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Jump frequency of silver ions for diffusion in a-Ag2Te
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The diffusion process of silver ions in a-Ag2Te is investigated. It is assumed that Ag ions occupy
the tetrahedral sites and octahedral sites with different probability. To give an explanation of the
Havens ratio obtained by a molecular-dynamics calculation, a theory of caterpillar mechanism pro-
posed by Yokota [J. Phys. Soc. Jpn. 21, 420 (1966)] is used. It is shown that the ratio of the fre-

quency of a single jump to that of cooperative jumps increases with increasing temperature.

I. INTRODUCTION

Okazaki' has measured the self-diffusion coeScient D
and the mobility p of silver ions in silver chalcogenides
using a tracer technique. The mobility is related to the
diffusion coefftcient by the Einstein relation p=eD/kT.
His experimental results have shown that the Einstein re-
lation does not hold in silver chalcogenides. We can ex-
press the deviation from the Einstein relation quantita-
tively by introducing a correlation factor f as follows:

f =eD/pkT .

This correlation factor is called the Havens ratio. The f
value of Ag2Te is fairly large in comparison with those of
other silver chalcogenides, Ag2S and Ag2Se. This has
been interpreted in the following expression. The value
of the self-diffusion coeKcient of a-Ag2Te is almost the
same as that of 0.-Ag2S and e-Ag2Se, while the value of
the ionic conductivity of a-AgzTe is much smaller than
that of a-Ag2S and o.'-Ag2Se. These facts lead to the
differences in the f value.

In nearly perfect crystals, atomic diffusion is always
connected with the existence of lattice defects. The most
common types of diffusion in solids are the vacancy and
interstitial mechanisms. However, the crystal struc-
ture of superionic conductors is far from being perfect.
In superionic conductors, the mobile ions are distributed
randomly over the available sites in the crystal lattice.
Then, it is not appropriate to rely upon the existing
difFusion theory to explain the deviation from the Ein-
stein relation in superionic conductors. Yokota has pro-
posed a caterpillar theory for the diffusion of silver ions
to give an account of the remarkable deviation from the
Einstein relation in silver chalcogenides. He has sup-
posed that an ion on a site is able to jump not only into a
vacant neighboring site but also into an occupied one, in-
ducing the ion on the latter site to make a jump. Oka-
zaki has applied the caterpillar theory to interpret the

observed f value of a-Ag2Te, assuming that silver ions
occupy the tetrahedral and octahedral sites with equal
probability.

Recently we have investigated the structural and
dynamical properties of a-Agz Te using a molecular-
dynamics (MD) simulation. The MD calculations have
suggested that the Ag ion stays at the tetrahedral site
most of the time and moves to its neighboring tetrahedral
site through the vicinity of the octahedral site. This is in
good agreement with the x-ray experiment. Then, it is
not appropriate to assume that silver ions occupy the
tetrahedral and octahedral sites with equal probability.

In this paper, we study the diffusion process of silver
ions in a-Ag2Te. We apply the Yokota caterpillar-
mechanism theory to interpret the Havens ratio obtained
by the MD calculation. We assume that two kinds of
sites —tetrahedral and octahedral —are available for
silver ions. We also assume that silver ions occupy these
two sites with a different probability, considering the re-
sults of the MD calculation and the x-ray experiment. In
Sec. II we calculate the self-diffusion coeKcient of Ag
ions by investigating their spontaneous and induced
jumps. In Sec. III we give the calculation of the current
associated with those jumps. In Sec. IV we discuss the
cooperative motion of Ag ions in a-Ag2Te, comparing
the calculation by the caterpillar-mechanism theory with
the results by the MD calculation.

II. SELF-DIFFUSION COEFFICIENT

As stated in the Introduction, MD calculations have
suggested that Ag ions in Ag2Te do not jump from
tetrahedral site to tetrahedral site directly on the ( —,'00)
plane, but jump from tetrahedral site to tetrahedral site
through the vicinity of the octahedral site along zigzag
paths. These tetrahedral and octahedral sites are shown
in Fig. l. It is not easy to apply the caterpillar mecha-
nism to these zigzag paths. For simplicity we consider a
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v, (B)= v~A (1)(1 P—A) +v~ A(2)P A .

Then, a spontaneous jump frequency v, is given by

v~=cAv~(A)+c~v, (B), (4)

FIG. 1. Configuration of Ag2Te. Squares and circles show
the tetrahedral and octahedral sites, respectively. Triangles
show the Te ions which construct the fcc lattice.

system which has at equal intervals alternating A and B
sites which correspond to a tetrahedral and an octahedral
site, respectively, on the straight line. We denote the
jump frequency from a B site to a vacant neighboring site
A by v&A(l) and that to an occupied site A by v~A(2).
Similarly, we denote the jump frequency from an A site
to a vacant neighboring site B by vA~(1) and that to an
occupied site B by vA~(2). It is required that silver ions
occupy site A with probability PA and site B with proba-
bility PB. We consider the cooperative jumps shown in
Fig. 2. If a tracer ion T is put on the zeroth site and
makes a spontaneous jump to the neighboring first site
which is occupied by a Ag ion, the Ag ion on the first site
will be induced to make a jump to the second site. If all
the sites from 0 to n —1 are occupied and the nth site is
vacant (case of Fig. 2), the successive jumps will continue
until a Ag ion on the (n —1)th site makes a jump to the
nth site. Such n successive jumps will contribute n steps
to the electrical conduction, while contributing only one
step to the self-diffusion of a tracer ion T.

When the zeroth site is a site 3, the probability per
unit time that the tracer ion on the zeroth site makes a
spontaneous jump 0~ 1, the jump frequency v, ( A ), is
equal to

g v~A(2)P~+'P
1=0

For even m, it is obtained as

P-APB

1 PP-
A B

g vA~(2)P~PA =
1=1

Then, the probability per unit time that the tracer ion T
makes an induced jump 0—+1 for the case where the
zeroth site is on an A site is given by

PB
[vaA(2)+vAa(2)PA ] ~

A B

Similarly, the probability per unit time that the tracer ion
T makes an induced jurnp 0~1 for the case where the
zeroth site is on a B site is given by

v;„d( ) — [vAa(2)+VBA(2)Pa] .
A B

When we sum up these two cases, we have the induced
jump frequency v;„d as follows:

where cA and cB are the ratios of concentration of site A
and site B, respectively, and cA +cB = 1. Here we take
cA =cB=0.S in our model.

Now we calculate the jump frequency per unit time
that the tracer ion on the zeroth site makes an induced
jump 0~1. We consider the cooperative jumps shown in
Fig. 3. If all of the sites from —m to —1 are occupied by
Ag ions, a spontaneous jump of Ag ion on the —mth site
to the —( m —1 )th site will induce successive jumps and
lead a jump 0~1 of the tracer ion on the zeroth site. We
have to calculate the two cases where the zeroth site is on
an A site and the zeroth site is on a B site.

We first consider the case where the zeroth site is on an
3 site. The probability that all the sites from —m to —1

are occupied is PB +" P„' " for odd m. When we
set m =21+1 (l =0, 1,2, . . . ), the probability per unit
time that the tracer ion T makes an induced jump 0—+ 1 is

PB

APB

vp(A) —vA~(1)(1 P~ )+vA~(2)P~—. (2) B A B A B

Similarly, when the zeroth site is a site B, the jurnp fre-
quency v, (B) of the tracer ion on the zeroth site is equal
to

A 8 A
~ e ~ o ~

1 2

V

A B B A B
~ ~ ~ pT po . . go pv

FIG. 2. Cooperative jumps associated with the spontaneous
jump 0~1 of tracer ion T. The nth site is vacant. This is the
case in which the zeroth site is on a site A.

FIG. 3. A diagram which contributes to the induced jump
frequency v;„d. All of the sites from —m to —1 are occupied.
The figure shows the case where the tracer ion T is on the A
site, in (a) for odd m and (b) for even n.
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A 8 [vAB(2)+vBA ( )]+vBA (2)PB +vAB(2) A
vind c A vind( A ) +cBvied(B ) 2(1 P—APB )

While the jump frequency of a Ag ion is proportional to
exp( —activation energy/kT), the occupation probability
is proportional to exp( —on-site energy/kT) T.hen we
have the following relation:

vAB(1)/vBA(1) PB/PA

The total jump frequency v of a tracer ion is given by the
sum of v, and v;„d as follows:

+1 AB PB P~
1 PB+ —+ (1 P„)+—

2 a PB
"

l3PB

an A site. When the first site is vacant, the contribution
to the current associated with the spontaneous jump
J, (A) is

ea vAB( 1 )(1 PB )—.

When the first to (n —1)th sites are occupied but the
nth site is vacant (see Fig. 2), the contribution to J, ( A)
1S

eav„B(2) g (2l + l)P„'PB(1 PB)—
l=l

2P~ PB P~PB
=eavAB(2)(1 PB ) —

~
+

(1—p„pB )' 1 P„PB—

with

Pz P
+ + a (7) for odd n =21 + 1 and

eav„B(2) g 21PA 'PB(1 P„)—
1=1

o,'=vAB(1)/vAB(2), p=vBA(1)/vBA(2) .

The self-diffusion coeKcient D of the tracer ion can be ex-
pressed in the term of the jump frequency v as

D =va

where a is the distance between two neighboring sites.

III. CURRENT

Next we have to calculate the current. The calculation
is more complicated than that of the jump frequency.
The total current J is made up of the following two parts:
one is from the spontaneous jump 0~1 of the tracer ion
and the other is from the induced jump 0~1 of the
tracer ion ori the zeroth site.

First we calculate the charge transport per unit time
associated with the spontaneous jump 0~1 of the tracer
ion T. We consider the case where the zeroth site is on

I

=eavAB(2)2(1 PA )PB /(—1 PA PB )—
for even n =2l. Then the total current J,„(A) by the
spontaneous jump 0~1 of the tracer ion for the case
where the zeroth site is on an A site is given by

J, ( A) =eavAB( l)(l PB)—
eavAB(2)+ (2 P„PB+PA—)PB .

B

Similarly, the current J, (B) for the case where the
zeroth site is on a B site is obtained as

J,z(B)= ea vBA ( 1 )(1 PA )—
ea vB„(2)+ (2 P„PB+PB)P—A .

Then, the current J,„accompanied by the spontaneous
jump of the tracer ion is given by

J,p
= CA Jp( A)+CBJ,p(B)

T

v„B(1)(1 PB )+vB„(1)(1—P„)—
1+ [vAB(2)(2 PAPB +PA )PB+—vBA(2)(2 PAPB+PB )PA ]-

A B

Next we calculate the current J;„d associated with the
induced jump 0~1. We consider the case shown in Fig.
4, where the —mth to the (n —1)th sites are occupied,
but the nth site is vacant. We have to calculate the con-
tribution from the m +n successive jumps starting from

the spontaneous jump (
—m)th site~( —m+1)th site

and ending at the nth site. We assume the case where the
zeroth site is on an A site. According to the odd or even
numbers of I and n, we investigate the following four
cases.
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B A B
W W Cl C~l W . . R Ov

aevAB(2)(l P—„)g g 2(k +l)P" +' 'P" +'
k=1 m =1

0 1 0-) 0 =4aevAB(2)PAPB(1 P—„)l(1 P—„PB)3 .

FIG. 4. A diagram which contributes to the current J;„d as-
sociated with the induced jump 0~1. The {—m)th to the
(n —1)th sites are occupied but the nth site is vacant.

(1) For m even and n even, the probability that all the
sites from the ( —m)th site to the (n —1)th site are occu-
pied, but the nth site is vacant, is

(p )(m+n —2)/2(p )(m +n)/2( 1 p

Taking m =21 (1 = 1,2, . . . ) and n =2k (k =1,2, . . . ) we
have the following contribution to J;„d:

(2) For m odd and n even, taking m =2k —1

(k =1,2, . . . ) and n =21 (1 =1,2, . . . ), the contribution
to Jind is given by

aevBA(2) g g (2k +21 —1)p"+' 'p" —+l(1 —p
k =11=1

4( 1 P„)PB-
=aev, A(2)

(1 PAPB—)

(1 P—)P

(1 PAP—B )

(3) For m even and n odd, taking n =21 —1

(1 = 1,2, . . . ) and m =2k (k = 1,2, . . . ), the contribution
to J;„d is given by

(X) QO 4(1 PB )P„P—Baev (2) g g (2k +21 —1)P(2k+2l —2)/2p(2k+2l —2)/2(1 P ) aev (2)AB A B B AB
( 1 p p )3

(1 PB )PAP—B

(1 P„PB)—
(4) For m odd and n odd, taking n =21 —1 (1 =1,2, . . . ) and n =2k —1 (k =1,2, . . . ), the contribution to J;„d is

given by

aevB„(2) g g 2(k +1 —1)PA+ PB+' '(1 PB )=2aevBA—(2)PB(1 PB )(1+—P„PB)l(1 PAPB )—
k =11=1

Summing up these four contributions, we obtain J;„d( A ) for the case where the zeroth site is on an A site,

J;„d( A)=
3 [4vAB(2)PAPB(I PA )+v—BA(2)(3+PAPB)(1 PA )PB—

(1—
PA PB

)'

+v„B(2)(1—PB )PA PB(3+P„PB)+2vB„(2)(1 PB )PB(1+P—„PB)] .

Similarly, the current J;„d(B)for the case where the zeroth site is on a B site is obtained by exchanging the subscripts A
and 8 in the above equation. Then the current J;„d associated with the induced jurnp 0—+1 is obtained as

aeJ;„d=C„J;„d(A)+CBJ;„d(B)= 3 t4P„PB[v„B(2)PB(1 P„)+vB„(2)—P„(l PB)]—
2(1 P„PB)—

+(3+P„PB)[vBA(2)(1 P„)PB+v„B(—2)(1 PB)PA]—
+(3+PA PB )PAPB [v AB(2)(1 —PB )+vBA(2)(1 PA )]-
+2( 1+PA PB )[VBA (2)( 1 PB )PB +v„B(2—)( 1 P„)PA ]l—

Finally the total current J associated with the jump 0~1 of tracer ion T is obtained by summing up J, and J;„d as fol-
lows:

aev„B(1)J=
2

1 PB + (1 P„—)+ (2—P„PB+P„)PB —(—2 PA PB +PB)—
B 1 —P~PB a B

4 —1
1 —Pq PB

4P„PB P„P (P„+PB)+ (1 P„)+ (1 PB ) +— —
(1 P„PB ) a — (1 P„PB)— 1 —P 1 —PB + A

a P

2P~ 2+ 1
(1 P„PB)—1 —P 1 —PA + 8

a P
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Here we have used Eq. (6) to express Eqs. (7) and (11).

IV. HAVENS RATIO AND DISCUSSIONS

The residence time of silver ions at the tetrahedral and
octahedral sites have been calculated by a molecular-
dynamic (MD) method. The residence time can be ex-
pressed by the time steps taken for its residence. The
time steps which have been calculated by MD are shown
in Table I. We can define the ratio of residence time
steps as follows:

2 I

I
I
I
I
I
I
I

I
I
I
I
I~10- ',

I

I' T=55

T ~r/(yr+~o» o =~o ~T+3 0)

It is clear that

(12)

10

ZT+zp 1 e (13)

There are eight Ag ions and eight tetrahedral sites in a
unit cell. Therefore, we can take the occupation proba-
bility P~ to be equal to zz-. When we take into account
that there are four octahedral sites in a unit cell, we have

8P~ +4P~ = 8 .

Then we have

P~ =2zp . (15)

This is reasonable to consider that the number of Ag ions
in a unit cell is twice the number of octahedral sites.
Kobayashi et aI. have calculated the Havens ratio by a
MD method and have had 0.5 as its value. Their result
that the Havens ratio of Ag ions in a-Agz Te has not been
dependent upon the temperature has agreed well with the
experimental result. The Havens ratio is defined by

fH=eav/J . (16)

By making use of Eqs. (7) and (11)—(15), the values of pa-
rameters a and P are estimated so that we may obtain the
value of Havens ratio by MD calculations, fH =0.5. In
Fig. 5 the a-/3 map for fH =0.5 is shown for two temper-
atures. v„s(1) and v~s(2) are the jumP frequencies from
a site A to a vacant and an occupied neighboring site B,
respectively. Then the former will exhibit a characteris-
tic resembling single hopping and the latter a characteris-
tic resembling a cooperative jump . To realize fH=0. 5,
some cooperative jumps are required. For the case of a
small value of v„s(2), a large value of vs~(2) has to
guarantee a cooperative jump and vice versa. Figure 5
shows that the smaller of the two parameters a and /3 is

FIG. 5. a-/3 map of f8=0.5 for two temperatures, 550 and
850 K.

v~~(2)/vs„(2) =exp[ /3(b,
' —6')] . — (17)

On the other hand, the occupation probability is propor-
tional to exp(on-site energy). Namely Pz is proportional
to exp( /3E„') and Ps is—proportional to exp( /3Es). —
E~ and E~ are the energies of sites 3 and B, respectively.
Then we have

P~/P„' =exp[ P(E~ E~ )]—. —

From Eqs. (17) and (18), we have

v&&(2)/vzs(2)=P4 /Pa

Using Eqs. (6) and (19), we have

(19)

"Ap(2) vBA(2)

dominant to get the value of fH =0.5 for the case of a
small value of vzs(2) or vs„(2).

Here we consider the value of v~z(2)/v„s(2). An
energy-barrier diagram where sites 3 and B are occupied
is illustrated schematically in Fig. 6. 6' and 6' are the
barrier height. The barrier height will be higher than
that of the case where the neighboring site is empty.
Therefore the jumP frequencies v„s(2) and vs~ (2) will get
smaller than those of the latter case. v~~(2) is propor-
tional to exp( —/3b, ') and vs~ (2) is proportional to
exp( —/35'). Then we have

TABLE I. The temperature dependence of the Ag-ion densi-
ty in a-Ag2Te by MD calculations (Ref. 7). y& and yo are the
rates of time steps of how long Ag ions stay at tetrahedral and
octahedral sites, respectively. The rate ofyo is taken as unity.

Temperature (K)

550
650
750
850

yz

64.75
18.45
7.17
5.29

yo

FIG. 6. An energy-barrier diagram where sites 3 and B are
occupied. 6' and 6' are the barrier heights.
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I I I I

550 650 750 850
T(K )

FICx. 7. The temperature dependence of a ( =Pl.

a/p [VAB(—1)/VAB(2)]/[VBA (1)/vs' (2)]

(20)

If an energy of each site is independent of the
configuration diagram where the neighboring site is occu-
pied or not, we can replace P~ /Pz with P„/P~ and then

we will have the equality ct =P. Since the Ag-density dis-
tribution of tetrahedral and octahedral sites in o.-Ag2Te is
given by the statistical average as shown in Table I and
does not depend on the instantaneous configuration dia-
gram, the assumption a=P will be right. Then we as-
sume the equality a=13. Figure 7 shows the temperature
dependence of a for the case where the equality of a= f3

is assumed. The value of e increases with increasing tem-
perature. The potential barrier will decrease relatively in
comparison with the kinetic energy of a mobile ion with
the temperature increase and then the jumping process of
Ag ions will be frequent. When temperature increases,
the randomness of a system enlarges and then the fre-
quency of a single jump increases relatively, compared
with a cooperative jump. This shows the temperature
dependence of a in Fig. 7.

To summarize, we have investigated the cooperative
motion of Ag ions in u-Agz Te using Yokota's
caterpillar-mechanism theory. The theory has been ap-
plied with some modification to the system so that it may
be appropriate to the results of MD calculation. The
temperature dependence of the jurnp frequency has been
studied by making use of the results of the MD calcula-
tion.
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