants. Heine and Marks' discussed a similar model
for the noble metals. However, this picture incorporates
more subtle competition between a pairwise d -d repulsive
potential and a rnultiatom sp-like electron-gas attraction.
The attractive forces are attributed to an anomalously
deep attractive mantle in the pseudopotential. Jayanthi
et al. proposed that the contribution of the sp charge to
the observed phonon anomalies can be treated by includ-
ing a multipole expansion of the sp charge in a phenorne-
nological LD slab model. The multipole expansion is
taken around a high-symmetry point in the interstitial re-
gions where the sp charge density is highest. In such a
description the electronic degrees of freedom are treated
as Auctuating multipole moments whose coupling to the
ion displacements produces the desired softening. The
model reproduces the observed surface phonon disper-
sions of Cu(111) and Ag(111) including the anomalous
softening.

The case of Au(111) represents an extreme example of
the reduction of surface force constants, where the sur-
face goes through an instability that drives the recon-
struction. The experimental rneasurernents of the pho-
non dispersions of the reconstructed Au(111) surface
show what appears to be two soft surface-acoustic
branches, which lie far below the transverse bulk edge. '

Furthermore, the lower branch seems to terminate at
about the middle of the surface Brillouin zone (SBZ).
The model of Jayanthi et a/. , although able to repro-
duce correctly the softening in Cu and Ag, could not
reproduce the large softening observed in the Au(111)
surface modes. However, it predicts a lattice instability
at long wavelengths where unstable surface-phonon
modes appear in their calculated dispersion curves
around the 1 point for the unreconstructed Au(111) sur-
face. Santoro et al. ' attempted to improve upon the
Bortolani model by performing LD slab calculations for
both ABC and ABA stacking in order to investigate the
e6'ects of the reconstruction on the experimental phonon
inelastic scattering intensities. Although the above-
mentioned models provided reasonable agreement in

fitting the experimental dispersion curves of Cu(111) and
Ag(111) and explaining the observed anomalies, they fell
short of achieving similar success in fitting the measured
Au(111) data and in providing a convincing explanation
for the rather abrupt termination of the lower surface-
phonon branch. We believe that the shortfall of all these
models is that they ignore, first, the dynamic role of the
dislocations in modifying the dispersion curves, and
second, the e6'ect that the lowering of the symmetry of
the reconstructed surface, from that of the unreconstruct-
ed one, has on removing existing degeneracies of the pho-
non branches specially at the boundary of the SBZ.

The present work tries to remedy these shortfalls by in-
vestigating the actual reconstructed surface using a
molecular-dynamics (MD) approach. Tossati and co-
workers carried out extensive MD simulations of Au
surfaces, including the (111) surface. Their work on
Au(111) includes investigation of the energetics and static
configuration of the reconstruction at T =0 as well as the
surface melting behavior employing an empirical para-
metric many-body —force model that is able to reproduce
a large variety of bulk properties. In their model the op-
timal size of the reconstruction cell turns out to be
11X &3 (Ref. 24) which is about half the size of the actu-
al reconstructed unit cell. We attribute their difhculty in
reproducing the right reconstructed unit cell with the
short range of the ionic potential used in their model
which is thus unable to discriminate energetically be-
tween ABC or AB A stacking. This, as we will see is cru-
cial in order to incorporate DSG dislocations in the
reconstruction. In this work, the DSG model is em-
ployed to establish a fundamental connection between the
measured length scales characterizing the dislocations
and their periodicity and the energy scales of the parame-
ters that appear in the interatomic potentials. We make
use of an e6'ective Hamiltonian in which the surface-
surface, surface-bulk, and bulk-bulk interactions are de-
scribed by three pairwise potentials. The role of the sp
electrons is incorporated by introducing a mismatch be-
tween the unstrained surface periodicity and the bulk
periodicity. This is accomplished by making the surface-
surface forces attractive at the bulk equilibrium atomic
radius R~. This creates a competition between the
surface-surface and surface-bulk interactions. The
creation of dislocations may be viewed as a compromise
between having the surface atoms reduce their equilibri-

'um atomic spacing or occupying the minimum-energy
sites of the efFective substrate potential. The spontaneous
creation of dislocations depends on the value of the misfit
relative to the ratio of the strengths of the surface-surface
interaction to the surface-bulk interaction. A critical
misfit can be defined, below which the reconstructed state
is stable relative to the unreconstructed state. Frank and
van der Merwe worked out the equilibrium conditions
for the one-dimensional DSG chain with free ends.
Okwamoto and Bennemann arrived at conditions for
the critical misfit of the Au(111) surface as a function of
surface shear and bulk modulus working in a two-
dimensional continuum model. Their model, however,
assumed that at the surface the 2 and C sites are energet-
ically degenerate and thus, it is only able to reproduce
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sine-Gordon dislocations rather than dislocations of the
DSG type.

In the next section we review brieAy the DSG mode1,
outline its salient features, and establish the relevant pa-
rameters which are &ised to impose conditions on the po-
tentials employed in the MD simulations. In Sec. III, we
present a detailed description of the procedures and cri-
teria followed in selecting and calculating the interatomic
potentials. We also detail the simulation procedure used
in obtaining the relaxed reconstructed configuration em-
ployed in the MD experiments. The results from the MD
experiments are presented in Sec. IV. %'e discuss the
morphology of the relaxed con6guration and compare
some of its features with HAS (Ref. 4) and STM experi-
ments' and present the calculated phonon dispersion
curves along the (110) direction. Finally, we collect our
comments and concluding remarks in Sec. V.

II. THIE DOUBI K-SINK-GORDON MODKI.
AND ITS RELEVANCE TO THE RECONSTRUCTED

PHASE OF Au(111)

A. The double-sine-Gordon model

The one-dimensional DSG model Hamiltonian can be
written as

8 P(x, t) 1 BV(P)
Bx' 41'o dP(x, t)

(2.3)

with

p
2 Wotanh (R o )

1/2

(2.4)

The solutions to this equation incorporate one or more
DSG solitons depending on the boundary conditions im-
posed. The form of the DSG potential selected above al-
lows expressing the DSG one-soliton solution as the sum
of two sine-Gordon solitons centered at X0+l0R0/277
and X0 —l0R 0/2m,

2m
P(x) =a so (x Xo)+Ro

0

Gordon counterpart in that it incorporates two harmon-
ics of the 6eld, which give rise to two types of minima in
the potential.

The static-equilibrium solution for this system is ob-
tained by deriving the Hamilton-Jacobi equations from
the above Hamiltonian, and then setting the time-
derivative terms to zero, giving

2 '2
BP(x, t) ~ BP(x, t)

dt 2 Bx

2m+ so (x —Xo)—Ro
0

(2.5)

8'0
+ tanh (Ro) V(P)

2 (2.1)

where (()(x, t) may be considered as a strain field; the first
term represents the kientic energy of the system and the
second term the elastic energy, where p is the stiffness
constant of the medium. V(P) is an underlying potential
and it can be expressed in the following form

V(P) = [1—cos(P/2)]
4

cosli (Ro)

+tanh (Ro)[1—cos(P)] (2.2)

for the sake of simplifying the physical interpretation of
the equilibrium solutions associated with the DSG Ham-
iltonian. The term ( Wo/2)tanh (Ro) in (2.1) normalizes
V(P) to Wo. The DSG potential difFers from its sine-

I

where o so(x ) =(4/~)tan '(e").
l0 appears as a length scale for the soliton solution

above, and X0 is the position of its center of mass. The
SG subsolitons are separated by a distance of 2R0l0/2m,
while the effective length of each subsoliton is lo/2. The
size of the DSG soliton, thus, depends on the parameters
l0 and R0 that appear in the underlying potential. The
DSG equation has been studied extensively in the litera-
ture. One of the interesting features of this type of
soliton is that it possesses an internal degree of freedom
which has been compared to that of a diatomic mole-
cule."

A Frenkel-Kontorova-like DSG model is obtained
from a 'discretized version of Hamiltonian (2.1). It
represents the case of a one-dimensional chain of atoms
connected by springs with spring constant p and natural
length b, and subject to a substrate potential similar to
(2.2). The total potential energy of the chain is given by

.N —1 i N —1 4
V&=pa —,

' g (u, +i —u, —po) + g [1—cos(2mu, )]+tanh (Ro)[1—cos(4mu, . )]';=o 4lo;=o cosh (Ro)
(2.6)

where a is the natural periodicity of the substrate poten-
tial. The strain field P is replaced by a discrete variable
u; =x;/a (/=4' u;), which represents the displacement
of atom i from the ith absolute minimum of the underly-
ing substrate potential VDsG. , i.e., from the commensurate
positions normalized to the substrate periodicity a. a
now represents the unit of length in the system. Conse-
quently, the length scale l0 becomes

l0=
' 1/2

pa
2Wotanh (Ro)

(2.7)

Finally, p0=1 —b/a is the natural misfit between the
chain and substrate periodicities. Minimization of (2.4)
with respect to u; yields the static discrete DSG equation
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2 —~ 26;u=-
Io2 cosh (Ro)

sin(2mu;)+tanh (Ro)sin(4~u;)

B. Relevance of the DSG model
to the reconstruction of An(111}

The structure of the reconstructed Au(111) surface has
been interpreted as a two-dimensional lattice comprised
of linear chains of double-sine-Gordon (DSG) disloca-
tions oriented along the ( 110}direction, and stacked in a
zig-zag pattern along the (112}direction. The details of
this structural model and its fitting to He diffraction data
have been worked out elsewhere. In this section, howev-
er, we shall establish the similarities between the salient
features of the substrate potential of the Au(111) and
those of the DSG potential. Moreover, we shall demon-
strate the relation of the parameters which appear in the
DSG soliton solution to the energetics of the potential,
and establish their relevance to the molecular-dynamics
work presented in later sections.

The potential-energy minima at the surface are located
at C sites (fcc stacking) and A sites (hcp stacking) (see

I

(2.8)
6;u =—u;+ &

—2u;+ u;, is the second difference of u;.
For large lo values, the solution to (2.8}can be approxi-

mated by the continuum DSG soliton solutions. In the
perspective of the Frenkel-Kontorova (FK} model the
soliton solutions represent regions of departure from a
periodic phase of the atom chain in registry with the un-
derlying substrate potential; these departures can be re-
garded as localized defects termed misfit dislocations by
Frank and van der Merwe.

Fig. 1). The two sites are not energetically degenerate
when one type of stacking is favored. In fcc (111) sur-
faces the C sites should be favored if a continuation of the
bulk occurs. In the case of the Au(111) surface, it has
been proposed' that a redistribution of the sp electrons
at the surface favors a reduction of the mean interatomic
separation in the surface layer with respect to the bulk
values. This reduction gives rise to a mismatch between
the surface and atomic periodicities in the bulk. The
creation of solitons or dislocations at the surface corre-
sponds to a compromise between occupying the C sites
and reducing the interatomic separation at the surface re-
sulting in both fcc and hcp regions being present. The
type of soliton is dictated by the energetics and topology
of the underlying substrate potential. Figure 1 shows
schematically the minimum-energy path which connects
a C site with an A site. The bridge sites along the path
C~A~C correspond to saddle points in the three-
dimensional substrate potential.

The substrate potential acting on the atoms of the
Au(111) surface can be expanded in terms of the two-
dimensional surface reciprocal-lattice vectors as

V(r)=g[v (G)e' " '+v (G)e' "+ ']
6

(2.9)

where IG] is the set of reciprocal-lattice vectors of the
hexagonal (111) mesh and 25 is the separation between
the A and 8 sublattices. The coefficients v~(G) are
greater than vz(G) if we assume that the interaction of
the surface atoms with the A lattice is weaker than the
corresponding interaction with the B lattice. I.imiting
the expansion to the shortest G vectors and restricting
the path to C —+ A ~C we obtain

V(p)=2(2v„—vs) cos p cos ipse +—,'cos
ipse

2m' 2m, 4m

d 3

+2 3vssin ~p~
2& 2&

cos p —cos

ipse

(2.10)

where —d/2~p~d/2 and we have parametrized the
path by setting r=(x,y)=[pi(1/&3)(~p~ —1)]. d is the
nearest-neighbor distance. p =d /2 and —d /2 corre-
sponds to contiguous C sites, while p =0 puts us on
the A site along the path: Vc = —3(vs+ vz ) and
Vz = —3(vs —2u~ ), while at the bridge sites (p=d/4
and d/4) Vz„= —2v—&+v&.

+cAc(x) Ec+ VDSG(x) (2.11)

with

I

one-dimensional double-sine-Gordon potential as long as
the C and A sites are not energetically degenerate. The
energy curve along this path can be written as

8'0 4 27TX
VDsG(x) = tanh (Ro) ~

2
1 —cos

cosh (Ro) d* +tanh (Ro) 1 —cos 4+x (2.12)

The variable x represents the displacement along the path
with a C site as the starting point, d*=(2/Y3)d is the
length of the path, and 8'0 is the peak-to-peak amplitude
of the potential and is given by the energy difference be-

tween the bridge sites and the C sites: WO=Eb„dg, —Ez.
The parameter Eo depends on the ratio of the energy at
the A sites to the energy at the bridge sites measured
with respect to the energy at the C sites:
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4 tanh (Ro) E„E—c 3U„

cosh (Ro) WD Ug+4vg
(2.13)

(110) direction. Using this and the observed ratio be-
tween A and C regions, one obtains a relation for the pa-
rameters lo and Ro,

t,R,
(2.14)

while the size of the C regions is given by

Lc ~X (2.15)

AX above is the separation between the centers of con-
tiguous DSG dislocations. This separation can be equat-
ed to the size of the reconstructed unit cell along the

The values of the DSG parameters lo and R o are deter-
mined from the observed size of the dislocations in STM
measurements' and from fitting the diffraction pattern to
experimental He-scattering results. From STM mea-
surements the ratio of the size of A regions to C regions
is approximately —,'. In terms of DSG parameters the size
of the A regions is given .by the separation between the
SG subsolitons,

loRO —-24 . (2.16)

This relation, together with a previous Gt to the
diffraction pattern, establishes the value of the DSG pa-
rameters which appear in the DSG solution (2.5): Io =Sd
and Ro = 3 (d is nearest-neighbor separation in the bulk).
The values of these parameters are introduced into Eqs.
(2.7) and (2.13) to generate constraints in the potentials
which describe the surface intralayer and interlayer in-
teractions. It is these constraints which establish a direct
connection between the type of surface interatomic in-
teractions and the size of the observed reconstructed unit
cell.

III. MOLECULAR DYNAMICS:
MODEL AND METHODS

We compute the low-temperature small-amplitude
surface-phonon dispersions of the reconstructed Au(111)
surface along the (110) direction using microcanonical
molecular dynamics on slabs of various sizes. The forces
on the slab particles are derived from an effective Hamil-
tonian

p.~=X +2 X ~ss(& )2M '(; )
(jwi)

+-,' g vs, (...)+-,' g v»(r, , ).
iES, (i,j)EB
jEB (j wi)

(3.1)

The summation runs over an n-layer slab with N atoms
and r,~

= ~r; —rj ~
is the distance between atom i and its

jth neighbor. The bulk properties are assumed to be de-
scribed by two-body potential VBB. The interaction be-
tween two surface atoms is given by Vss, while the in-
teraction between a surface and a bulk atom is described
by VsB. We assumed radial forces and pairwise poten-
tials. The choice of parameters for these potential is dis-
cussed in the next section.

A. Calculation of interatomic potentials

&110&

FIG. 1. Minimum-energy path of the surface reconstruction.
The surface atoms occupy the C sites in the unreconstructed
configuration: , C sites; X, A sites; 0, B sites. Also shown is
the profile of the substrate potential acting on a surface atom as
it goes from a C position to an A position and back to a C posi-
tion. The bridge sites correspond to the points along the path
where it crosses the lines joining adjacent 8 atoms. These are
points where the substrate potential is a maximum.

The criterion followed in calculating the potentials was
based on several guiding factors which included the mor-
phological properties of the reconstructed surface with
the connection between the structural length scales and
potential parameters established by the DSG model. Em-
phasis was placed in Inaintaining a physically simple pic-
ture and the ability to reproduce the salient features of
the model with the least number of parameters. In prin-
ciple, the functional form of the three potentials in (3.1)
can be taken to be different; however, for the sake of sim-
plicity, we took all three potentials to be of the same
functional form. The form we adopted for the interatom-
ic potentials was a Lennard-Jones (LJ) type truncated
smoothly at a cutoff radius with the aid of a Gaussian
function. This choice, although quite simple, reproduces
the desired substrate potential curve with few parameters
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VsB(r;j ) =EsB UB(r,j ),
VBB(rij ) EBB UB(rij )

Vss(r j ) =ass Us("ij)

with
1/2

UB(r; )=.
7J

6

(3.2a)

(3.2b)

(3.2c)

+ &Bexp[ —sB(rij bB )']+d—B, (3.3a)

1/2 6os os
P7J

(six, compared to 15 for the traditional polynomial or cu-
bic spline type). The constraints imposed by the DSG
model do not restrict the form of the bulk-bulk interac-
tion. Assuming that the surface-bulk and bulk-bulk in-
teractions could be treated the same as a first approxima-
tion, we have set the bulk-bulk potential equal to the
surface-bulk potential with the only difference between
the two being a multiplicative energy scaling factor. Al-
though this approximation simplified the form of the
effective Hamiltonian (3.1), it restricted the number of
free parameters in the bulk-bulk potential to just one, the
energy scale, which was adjusted by a best fit of the bulk-
phonon dispersions. The potentials are written as

site, while ~=—,
' and hX= —,

' correspond to the bridge
sites along the path. The DSG parameter Ro is used to
establish an energetic constraint on the substrate poten-
tial curve. This is done by requiring that the energy
difference between 3 and C sites in V,„b, be equal to that
of the DSG potential curve (2.12) with Ra=3.0. Using
(2.13) and writing Wo as the energy difference between
bridge and C sites we get

4tanh (Ro) V,„b,(r~) —V,„»(rc)
cosh (Ro) V b (rB) V b (rc)

(3.6)

(3.7)

with V,„b, given by (3.4). In order to have a finite value
for the parameter Ro above, V,„b, has to distinguish ener-
getically between 3 and C sites. This implies that Vs~
must include at least third-neighbor contributions. In ad-
dition, V,„b, and its derivative should be as smooth as
possible in order to avoid the solitons from becoming
pinned by spurious humps or discontinuities. We accom-
plish this by requiring UB in (3.3a) and its first and
second derivatives to go smoothly to zero at a truncation
radius RT~, which, as already indicated, must be greater
than the separation between third neighbors. Finally, in
order to ensure that the system would be stable at its
nominal volume, we employed a stability condition de-
rived by Johnson which, neglecting volume forces, can
be written as

+ A„exp[ ss(r; —bs) f+ds— (3.3b)

The first step in the calculation is the generation of the
substrate potential from the interatomic surface-bulk po-
tential. The energy of interaction of individual surface
atoms with the bulk atoms can be described as a function
of distance by an interatomic potential curve. Assuming
only central forces are present, the substrate potential at
a position given by a vector r is equal to the sum of all
the pairwise interactions between the atom at r and all its
neighbors in the bulk,

where the sum is over all bulk atoms in a perfect fcc slab
within a radius Rz~ of atom i. We found that the param-
eter Ro given by relation (3.6) varies slowly with the
cutoff radius and with the location of the Gaussian func-
tion, which is specified by the parameter bB in (3.3a). For
a given radius, the parameter bz is determined by em-

ploying (3.4) self-consistently with the other constraints.
We set the cuto6' radius for Uz, RT&, equal to the
fourth-neighbor separation. Using (3.4) together with

V,„b,(r)= —,
' g VsB(lr —rjl) .

jEB
(3.4)

The substrate energy curve along the path C —+ A ~C
is generated by constraining r to vary along this path. A
hard-sphere model was employed as a first approximation
to obtain the variation in the Y and Z components of r as
a function of its X component. Thus, starting with two
contiguous C sites, the path connecting them can be de-
scribed by a vector r =ro —Ar, where ro references the po-
sition of the starting C site and hr=(bX, b, Y, b,Z), with
6Y and hZ given as a function of AX according to

—(-' —l-' —axl ),l
2 2 (3.5a)

0.5 2.0

Qz —
(

2 )1/21 2
3 4

( —,
' —2&36,Y)

(3.5b)

in units of the nearest-neighbor separation in the bulk. In
the above equations 0 ~ AX ~ 1. 4X=

—,
' puts us on the A

FIG. 2. Profile of the bulk-bulk potential. The interatomic
distance is expressed in units of the nearest-neighbor separation
d =2.885 A.
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(3.7) and the other truncation conditions, the parameters
in vz are determined uniquely.

The depth of V~~, czar, was adjusted by a best fit to ex-
perimental bulk-phono n dispersion s. This parameter
provided the energy scale of the other interatomic poten-
tials. Figure 2 shows the bulk-bulk potential Vz~ derived
by using this prescription, and in Fig. 3 we show a com-
parison between bulk-phonon energies calculated using
Vzz and neutron experimental data. Finally, the only
undetermined parameter left in Vz~ is the depth of the
potential c&~. The surface-bulk potential depth was ad-
justed relative to czar to get a best fit of the surface shear-
vertical phonon branch to experimental data. The fit
amounted to reducing as~ by 20% relative to E~z. Fig-
ure 4 shows the substrate potential along the minimum-
energy path C —+A —+C calculated from V&z using Eq.
(3.4) together with the geometric constraints in (3.5). The
dashed line corresponds to the DSG potential (2.12) with
the parameter R0=2.96. The difference in energy be-
tween the A and C sites is about 2.0 meV and the height
of the bridge sites relative to the C sites is about 43.0
meV. It is important to mention that even though there
is a di6'erence in shape between the substrate potential
(3.4) and the DSG potential (2.12), the DSG solution
(2.5), through the definitions of the parameters Ro and lo,
depends only on the height of the substrate potential (the
bridge-site energy) and the difference in energy between
A and C sites. The energy of both potentials in Fig. 4
agree at the bridge sites (x =0.25 and 0.75), at the C sites
(x =0 and 1), and at the A sites (x =0.5).

The parameters in the surface-surface potential Vz& are
calculated employing a similar method. The strength of
the potential is determined using Eq. (2.7), which estab-
lishes a connection between the length scale of the dislo-
cations and the ratio of the force constant associated with
the surface-surface interaction to the height of surface-
bulk potential. Assuming that Vzz includes only first-
neighbor contributions, we can write this relation from
(2.7) as

t) V
lo= (R~) /2[V, „b,(r~) —V,„b.(rc)] .

Br . r. .=ap
lj ij S

(3.8)

0The second derivative of V&& is evaluated at Rz, which
is the nearest-neighbor equilibrium separation of the un-

0strained surface layer in the absence of a substrate. Rz is
the nearest-neighbor separation in the bulk (substrate
periodicity). Just as with Us, additional constraints were
imposed on Uz. Relation (3.8) is particularly simple in
the case in which only nearest-neighbor interactions con-
tribute. Assuming that the range of the surface in-
tralayer potential can be taken to be shorter than the
range of the bulk potentials, we truncated Vzz at a cutoff
radius RT& equal to the third-neighbor distance. More-
over, we imposed a value of zero for Vz& and for its erst
and second derivatives at RT&. The equilibrium nearest-
neighbor separation R& is determined by applying condi-
tion (3.7) to a mesh of atoms interacting via Vzz,

(3.9)

where the sum is over all nearest neighbors of atom i in a
two-dimensional mesh with the symmetry of the unrecon-
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FIG. 3. Comparison between bulk-phonon-energy curves cal-
culated using the bulk-bulk potential V» in this work and
neutron-scattering data from Ref. 34.

FIG. 4. Substrate potential profile (solid line) calculated from
the surface-bulk interatomic potential Vq~ using Eq. (3.4) and
the kinematic constraints specified by Eqs. (3.5). The x axis
refers to the (110) direction [AX variable in (3.5)]. The dashed
line corresponds to the DSG potential (2.2) with Rp=2. 96 and
8 p set equal to the energy difference between bridge and C sites
given by (3.4). The energy difference between 3 and C sites is
about 2 meV, while the height of the substrate potential at the
bridge sites is close to 43 meV.
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TABLE I. Parameters of the interatomic potentials used io
the simulations. The form of the potentials is given in Eq. t,

'3.2)
and f3.3). d =. 2.885 A is the nearest-neighbor separation in the
bulk. pp is the mismatch introduced between surface-surface
and surface-bulk interactions and is defined in Eq. (2.6).

cz& =0.61411 eV
o.g =0.911 18d
s& =21.11342/d2
A~ =0.007 26

bg =1.80000d
d~ =0.005 74
R ~~ =2.000 00d

ss=0 32600 eV
o s =0.853 78d
ss =28.634 89/d
As =0 01542
s = 1.485 42d

ds =0.01173
R~s =1.65792d

sa =0.49129 eV
Ip =8.497 28
Rp =2.957 70

= 23PP= 24

structed configuration. Finally, and more importantly,
we introduced a misfit between the surface layer and the
substrate by expressing the equilibrium nearest-neighbor
distance of the unstrained surface layer Rz as a rational
fraction of the bulk nearest-neighbor distance Rz ..

Rs/Ra =
—,", . (3.10)

B. Simulation procedure

The study of the dynamics of the Au(111) surface
reconstruction through molecular-dynamics simulations
is computationally intensive due mainly to the large size
of the reconstructed unit cell [(22+1)X&3] and to the
large number of neighbors which contribute to the energy
per atom, a consequence of the nondegeneracy between
A and C sites. The long range of the potentials imposes
conditions on the size of the computational cell, which
has to be large enough so as to avoid atoms interacting
with their own images once periodic boundary conditions
are imposed. For the simulations, we take the computa-
tional cell to be a slab of n layers stacked in a fcc
geometry with periodic boundary conditions along the
(110) direction (hereafter the X direction) and along the
(112) direction (hereafter the I'direction). The surface
area of the MD cell must naturally be a multiple of the
reconstructed surface unit cell. %'e take the size of the

This makes the surface-surface interaction attractive
when the surface atoms occupy the substrate potential C
minima which has a periodicity given by the nearest-
neighbor separation in the bulk, RI, . The value of —'„' is
dictated by the size of the reconstructed unit cell and the
observed contraction of 4.4/o along the ( 110) direction.
The misfit is isotropic since the potentials are spherically
symmetric. However, it is energetically more favorable
for the contraction to take place along the minimum-
energy path C—+A —+C indicated in Fig. 1. There are
three such equivalent paths on a fcc (111)surface. In the
present work we have looked at the case where the con-
traction takes place along only one of these paths. This
restriction amounts to having all dislocations in the com-
putational cell along the same direction. The values of
the interatomic potential parameters calculated using the
above prescription, together with the DSG parameters
which result from employing conditions (3.4) and (3.8),
are shown in Table I.

+ tan exp (i i0 ) —R0—2 IT

0

(3.1 la)

(3.11b)

( —,'+2&3f (u; )
Z, —Z, =g(u;)= ( 2 )I/2

(3.11c)
in units of the nearest-neighbor separation in the bulk.
The displacement along the X direction follows the DSG
solution (2.5), while the displacements along the F and
normal directions follow from geometric constraints
which result from using a hard-sphere model.

The initial configuration one obtains employing this
procedure, although close to the minimum-energy
configuration of the slab, required careful annealing due
to the ease in which the solitons can become trapped and
due to the smallness of the Peierls-Nabarro (PN) poten-
tial which arises because of the discreteness of the un-
derlying substrate potential seen by the solitons. The
minimum-energy configuration corresponds to the state
in which all the DSG solitons lie at the bottom of the PN
wells which have the periodicity of the underlying lattice.
The depth of the PN wells is of the order of
exp( 2T10/2), ' and —is quite small due to the large
value of /0 associated with the dislocations. This makes
it difficult to employ Monte Carlo methods of simulating
annealing to find the minimum-energy configuration.
The method we employed had three stages. In stage 1 we
let the. system relax by setting the kinetic energy of the
particles in the slab to zero every time the total kinetic
energy reaches a maximum. In stage 2 we input a small

reconstructed unit cell to be 23 X &3. Moreover, in order
to avoid interactions of atoms with their images, the
computational cell must be at least twice the size of the
reconstructed surface unit cell along the Y direction.
This makes the minimum XF size of each layer in the
slab equal to 2&3X23 (in units of the nearest-neighbor
distance in the bulk, d =2.885 A). This is equivalent to
four rows of atoms with 23 atoms per row in the bulk lay-
ers and 24 atoms per rom in the reconstructed surface.

The slabs used in calculating the surface-phonon
dispersions had 24 or 33 layers and one or two free sur-
faces, with one of them bulklike. Each layer had four or
eight rows of atoms with 46 atoms per row in the bulk
layers while the topmost layer had 48 atoms per row (two
solitons along each row). The T =0 relaxed
configuration was obtained by careful annealing and slow
cooling the slab in a MD framework. An initial
configuration is created prior to cooling by placing DSG
solitons along the X direction on the topmost layer of an
otherwise ideal fcc (111)n-layer slab. The atoms on each
surface row are displaced from an initial commensurate
position r0=(X, , F, ,Z, ) to a new position r,
=(X;,Y;,Z;) according to

r

X,. —X; = —u; = ——tan exp (i —i0)+R00 1 —] 277

7T 0
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amount of Gaussian noise into the velocities (of the order
of 10 K) and let the system evolve for about 30000
time steps (3.2X10 ' s) while monitoring the function

1 N
a(t)= —g t[v, (t)] IN,.

—g [v;(r)] (3.12)

N above is the total number of particles in the slab.
For a three-dimensional system this function fluctuates
around —,

' when the system reaches thermal equilibrium, if
the velocities obey a Maxwell distribution, with the fluc-
tuations being of order I /O N. This soliton motion as it
slides down the PN potential will increase the overall ki-
netic energy and will make a(t) peak when the solitons
have maximum kinetic energy, which occurs at the bot-
tom of the PN wells. The value of the function cx at this
point depends on the initial temperature. In our simula-
tions it was found to be around 7—9 at the maximum.
Figure 5 shows the function a(t) and the kinetic tempera-
ture of one of the presimulation runs as a function of
time. The system reaches thermal equilibrium rather
quickly and the average value of a(t) remains at —', for a
while. The motion of the solitons is quite slow compared
to the average atomic motion in the bulk, and one must
look for a long time (compared to typical atomic times) in
order to observe a change in a(t) due to the motion of the

g (q, co)= J dt's e' 'e "(u„(t)u„(0)) (3.13)

with u„(t)=.[R„(t)—Ro ]; Ro is the equilibrium posi-
tion of the nth particle. The angular brackets ( ) indi-
cate averaging over equivalent rows [see Fig. 6(a)] in the
MD cell and 0. is the polarization. The simulations were
carried out at low temperature (10 —1 K). After allow-
ing the system to thermalize, we let the system evolve at
constant temperature for 25000 MD steps (2.6X10 ' s),
which are then used in the evaluation of (4.1). This gives
a resolution to our phonon dispersions of about 0.016
meV. The equations were solved using a modified Euler
method with two force evaluations per MD time step.

solitons towards a lower-energy state or to make sure
that the system remains at thermal equilibrium for all
times [i.e., a(t) = ,' f—or all observed times]. It should be
noticed that although the sliding of the solitons to the
bottom of the PN wells is identified easily by looking at
the function a(t), the average atomic displacements
which accompany this motion is small, of the order of
0.01—0.001 of the nearest-neighbor separation.

Finally, in stage 3 the kinetic energy of all the particles
in the slab is set to zero when a(t) reaches its maximum.
The configuration is then cooled using the same pro-
cedure employed in stage 1.

The approximate spectral distribution of the surface vi-
brations is calculated by taking the Fourier transform of
the surface position-position correlation function,

IV. RESULTS AND DISCUSSIQN

A. Surface structure

O.O
I (

90.0 180.0 2'FO. O

time /( I.064& iO sec)

FIG. 5. Kinetic temperature (in reduced units) and function
a(t) from Eq. (3.12) as a function of time for a presimulation
run on a 24-layer slab. The time untis are in 1.064X10 ' s.
The function a(t) remains constant at —', for a long time (about
18000 time steps), indicating the system is in thermal equilibri-
um. The motion of the solitons towards a lower-energy state in-
creases the particle velocities and the function a( t).

Figure 6(a) shows a top (XY) view of the top three lay-
ers of a 24-layer slab annealed according to the prescrip-
tion described above. The surface unit has an extra atom
per row compared to the bulk rows. The centers of the
subkinks are located at the bridge sites (around atoms no.
8 and no. 17 in the bulk layers). The separation between
the subkinks is a measure of the size of the hcp region of
the reconstructed cell. From the figure we can see that is
about 8.5 atomic spacings or about 24 A. STM measure-
ments' observe the atomic corrugation around the
bridge sites as stripes which are interpreted as the
domain boundaries between the fcc and hcp regions. The
separation between these stripes is about 22 A and the
distance between pairs of stripes is about 44 A. ' This
separation can be interpreted as the distance between
subkinks belonging to diferent but contiguous DSG soli-
tons. In the reconstructed configuration shown in Fig.
6(a) this separation is about 42 A.

In the relaxed slab„the average interplanar distance is
modified with respect to bulk values. The average out-
ward relaxation decreases exponentially with layer num-
ber. Similarly, the corrugation of the surface due to the
solitons propagates to other layers below the surface with
the peak amplitude of the vertical corrugation decaying
exponentially with layer number. Figure 6(b) shows the
normal displacement of one row of atoms in each of the
top three layers of a typical relaxed slab. The peak verti-
cal amplitude at the surface is maximum around the
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0
bridge sites with a value of about 0.2 A. This is quite
close to the corrugation height in STM pictures, ' which
is 0.15+0.04 A. The vertical corrugation drops to 0.1 A
in the first layer below the surface, while it is about 0.08
A in the second layer below the surface, as shown in Fig.
6(b).

In addition to vertical corrugation, the subsurface lay-
ers show a considerable amount of in-plane shear distor-
tion. Figure 7 shows both X and F distortions as well as
normal corrugation as a function of layer number. Layer
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X X X X FIG. 7. Maximum distortion along the (110) (X), (112)
( Y), and normal (Z) directions as a function of layer number.
Layer 22 is the surface layer. The points plotted correspond to
the atomic maximum deviation from the nominal value in each
direction: O, X; 6, Y;0, Z.
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(110) 22 is the surface layer and the values plotted are the max-

imum deviations from the nominal unreconstructed
value. The in-plane distortion decays faster than the
vertical corrugation. Of all three, the distortion along
the ( 110) direction decays fastest and becomes negligible
after about six layers into the slab. On the other hand,
the vertical corrugation decays slowly with layer number,
although it changes quite rapidly in the first two layers
below the surface. Similar anisotropy in the decay rates
of atomic distortion has been observed in other MD stud-
ies of reconstructed Au surfaces which employ a different
description of the interatomic potentials.
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B. Surface phonons and yhasons+ + + + + + + + + + + + +

The surface-phonon dispersions are computed with q
along the (110) direction. In contrast to the (112)
direction the C3, symmetry of the unreconstructed sur-
face allows mixing of the three phonon polarizations
along the (110) direction, which is due to the absence of
reAection symmetry in the saggital plane. In fact, this
lack of syrnrnetry allows the observed reconstruction to
take place. Furthermore, the symmetry of the recon-
structed surface is C&, which, together with the soliton
superlattice, removes the degeneracies present at the K
point of the unreconstructed SBZ.

For the sake of clarity we have plotted the dispersion
curves for the three phonon polarizations separately.
They are shown in Figs. 8(a) —8(c). Mode mixing is in-
ferred by the overlap of points belonging to different po-
larizations, while the size of the points is proportional to
their relative intensities. The lowest branch [Fig. 8(a)]
shows a predominantly shear-vertical (SV) character (Z

C)
X X X X X X

X
X X X

1 2 3 4 5 6 7 8 9 10 11 121314 151617181920212223
&110)

FIG. 6. (a) Planar view of the surface layer (~ ) of a 24-layer
slab relaxed employing the procedure of Sec. III B. The atomic
arrangement of the first layer below the surface (+) and the
second layer below the surface ( X ) is also shown. The surface
layer has an extra atom per row with respect to the bulk layers.
(b) The normal corrugation of the first three layers (in A) as a
function of atom number: , surface atoms; +, first layer below
the surface, X, second layer below the surface. The corrugation
is maximum around the center of the subsolitons. The separa-
tion between the layers is not related to the Z scale; however,
the various layers are displaced with respect to each other for
clarity.

MOLECULAR-DYNAMICS STUDY OF THE RECONSTRUCTED Au(111) SURFACE:
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polarization) from the I point up to about ~3 of the way
to the K point. It becomes overdamped at wavelengths
shorter than the width of the subsoliton domain walls
{about four atomic spacings). This is due, partly, to the
incommensurability of the domain-wall structure with

the underlying strained substrate. This leads, in e8'ect, to
a crossover to quasiloc+lization where the phonon oscilla-
tions are con6ned to the A and C domains and are
suppressed in the domain walls. The dispersion curve of
the localized models is shifted up in energy to about 8
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FKJ. 8. Calculated surface excitations {solid dots) along the {110) direction together with experimental points {+)from Ref. 13.
0

d =2.885 A is the nearest-neighbor separation. The size of the dots is proportional to the amplitude of the mode in q-co space. Only

the first two largest amplitudes at each discrete q value are shown. The three polarizations are plotted separately: (a} shear-vertical

(transverse Z}, (b} shear-horizontal (transverse F), and (c} longitudinal (X). Phason modes appear in all three polarizations with the

highest mode (about 0.4 meV} shown in these graphs.
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meV, as can be seen in Fig. 8(a). The A and C modes are
not degenerate. There is a small difference between the A
and C phonon energies of about 0.016 meV. Superposi-
tion of Figs. 8(a) and (c) seems to indicate that this seg-
ment of the SV dispersion is a continuation of the highest

phonon branch, which is predominantly of longitudinal
character at smaller wave vectors as observed in Fig. 8(c).

The shear-horizontal (SII) polarization, which is inac-
cessible to HRHAS measurements, is predominant in the
middle branch, Fig. 8(b), at long wavelengths. It exhibits

(a)
Tr ansverse z Transverse y
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1
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0 0 0 ~ ~ 0 ~ e o ~ ~ s o

0.00 1.05 2.10 4,20 0.00

(110& (110&
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Q ~ ~ ~ ~

0.00

(110&

FICx. 9. Energy blow-up of the surface excitations along the (110) directions showing the phason branches. The three polariza-
tions are shown separately. Only two points are seen for the acoustic and optical branches because the computational cell employed
to calculate the modes had only two solitons along the ( 110) direction. The size of the dots is proportional to the amplitude of the
mode: (a) transverse Z, (b} transverse Y, and (c}longitudinal.
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FIG. 10. Shape of the phason modes shown in Fig. 9. The four different modes which can be seen in that figure are shown sepa-

rately. The modes are quasi-one-dimensional with the displacement along the X direction {u ) given by one-dimensional DSG
modes. The displacements along the Y and Z directions closely follow kinematic constraints (3.11b) and (3.11c) with u; given by the
shape of the mode along the X direction, u&. The computational cell has two DSG solitons along each row. The dashed line corre-
sponds to the second row in the surface unit cell. (a) Translational mode (energy =0.03 meV). Both solitons move in phase. (b)
Acoustic-phason mode (energy =0.08 meV). Soliton centers move out of phase with respect to each other and internal oscillations
are absent. (c) Lower point in the optical-phason branch (=0.4 meV). The internal mode of each DSG soliton is in phase with con-
tiguous solitons. (d) Upper point in the optical-phason branch (=0.41 meV). The internal mode of each DSG soliton is out of phase
with the internal mode of contiguous solitons.
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a rather anomalous bifurcation about midway on the I -L
line The upper branch is just a continuation of the long-
wavelength segment of the SH dispersion curve, while
the lower branch overlaps with the end of the long-
wavelength SV branch. The lower SH branch carries
most of the oscillator strength of the SH polarization;
however, it undergoes appreciable hybridization with lon-
gitudinal polarization close to the E point. Again, the
splitting of the SH branch is associated with the stiffening
of the domain-wall motion for wavelengths shorter than
their width.

The experimental data are displayed as crosses in each
of these figures for the sake of comparison. Bearing in
mind the rather exclusive sensitivity of HRHAS to
shear-vertical and long-wavelength longitudinal phonons,
it is plausible to correlate the abrupt termination of the
lower experimental phonon branch with an abrupt
change in the character of the lowest branch from shear-
vertical to shear-horizontal. Furthermore, the fact that
the upper experimental branch can be traced to the SBZ
edge can be attributed to the change of its character from
longitudinal to vertical polarization at short wavelengths.
HRHAS measurements of the anomalous longitudinal
resonances in Cu, Ag, and Pt failed to trace this branch
to the SBZ edge in spite of the fact that symmetry re-
quires the presence of degeneracy between the SH and L
modes at the K point.

Figure 9 is an expansion of the region below 1.0 meV
of Fig. 8(a)—8(c). It shows two low-lying phason modes
in all three polarizations. The Qatness of these dispersion
curves is a reAection of the fact that the MD computa-
tional cell contains two soliton superlattice periodicities
along the (110) direction; consequently, only two points
appear in each phason branch: one point at the superlat-
tice BZ (SLBZ) center and the other at its edge. The fiat
dispersion curve is just an extended-zone representation
of these two points.

The relaxed configuration, together with periodic
boundary conditions, gives rise to an array of regularly
spaced solitons or a soliton lattice with nonvanishing
repulsion between contiguous DSG solitons. There are
two types of phason excitations. The first of these derives
from oscillations of the solitons about their mean posi-
tions. The dispersion relation for this type of excitation
is the usual acoustic branch of a one-dimensional chain
with nearest-neighbor interactions. The other type of ex-
citation corresponds to oscillations of the subsolitons
about the DSG center of mass. The modes associated
with these oscillations are similar to the optical modes
found in a one-dimensional chain with two different force
constants; hence we label them "optical phasons. " They
arise in the DSG lattice because the interaction strength
between subsolitons belonging to different DSG solitons
is different (much weaker in the present case) from the in-
teraction between the subsolitons in a given DSG kink.
These phason modes are quite low in frequency due to
the large value of the DSG parameters lo and Ro. The
optical branch lies at about 0.4 meV, while the edge of
the acoustic-phason branch terminates at about 0.08
meV. In spite of the long wavelength of the DSG phason
modes (=23d), they are extremely localized in the surface

region, where their amplitudes become negligibly small
beyond the fourth subsurface layer. This is in clear con-
trast to the behavior of surface Rayleigh phonons whose
penetration depth is comparable to their wavelength. As
a consequence we find that the phason dispersion curves
are rather insensitive to the thickness of slab as long as
the number of layers exceeds about six.

A careful study of the eigenfunctions associated with
these modes underlines the quasi-one-dimensional nature
of the dislocations: the atomic displacements along the
( 110) direction are identical to the spatial eigenfunctions
of the one-dimensional DSG model. ' Furthermore, the
atomic motion in the F and Z directions follow closely
the geometric constraints imposed by the functions f and
g in (3.11). This can be seen by examining Figs.
10(a)—10(d), which show the atomic displacements in all
three directions for the phason modes of Fig. 9. The spa-
tial variation of u~ and uz depends on the corresponding
variation in u~. This dependence can be approximated
by the functions f and g in (3.11), where u; is given by
uz. Figure 10(a) shows the lowest phason mode, at the
SLBZ center, which depicts in-phase oscillation of the
DSG soliton centers. The next mode, shown in Fig.
10(b), is at the SLBZ edge of the acoustic-phason branch.
It involves out-of-phase motion of the centers of the soli-
tons. Figures 10(c) and 10(d) show optical-phason modes
at the SLBZ center and edge, respectively. Both of these
modes involve the motion of the subsolitons about their
center of mass.

The presence of these phason modes has not been re-
ported in the HRHAS measurements. We attribute this
to the resolution-limited sensitivity of HRHAS incapable
of detecting such low-lying frequencies; however, a more
careful analysis of the raw data might reveal their pres-
ence. Our MD study does not indicate any serious damp-
ing of these modes that might lead to a diffusive motion.
It is also plausible that the technique of surface Rayleigh
light scattering may be suitable to detect such long-
wavelength modes, especially the optical phason.

V. CONCLUSION

We have studied the dynamics of the reconstructed
surface of Au(111) in a molecular-dynamics formalism
using the DSG model together with the morphology of
the surface as the starting point for choosing constraints
for the interatomic potentials. The agreement with the
experimental phonon dispersions along the (110) direc-
tion is remarkable, given the very simple form chosen for
the potentials appearing in the effective Hamiltonian
(3.1). The substrate potential dictates the type of solitons
favored in the reconstruction. The nondegeneracy be-
tween the 3 and C sites, which favors double-sine Gor-
don solitons, requires that the range of the surface-
substrate potential includes at least third-neighbor contri-
butions. We associate the difFiculty of other models
in reproducing the right type of reconstructed unit cell
with the limited range of the surface-substrate interatom-
ic interaction assumed in these models. Moreover, the
ratio of the energy difference between the 3 and C sites
relative to the energy at the bridge sites is fixed by the
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DSG soliton parameter Ro, which can be written in
terms of the separation between the subsolitons or, more
directly, in terms of the size of the A domains on the
reconstructed surface. The structure and dynamics of the
reconstructed surface are found to be quite insensitive to
the fine details of the substrate potential, yet extremely
dependent on the energetics of the A, C, and bridge sites.

All three surface-phonon branches show a strong
amount of hybridization. We observed modes which
seem to be localized at the A and C sites and with a Z po-
larization above a given q vector which can be re1ated to
the size of the subsolitons. The subsolitons become quite
stiff at wavelengths shorter than their effective width and
most of the motion is then concentrated away from these
domain walls.

In the present work, the large softening of the longitu-
dinal and shear-horizontal acoustic branches is intro-
duced through relation (3.8), which establishes the length
scale of the dislocations, and. by the incorporation of
misfit between the surface and the substrate, which in-
duces a reduction of the surface-surface force constants.
The misfit introduced is solely determined by the soliton
density, which, in our model, was fixed to reproduce the
superlattice periodicity of the reconstructed unit cell
along the (110) direction. The spontaneous creation of
solitons depends on the value of the misfit relative to the
parameter lo which sets the length scale of the disloca-
tions.

Phenomenologically one would expect that the Cu(111)
and Ag(111) surfaces also incorporate misfits with respect
to the bulk. The fact that Cu(111) and Ag(111) surfaces
do not reconstruct can be explained in this scheme by
having the value of the misfit in these surfaces such that
the system is stable against the spontaneous creation of
solitons. The Cu, Ag, and Au(111) surfaces can be seen
as systems in which the misfit progressively increases
from Cu to Au and in the latter it reaches a critical value

which energetically favors the spontaneous creation of
dislocations. This critical misfit is not known for these
surfaces.

The surface solitons are quasi-one-dimensional with
the phason modes with polarization perpendicular to the
solitons being described quite accurately by functions
which follow from kinematic constraints imposed by a
hard-sphere model. We can refer to these solitons as soft
due to the almost absence of a gap in the phonon branch.
A phason gap of about 3 me V is expected in the
longitudinal-phonon dispersion if the soliton interacted
with a hard substrate. The gap in this case corresponds
to the mass of the solitons. Instead, we observed phonon
modes as low as 0.5 meV in a slab made out of 33 layers.
This might be an indication of small lock-in energies in
the system.

Finally, at these low temperatures the solitons seem to
be pinned by the Peierls-Nabarro potential. The frequen-
cy resolution in our simulations does not allow for a
direct measure of the PN frequency. We can establish an
upper bound with the PN frequency corresponding to en-
ergies smaller than 0.03 meV. However, the time scale
for soliton diffusion can be quite longer than the time
scales sampled in the simulations. Work on the finite-
temperature properties of the system, as well as further
investigation on the size of the phason gap together with
the melting mechanism of the surface solitons, is current-
ly in progress.

ACKNOWLEDGMENTS

We would like to thank Professor Charles Willis for ex-
tensive and useful discussions and the Boston University
Information Technology 0%ce for providing help in vari-
ous stages of the programming. This work is supported
by the U.S. Department of Energy under Contract No.
DE-FG02-85ER45222.

G. A. Somorgai, Chemistry in Two Dimensions: Surfaces (Cor-
nell University Press, Ithaca, 1981).

2M. A. Van Hove, R. J. Koestner, P. C. Stair, J. P. Biberian, L.
L. Kesmodel, I. Bartos, and G. A. Smorjai, Surf. Sci. 105, 189
(1981}.

J. Perderau, J. P. Biberian, and G. E. Rhead, J. Phys. F 4, 798
(1974).

4U. Harten, A. M. Lahee, J. P. Toennies, and Ch. Woll, Phys.
Rev. Lett. 54, 2619 (1985).

~J. C. Heyraud and J. J. Metois, Surf. Sci. 100, 519 (1980).
Y. Tanishiro, H. Kanimori, K. Takayanagi, K. Yagi, and G.

Honjo, Surf. Sci. 111,395 (1981).
7K. Takayanagi and K. Yagi, Trans. Jpn. Inst. Met. 24, 337

(1983).
P. G. Drazin, Solitons (Cambridge University Press, Cam-

bridge, 1983).
M. El-Batanouny, S. Burdick, K. M. Martini, and P. StancioA;

Phys. Rev. Lett. 58, 2762 (1987).
Ch. Woll„S. Chiang, R. J. Wilson, and P. H. Lippel, Phys.
Rev. B 39, 7988 (1989)~

P. Toennies, J. Vac. Sci. Technol. A 5, 440 (1987).
H. Ibak, J. Vac. Sci. Technol. A 5, 419 (1987).
W. Harten, J. P. Toennies, and Ch. Woll, Faraday Discuss.

Chem. Soc. 80, 1 (1985).
i4G. Armand, Solid State Commun. 48, 261 (1983).
i5J. E. Black, F. C. Shanes, and R. F. Wallis, Surf. Sci. 133, 199

(1983).
V. Bortolani, G. Santoro, U. Harten, and J. P. Toennies, Surf.
Sci. 148, 82 (1984}.
V. Bortolani, A. Francini, F. Nizzoli, and G. Santoro, Phys.
Rev. Lett. 52, 429 (1984).

~V. Bortolani, A. Francini, F. Nizzoli, and G. Santoro, Surf.
Sci. 152/153, 811 (1985).
V. Heine and L. D. Marks, Surf. Sci. 165, 65 (1986).
C. S. Jahanthi, H. Bilz, W. Kress, and G. Benedek, Phys. Rev.
Lett. 59, 795 (1987).

'G. Santoro, A. Francini, V. Bortolani, U. Harten, and Ch.
Woll, Surf. Sci. 183, 180 (1987).
F. Ercolessi, M. Parrinello, and M. Tosatti, Surf. Sci. 177, 314
(1986).
M. Garofalo, E. Tosatti, and F. Ercolessi, Surf. Sci. 188, 321
(1986).
F. Ercolessi, A. Bartolini, M. Garofalo, M. Parrinello, and E.
Tosatti, Surf. Sci. 189/190, 636 (1987).

~5P. Carnevalli, F. Ercolessi, and E. Tosatti, Surf. Sci. 189/190,
645 (1987).



MOLECULAR-DYNAMICS STUDY OF THE RECONSTRUCTED Au(111) SURFACE: 9589

F. C. Frank and J. H van der Merwe, Proc. R. Soc. London,
Ser. A 200, 125 (1949).
Y. Okwamoto and K. H. Bennemann, Surf. Sci. 186, 511
(1987).
D. Campbell, M. Peyrard, and P. Sodano, Physica D 19, 165
(1986), and references therein.
P. Sodano, M. El-Batanouny, and C. Willis, Phys. Rev. B 34,
4936 (1986), and references therein.

0S Burdick, M. El-Batanouny, and C. R. Willis, Phys. Rev. B
34, 6575 (1986}.
C. R. Willis, M. El-Batanouny, S. Burdick, R. Boesch, and P.
Sodano, Phys. Rev. 8 35, 3496 (1987).

R. Ravelo, M. El-Batanouny, C. R. Willis, and P. Sodano,
Phys. Rev. B 38, 4817 (1988).
R. A. Johnson, Phys. Rev. B 6, 2094 (1972).

34J. W. Lynn, H. G. Smith, and R. W. Nicklow, Phys. Rev. B 8,
3493 (1973).

3sF. Nabarro, Theory of Crystal Dislocations (Clarendon, Ox-
ford, 1967).
C. Willis, M. El-Batanouny, and P. Stancioff, Phys. Rev. B 33,
1904 (1986), and references therein.

R. Boesch and G. R. Willis, Phys. Rev. B 39, 361 (1989).
W. Schommers, Z. Phys. 257, 78 (1972).


