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The electrical resistivity p and the thermal diffusivity a of gadolinium have been measured as
functions of T in the range 45 —400 K. The thermal conductivity A, has been calculated from a and
experimental data for the specific-heat capacity, c~. A, can be analyzed in terms of simple models for
the lattice and electronic components above the Curie temperature Tz-—291.4 K. Below T& an ad-

ditional term, identified as a magnon (spin-wave) thermal conductivity A, , is found. p and A, have
also been studied as functions of T and P in the range 150—400 K and 0-2.5 GPa. The Lorenz func-

tion L =pX/T increases by about 20%/GPa under pressure due to a very strong pressure depen-
dence of the lattice thermal conductivity. The pressure coeKcients of p and A, are —5. 1 X 10 and

0.22 GPa ', respectively, at 300 K (above Tc), and 0 and 0.16 GPa ' at 200 K (below T&). Tc and
the spin-reorganization temperature-T„=219 K both decrease under pressure, at the rates —14.0
and —22.0 K/GPa, respectively. Although the magnitude of A, cannot be accurately calculated
from the zero-pressure data for A, , the temperature dependence of dA, /dP allows us to distinguish
between several models and assign a value of A. =1.5 Wm ' K ', or 16.0% of A, , at 200 K.

I. INTRODUCTION

Gadolinium is a rare-earth metal with incomplete
filling of the 4f electronic shell which leads to spontane-
ous magnetic moments localized on the ions, causing fer-
romagnetism. Even though the conduction electrons are
not themselves responsible for the magnetism, there is a
connection between magnetic order and transport prop-
erties, since the valence electrons are strongly scattered
by these moments. '

Although the electrical resistivity p of Gd is well
known, the available data ' for the thermal conductivi-
ty A, differ very much between different sources: the mag-
nitude of A, differs by more than a factor of 2 at room
temperature even between recent investigations. The
differences in slope dk, ldT are much larger than this, and
exotic conduction mechanisms have been invoked to ex-
plain the temperature dependence. ' In an attempt to
clarify this situation, we report here measurements of the
thermal- and electrical-transport properties of Gd as
functions of both temperature T and pressure P. We
have previously studied both A, and p for other ferrornag-
netic metals such as Ni and Fe (Refs. 14 and 15) under
pressure, and we were especially interested in studying
the behavior of A,(P) and p(P) near Tc, which for Cxd is
conveniently situated near room temperature. Also, we
were interested in comparing the behavior of p(P, T) for
ordered and disordered Au-Cu alloys' with that of mag-
netically ordered and disordered Gd.

We have been able to obtain new, accurate data for
both A, and p as functions of T and P. The new data for A,

are lower than most published results, but in excellent
agreement with those from a recent investigation at
higher temperatures. The data can also be analyzed us-
ing simple models, except that we observe a residual

magnon-thermal-conductivity term below Tc. To our
knowledge, such a term has not previously been identified
in any metal above 100 K.

In Sec. II of this paper we describe some experimental
details. Section III then contains our experimental re-
sults, giving zero-pressure and high-pressure data sepa-
rately. These results are then discussed in some detail in
Sec. IV. Finally, we repeat again the most important
findings in Sec. V.

II. EXPERIMENTAL DETAILS

Since most of the details concerning the experimental
methods and the equipment used are published else-
where, ' ' we shall only give a brief description here.

The gadolinium specimen was obtained in the form of
wire, 1 mm in diameter, from Goodfellows Metals, Eng-
land. The stated purity was 99.9&o and to avoid contam-
ination and oxidation all handling was done under sil-
icone oil or argon. The specimen was annealed in a vacu-
um for 10 h at 750 K (Ref. 18) before the first measure-
ment, and again after the thermocouple wires were tom
off during a preliminary high-pressure test.

We have not measured A, directly but instead the
thermal diffusivity, a, using two dynamic periodic
methods. a is defined as a =A, /dc, where d is the density
and c the specific-heat capacity. At atmospheric pres-
sure a was measured using the original Angstrom
method, ' and at high pressure using a modified two-
frequency method. ' In both methods, a sinusoidal tem-
perature wave is created in one end of a rod. The tem-
perature variations are measured at two points, using the
specimen itself as one leg of a differential thermocouple.
a can be calculated from the phase shift and the attenua-
tion and then, knowing d and c, A, can be calculated. In
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the original Angstrom method, radial heat losses by radi-
ation are automatically taken into account. In the
modified method two frequencies are used, which makes
it possible also to eliminate heat loss by conduction. '

The scatter in the final difFusivity data was less than 0.5%
rms using Angstrom's original method, and about 3% us-
ing the modified method. The dominating source of sys-
tematic errors is the uncertainty in the distance between
the thermocouples, which could introduce an error of up
to 2% in a. The equipment used is described in detail in
Ref. 16.

R was calculated from the voltage drop over the sam-
ple and over a 10 mQ standard resistor connected in
series, respectively, at a dc current of =0. 1 A. To avoid
thermoelectric effects current reversal was always used,
and the temperature gradient in the specimen was mini-
mized by varying T slowly (1 K/min). The resolution in
the resistance measurements was 10 pQ, equivalent to an
uncertainty of 0.02 pQ cm in the resistivity. Above 40 K
the uncertainty in p was 1% due to the uncertainty in the
geometrical dimensions.

The low-pressure experiments were carried out at pres-
sures below 10 ' torr, and in an argon atmosphere above
room temperature to reduce the possibility of oxidation
of the specimen. Temperatures down to 30 K were ob-
tained using a closed-cycle He compressor system
(Leybold-Heraeus RW5+ RG1040), and above room
temperature a simple vacuum oven was used.

The high-pressure measurements were carried out in
two piston and cylinder devices, 70 and 45 mm in diame-
ter, respectively. ' As shown previously it is important
in this experiment to use a pressure-transmitting medium
which has a high viscosity and still is hydrostatic. Also,
to avoid oxidation we need an inert medium which does
not dissolve water. The medium used in most of the
present experiments was a silicone oil (Dow Corning DC
200, viscosity grade 100 mm /s), which unfortunately
solidifies at about 1 GPa at room temperature. ' Nonhy-
drostatic pressure-transmitting media cause strain in the
specimen when changing the pressure, and to prevent this
we always raised T to above 400 K to melt the medium
before changing the pressure at P &0.5 GPa. We have
checked the hydrostatic properties of the oil by compar-
ing the data for p obtained in oil with those found using a
50/50 mixture of n-pentane and isopentane, hydrostatic
to ) 5 GPa, and found excellent agreement up to about
1.5 GPa. Also, in our isobaric experiment (see below) we
see no anomalies in either p or a that can be attributed to
solidification of the medium.

III. EXPERIMENTAL RESULTS

A. Results at atmospheric pressure

l. E)ectrical resistivity

The electrical resistivity of Gd has been studied previ-
ously at normal pressure. ' ' ' Except for differences
in the residual resistivity and determination of the spin
reorganization point at about 220 K all studies show al-
most the same T dependence. We have calculated p from
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FIG. 1. Upper part: p vs T. Lower part: Ap/AT between
successive data points vs T.

the measured data for R and from the geometrical dimen-
sions with correction for thermal expansion. Figure 1,
upper part, shows p versus T between 30 and 400 K at P
less than 10 ' torr. Interpolated data are also shown in
Table I. Taking the differences in residual resistivity into
account, our data agree with all of Refs. 3—13, 23, and 24
to within the combined experimental errors at 300 K.
For example, Binkele gives p=134.9 pQcm at 300 K
while Powell and Jolliffe find p=134 pQcm at 291 K.
When comparing-single-crystal and polycrystal electrical
resistivities for hcp metals the proper relationship is
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11.3
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8.2
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3.87
4.81
5.13
5.02
4.56
4.04
3 62'
3.61
3.29
3.10
29
2.7
2.6b

2.48'

'A, and L data at Tc are uncertain, see text.
"Reference 8 (the data are taken from presented figures).
'Reference 12.

TABLE I. Experimental data for p, a, A, , and L at selected
temperatures.
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p „„=(p, +2p, ) /3, where the subscripts a and c denote
the basal plane direction and the principal axis direction,
respectively. From the single-crystal data of Nellis and
Legvold' we find pppiy 133.6 pQ cm, in good agreement
with our data.

In the lower part of Fig. 1 we show bp jhT, as calcu-
lated between every two consecutive data points. From
these data we have determined the Curie point
T& =(291.4+0.5) K and the spin reorganization temper-
ature T„=(219+2) K. Our value for Tc shows good
agreement with data from the literature for polycrystal-
line Gd. Bloch and Pavlovic have collected Tc data
from seven papers, finding a mean value of (291.8+0.6)
K. This value is lower than reported values for single-
crystal specimens: Hargraves et al. report T& =293.51
K and Nellis and Legvold' report Tz =293 K. The
differences between the polycrystalline and the single-
crystal data have already been noted by Bartholin and
Bloch. They found that the difference in Tc was in

agreement with the variations in the exchange energy be-
tween the magnetic ions. It is also known that Tc in
Gd decreases with increasing impurity content. Howev-
er, since this decrease is not very rapid, the difference be-
tween Tc data cannot be explained solely by variations in
the purity between the specimens. Data from the litera-
ture ' ' for T„differ between 224 and 235 K, and
torque measurements of the temperature dependence of
the easy direction of magnetization ' show discrepan-
cies of the same amount. It is argued ' that these
discrepancies arise from different intrinsic strains and im-
purities.

2. Thermal diffusivity, thermal conductivity,
and Lorenz function

In Fig. 2 we show our measured data for the thermal
diffusivity between 40 and 400 K at P less than 10 ' torr.
Interpolated data of a are also presented in Table I. It is
obvious that a is a smooth function of T except at Tc,
where the rapid change of c gives rise to a pronounced
dip in a. The scatter in the data is less than 0.5% rms,
which must be added to the (temperature-independent)
systematic error discussed above. At temperature near
Tc we have an additional uncertainty in a due to the tem-
perature difference of about 5 K between the measure-
ment points on the specimen. The measured a is always
an average value over this temperature range. Near T„
only a very small change in da/dT is seen; however, in
one single temperature run we observed a narrow dip in a
at T„, similar in depth to that at Tc. This dip is probably
connected with the cusp observed in c~ at T„, but since
it was not repeatable it will not be discussed further. We
know of no previous measurements of a in this tempera-
ture range with which to compare our data.

The thermal conductivity I, was calculated from our
data for a, interpolated to every 5 K, together with data
for thermal expansion, density (7.895 g cm at 298 K),
and specific-heat capacity. The c data between 40 and
230 K were taken from Griffel et al. and between 270
and 400 K from Fransson; over the range 230—270 K
the data were smoothly interpolated between these two
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FIG. 2. Thermal diffusivity as a function of T.
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sets. The measurements of Ref. 34 were made with a
Perkin-Elmer DSC-2 Differential Scanning Calorimeter
on a piece taken from our specimen. The maximum error
given is ( 1.5% except at T = Tc where a large tempera-
ture gradient in the specimen, arising from the low value
of a, increases the error to 2.5 fo. Between 200 and 355
K, where the two sets of data overlap, the data of Griffel
et ah. are 0.8 —2%%uo higher than those of Fransson.

Our calculated data for A, are presented in Table I and
in Fig. 3. To a very good approximation, A, is linear in T
both above and below Tc, with a small change of slope
near T„. At Tc, our data show a small peak. This is an
artifact arising from the smearing of the diffusivity data
near Tc, and would disappear if similarly integrated data
for c had been used in the calculation. The true X shows
a sharp minimum at a temperature identical to the value
of Tc obtained from the resistivity data, in contrast to
several previous determinations. ' The possible error
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in A, is obtained by adding the respective errors in a, c,
and d, and consists of a temperature-independent sys-
tematic error less than 2.5% due to the error in d and the
thermocouple distance, and a random error less than
1.5% from the data for c~ and the scatter in the data for
a.

There are several previous papers ' reporting data
for the thermal conductivity of Gd, and we show data
from many of these in Fig. 3. Only one paper deals with
single crystals. ' The agreement between the different
sets of data is, even for polycrystalline specimens, strik-
ingly poor. At low temperatures the disagreement could
be caused by varying purities and different physical states
for the different specimens. The purities reported for the
specimens studied are 99.9% in Refs. 8 —13 and 99.99%
in Ref. 3, while no numerical information is given in
Refs. 4—7. We see little correlation between the reported
purities and the thermal conductivities for the data
presented in Fig. 3. However, the majority of these stud-
ies have been carried out using steady-state methods, in
which the inherent experimental error due to radiation
heat loss increases rapidly with increasing T. Although
this error can, in principle, be corrected, " it is actually
very difficult to carry out this correction. It has already
been noted" that the very high values sometimes report-,
ed for Gd could be due to this mechanism.

Our data agree with the recent Kohlrausch-method
data of Binkele to well within the combined experimen-
tal error, and reasonably well also with the data of Powell
and JollifFe, who used two difFerent comparator methods,
and the steady-state data of Cranch" and Legvold and
Spedding. The single-crystal data of Nellis and
Legvold, ' obtained with a longitudinal-steady-state
method, show a similar temperature dependence but are
about 20% higher than our data. Since grain-boundary
scattering should be important only at very low tempera-
tures, we would have expected the agreement with our
data to become better at high temperatures.

The high-temperature data of Binkele are in very good
agreement with the data of Novikov et al. , ' who also
calculated A, from measured data for a. We suggest that

for polycrystalline Gd a reliable set of data for the
thermal-transport properties can be obtained by combin-
ing our data with those of Binkele and those of Novikov
et al. , as presented in Table I.

Using our data for k and p we have calculated the
Lorenz function L =Ap/T. As can be seen in Fig. 4, L is
a smooth function of T. In contrast to previous stud-
ies ' we see only a small change of slope at Tc, and
the mutual agreement between our data and those of
Binkele and Novikov et aI. ' is excellent. The combined
data indicate a continuous approach towards the stan-
dard Sommerfeld value Lp=2. 45X10 WQm/K at
very high temperatures.

B. High-pressure results

1. E1eetricaE resistivity

We have measured R as a function of T under isobaric
conditions and as a function of P under isothermal condi-
tions. Using thermal expansion data and compressibili-
ty data we have calculated p from R and the geometri-
cal dimensions. Figure 5 shows p versus T from 200 to
360 K in four isobaric runs. We made nine such isobaric
runs, and in all of these p was linear in T above T&. For
two separate experiments with four isobaric runs in each
we have calculated d(lnp)/dP to be —5.4X10 and—4.7X10 GPa ', respectively, at 295 K. Below Tz
d (lnp) ldP increases continuously with decreasing T,
reaching zero at about 210 K. In Table II we present
d (lnp)/dP as a function of T

At pressures above approximately 2 GPa Gd under-
goes a transition from the hcp structure to a phase with
the Sm-type structure. This phase is claimed to be
paramagnetic, possibly with a helimagnetic structure at
low temperature. In Fig. 6 we show data from two iso-
thermal pressure runs at 295 K, the 6rst using silicone oil
and the second using a 50/50 mixture of n- and isopen-
tane as pressure-transmitting media. In both runs, the
transition can be seen to occur at about 2.0 GPa under
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TABLE II. Pressure dependence of p, a, c~, and A, at selected
temperatures.

(K)

150
200
250
275
300
350
400

p 'dp/dP
(GPa ')

0.013'
—0.004'
—0.022
—0.028
—0.051
—0.051
—0.050'

a 'da /dP
(GPa ')

0.16
0.09
0.05

—0.05
0.29
0.26
0.25

c& dc& /dP
(GP

—
1)

0.04
0.07
0.13
0.25

—0.08
—0.03
—0.02

'd A, /dP
(GPa-')

0.20
0.16
0.18
0.20
0.22
0.24
0.23

'Values obtained by extrapolating the experimental data.

1.0':
Qk

0

increasing pressure, where there is a sudden decrease in R
by 5.0% in the first run and 4.8% in the second. In the
first run, solidification of the oil causes strain in the speci-
men and thus a departure from linearity in p above 1.5
GPa. In the second run we cooled the cell to 200 K at
2.1 GPa, as shown in Fig. 5 and discussed below, before
releasing pressure at 245 K. Both at 295 and 245 K the
high-pressure phase was metastable to about 0.5 GPa on
decreasing P. In the hcp phase R decreases linearly with
increasing pressure, and we calculate d (lnp) ldP
= —5.0X10 and —5.2X10 GPa i for th
at 295 K. Including the data from the isobaric runs we
obtain a mean value of d ( 1np ) /dP = —5. 1 X 10 GPa
at 295 K.

The pressure dependence of p below 2.5 GPa at rooin
temperature has been studied many times before.
From Bridgman's measured d ( 1nR ) /dP we find
d(lnp)/dP = —5.2X10 Gpa ', and from the figures
of Fujii et aI. ' and Stromberg and Stephens we calcu-
late d (lnp)/dP = —5.8 X 10 and —3.6X 10 GPa
respectively. Austin and Mishra report

d(lnp )jdP= —8.4X10 GPa ' in the c-axis direc-
tion, where p is the magnetic disorder component of p
(to be discussed further below). The hcp-to-Sm-type-
structure transition was previously observed by Bridg-
man but not, surprisingly, by Stromberg and Stephens.

As discussed above and shown in Fig. 5 we made one
isobaric run at 2.1 GPa, to see whether we could observe
any transition to a magnetically ordered phase. We ob-
serve a small change in dp/dT at about 260 K, close to
the expected value for Tz as linearly extrapolated from
atmospheric pressure. We believe that this anomaly sim-
ply indicates that the specimen contains a small amount
of untransformed hcp phase, as also observed by
McWhan and Stevens.

From the isobaric data for p we have also determined
the pressure dependence of the critical temperature T&
and T„. We find dT& jdP=( —14.0+0.5) KGPa ' and
dT„/dP=( —22.0+2.0) KGPa '. We know of no data
in the literature for d T„/dP, but for d Tc/dP we have cal-
culated a mean value of 11 determinations ' ' ' as
dTc /dP = —14.6 K GPa

2. Thermal diffusivity and thermal conductivity

The thermal-transport properties of Gd have never
been studied under pressure before. In Fig. 7 the temper-
ature dependence of a is shown at three different pres-
sures. Each symbol represents the mean value of 5 —8
separately measured data points. The general behavior of
a versus T is the same at all P, and we note that the pres-
sure coe%cient is much smaller below Tz than above, in
agreement with the results for p. This is also obvious
from Table II, where we present our data for d(lna )ldp
as a function of T. In one of the isothermal pressure ex-
periments shown in Fig. 6 we also measured a at 317 K to
2.45 GPa, through the hcp~Sm transition. The pres-
sure coefFicient below the transition was in excellent
agreement with the results already shown. In the high-
pressure phase, a was found to be 15% higher than in the
hcp phase, but with practically the same pressure
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coefticient in the range of metastability. Although the
high value of a is of some interest, we cannot deduce the
value of X in the high-pressure phase due to the lack of
data for c, and we shall not discuss this result further in
this paper.

In order to calculate the pressure dependence of A, we
must know the pressure dependences of c and d. The
latter is found from the compressibility, but no data are
available for the pressure dependence of c, although c
for Gd has in fact been studied under pressure by Jura
and Stark. Unfortunately they used their method solely
to determine d Tc /dP.

We have previously, ' ' for simpler metals, calculated
dc /dP from the volume thermal expansion coefficient
e„through the thermodynamic identity

( Bc IBP ) = —
( T /d )[a„+( Ba, IBT ) ] .

For simple metals dc IdP is small, and any errors arising
from uncertainties in a, or Ba, /BT are of little impor-
tance for the final result for dk, /dP. In the present case,
however, both a, and c contain significant magnetic
components which could be expected to show an appre-
ciable pressure dependence, and we are not sure that Eq.
(1) gives sufficiently accurate results for our needs. We
have instead tried to separate the lattice, electronic, and
magnetic components of both c (T) and a, (T). The
magnetic part of the heat capacity, c, is associated with
the magnetic order which diminishes rapidly above Tc.
We have assumed that c is zero at 400 K and that the
electronic part c,=y, T at all T. The constant y, is
found to be 4.05 X 10 J g

' K from low-temperature
data for c . To the remaining part c I at 400 K we fit a
Debye function with OD =163.4 K, and c is obtained
by subtracting col and y T from cz. The lattice part of a„
is estimated by simply extrapolating the thermal expan-
sion data from the paramagnetic region down to 150 K.

The pressure dependence of c~& is found by applying
Eq. (1) to the lattice component of a„and we find
d (inc

&
)I dP = —2X 10 GPa ', practically indepen-

dent of T between 150 and 400 K. For c, we use

cz, =(m /3)k TN(Ez), where k is Boltzmann's constant
and N (E~ ) is the electronic density of states at the Fermi
energy EF. We then find d (1ncz, )IdP =d ( lnN (EF ) )I
dP = —7.5 X 10 GPa as given by Darby and
Richardson. Since c, is a small part of c, however,
even this large pressure coefficient adds little to the total
d(inc~)!dP The pressur. e dependence of c is difficult
to estimate, and we have tried two ways of doing this: In
the first model, we assumed that both the total magnetic
energy E = Jc dT and the function c~ =c„(T/Tc)
are independent of P. We then found c at 1 GPa by
simply multiplying c ( T/Tc ) by Tc(0 GPa)IT& (1
GPa). However, this model did not agree well without
experimental data for a near Tc, from which we can mea-
sure the height of the peak in c as the inverse of the dip
in a. We find that the height increases by 26% GPa
while the model just described gives S. l%%uo. We have
therefore in our final calculation used only the assump-
tion that the function c (T/Tc) is independent of P,

and calculated the magnitude of this function at elevated
pressures from the measured height of the peak at Tz.
The final data for d (inc )/dP are given as a function of T
in Table II. It is obvious that both the magnitude and the
temperature dependence of this quantity are dominated
by the pressure dependence of c~

The final calculated data for d(ink, )/dP are presented
in Table II. The pressure dependence of A, is very large,
both compared with the results for the metals previously
studied' ' and compared with d(lnp)/dP; in fact,
d (lnL)/dP =0.2 GPa ' at all T. The temperature
dependence of d (1nA, )/dP is, however, qualitatively simi-
lar to that of d (lnp)jdP, with a step change at Tc.

IV. DISCUSSION

A. Electrical resistivity under pressure

Since all theories for the transport properties of metals
are derived assuming constant volume conditions, the
correct procedure in the analysis would be to start by
converting all data to constant volume, since data for the
thermal expansion, the compressibility, and the pressure
dependence of both k and p are available. We have not
carried out this procedure, mainly because the difference
between constant volume conditions and constant pres-
sure conditions should be small in the present case: most
of our data are obtained between 150 and 400 K, in
which range the net thermal expansion is small.

For the electrical resistivity p we shall use the standard
assumption that

p po+pep+pm ~ (2)

where po is the residual resistivity and p, and p are due
to scattering by phonons and magnetic spins, respective-
ly. p is assumed to be constant above Tc (Ref. 50)
where the spin disorder is complete, although this as-
sumption has been questioned. ' The slope dp/dT above
Tz is thus assumed to be due entirely to phonon scatter-
ing. po cannot be found directly from the measured data
since the lower-temperature limit here is 30 K. We have
estimated an upper limit to po by first removing p, from
our data by fitting a Bloch-Wilson equation, with
0= 163.4 K, to the high-T ( ) Tc ) data. This should
give a marginally better estimate of p, at 30 K than a
simple linear function p= AT. From p —p, we estimate
po~2. 9 pAcm. p (T) is then found as p —p,z

—
po and

above T& p~ =104.1 pA cm.
The high-pressure results obtained in the isobaric runs

were analyzed in the same way, but with p, = AT since
T )0, and assuming po(P) =po(0). Two experiments
were made, each comprising four isobaric runs at
different pressures, but with different pressure media. We
have chosen to use the results obtained using pentane
rather than silicone oil, partly because this is a "better"
pressure medium, but mainly because data were taken
over a wider range in T. However, similar results were
obtained in both experiments. Somewhat surprisingly,
we find that p, increases with increasing pressure, with
d (lnp, )/dP =1.8 X 10 GPa '. The pressure
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p =K,m*J /VE~, (4)

where m* is the effective mass and J is the indirect ex-
change constant. Combining Eq. (4) with the expression
TC=K2J /V E~ in a free-electron model, it is possible
to find the pressure or volume dependence of m* and J

coefficient of p is strongly temperature dependent, as
shown in Fig. 8. This is due to the large, negative
dTC/dP. If we assume p =Bf(T/Tc), where B de-
pends on V but not on T, and differentiate with respect to
P we obtain

1 ~Pm =c)(lnB) /c)P — c)(lnp )/c)T . (3)
T Tc

Tc BP

From data for p at P =0 we have calculated the second
term P (shown in Fig. 8) and subtracted if from the mea-
sured c)(lnp ) IdP. The resulting d (lnB) ldP, also shown
in Fig. 8, is independent of T, except for a dip near T&
which arises because we use an average dp ldP between
0 and 1 GPa, thus smearing the sharp behavior of
d(lnp )ldT. Our assumption that p is the same func-
tion f of normalized temperature TITc at all pressures,
and that the "true" d (lnp )!dP =d(lnB )/dP
= —6.4 X 10 GPa ', independent of TITc, is thus
verified. As a comparison, Fujii et al. ' find
d(lnp )IdP = —8.3 X 10 GPa ', and Austin and
Mishra —8.4X10 GPa ' (along the c axis).

The pressure dependence of p has been discussed pre-
viously, and it is usually assumed that

from the pressure dependence of p and Tc .(In these
expressions, the constants K& and K2 are assumed in-
dependent of P.) From our data we find
d(lnm*)/dP=1. 0X10 GPa ', very close to the value
calculated in a free-electron model, and
d(lnJ)ldP= —4.6X10 GPa ', both intermediate be-
tween previous data.

The positive sign for dp, !dP is unusual for a pure
metal. At high temperature, p, can be written

p, =8nkTA. „/(hcv ), (5)

where co = 8m.e ( v~ )X(EF)/3V is the Drude plasma fre-
quency, UF is the Fermi velocity, and the transport
electron-phonon interaction factor A„ is defined as

A,„=I [a„(cv)] F(co)dcolco . (6)

Here [a„(co)] is the transport electron-phonon coupling
and F(co) is the density of phonon states. It is easily
shown that

(dzp, /dTdP)l(dp, IdT)

=d(lnA„) IdP —2d(inca )!dP . (7)

In our case p,z is a linear function C(1+DT)(1+EP) of
T and P, and (d p,~/dTdP)I(dp, ~/dT)= d(lnp, ~)—ldP at
P =0. If we use again the free-electron model, where
co& =4mne /m *, we can use our previous result for
d(lnm*)ldP to find d(lnA„)/dP= —0.2X10 GPa
or practically zero. The increase in p, with P thus seems
to be due to the increase in electron effective mass under
pressure. %e note, however, that the free-electron model
is probably not a good approximation for Gd.

cI (1np ) /dp

(GPa ~ )
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B. Thermal conductivity and Lorenz function at P =0

In magnetic metals heat can be transported by elec-
trons, phonons, and magnons:

(8)AI +k +AI ~

Above T& it is believed that the mean free path for
magnons is too short, due to the almost complete spin
disorder, for the magnon contribution to be important.
The thermal conductivity is then dominated by the first
two terms in Eq. (8).

We begin by discussing the electronic part of A, , which
can be related to the electrical resistivity already dis-
cussed. We write for the thermal resistivity W in analo-
gy with Eq. (2),

-8. 0

~ Ogle gO~ 1 ~ gyp'0
a

Qr

~~ege~a+& ~ y0$++0~+ Qs

250 300
T (K)

350

FIG. 8. Pressure dependences of p as a function of T. (a)
Experimental data for d(lnp )IdP. (b) Triangles, P from Eq.
(3); squares, true pressure dependence of p Wep =pep/LeT ~ (10a)

A,, '=W, =W„+W„+W,

where the subscript interpretation is obvious. The largest
component in p above 60 K is p, which may be treated
as due to an elastic scattering mechanism. We can then
write W, =p /TL, O, probably to a very good approxi-
mation. Similarly, we write W o=po/TI. O. In simple
metals p, and W, are related by the approximate rela-
tion
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where L, is the electronic Lorenz function

2(T/O) J (O/T)
L = 2LpJ3(O/T)+ J~(O/T)/2m

(lob)

and J, are Debye integrals of order L At high T (T »O)
~Lp. For a metal-like Gd, with a complicated band

structure, we would expect L, to deviate from Eq. (10b);
in transition metals such deviations, due to inelastic
scattering processes, are common. However, since

p, «p, and thus 8' « 8;, such deviations should
not be a serious source of error. We have calculated A,,
from our data for p under these assumptions, and the re-
sult is shown as a dashed line in Fig. 9(a). We note that
A,, is only 45 —75 % of the total A, , leaving a large residual
term to be accounted for. We shall devote most of the
remaining part of this section to a discussion of this resid-
ual term, treating the temperature ranges above and
below Tc separately.

Above Tz, A, should be negligible and the difference
between A, and A,, should be entirely due to A, . Fitting a
polynomial to (A, —A,, ) ', the best fit is obtained for
(A, —A., ) = —0.013+1.45X10 T, with a standard de-
viation of 2.6%, in excellent agreement with the expected
temperature dependence for a lattice thermal conductivi-
ty limited by phonon-phonon scattering. The negative in-
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FICx. 9. {a) Thermal conductivity vs T. , our experimental
data for A.; dashed line, A,, calculated from p,'solid curve,

T ', ~, A, —A,, ; X, X . {b) solid curve, k~ {model I); &,
. {c)solid curve, A,~ {model II); A, A.

tercept is equivalent to only 1% of the total A, at Tc.
We check the assumptions made by extrapolating p,

k„and A, , as obtained above, to high temperatures. A,,
is calculated assuming that p and pp are constant, and
that p, =8.98 X 10 T Q cm. We add A, , as found from
the fit above, and find L =2.56 X 10 W 0 m/K at 1100
K, intermediate between the values 2. 58 X 10 and
2.49 X 10 obtained by Binkele and by Novikov
et al. ,

' respectively, at this temperature. We take this
to be strong evidence that (a) the extra term in A, above
Tc is due to a lattice thermal conductivity limited by
phonon-phonon scattering, and (b) L, does not deviate
significantly from Lp at high temperature. We see no
need to invoke other heat transport mechanisms, such as
bipolar heat conduction, ' in this temperature range.

We now turn to the temperature range below Tz. If
we extrapolate k, as obtained above, to lower tempera-
tures, we find that A,, +A~ is up to 8% lower than the ex-
perimental data for A, between 115 K and Tc. This is also
illustrated in Fig. 9(a), where we show both the difference

(solid squares) and the extrapolated high-
temperature behavior of A~ (solid curve). Whenever the
latter is smaller than A,, —

A, we also show the difference
(triangles). We have come to the conclusion that this
difference must be due to an additional heat current, for
the following reasons.

(1) Although the total possible experimental error in A,

is 4%, any temperature-dependent errors are smaller
than 1.5%, and the discrepancy is thus very much larger
than any experimental errors.

(2) The high-temperature data indicate that L, cannot
exceed Lo by more than 1 —2%, and even using such a
value for L, on the total p does not significantly change
the size of the discrepancy. To explain the anomaly from
any error in our calculated A,, it is necessary to assume
that the Lorenz function L =p /W, T is 15—20%
higher below Tc than above, which seems unreasonable.

(3) Regarding A, , it is conceivable that there could be
some extra scattering mechanism operating only above
T&, but we fail to find such a mechanism. On the con-
trary, we believe that A,

' could instead increase below

T~, where phonon-magnon scattering might become im-
portant. The term due to scattering by electrons should
also be almost independent of T at T & 0 (see below).

Since we thus cannot find any other explanation, we
must identify this additional term in k as a magnon heat
conductivity term X . Such a component has previously
been observed in ferro- and antiferromagnetic metals
and insulators. However, in metallic materials magnon
thermal conductivity has previously only been identified
at very low temperatures.

In order to obtain a better estimate of the magnitude of
we have tried to improve the analysis of the lattice

thermal conductivity A, . Above, we have only taken
phonon-phonon scattering into account, but at low tem-
peratures phonon-electron and phonon-magnon scatter-
ing might also be important. We shall neglect the latter
term, since this effect is known to be small in Gd, but in
metals A, is usually limited by electron scattering at
T «O. We write
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2.36[aN (EF )h A /k](O/T)
p-e J3(O/T)

(12)

which, in the limit T—+0, reduces to W, o- T . Here a
is the cube root of the atomic volume,
A= f [a(co)] F(co)dc'/co, and A differs from A„ in that
the latter weights the interaction proportional to
1 —cosN, where N is the scattering angle.

As a first approximation (called model I in the follow-
ing) we estimate W, ( T~O) from the experimental data
of Ratnalingham and Sousa, who find a quadratic term

0 026 T W m K Wp e is then Wp g 280 /
T J3(O/T), which at T) Tc reduces to W, =0.021
W 'Km. Using this value, a new fit to the data for
A, —A,, above 360 K gives a value W =1.36X10 T
W 'Km, differing by less than 6%%uo from the previous
value. The new data for A, and A, obtained in this way
are shown in Fig. 9(b). The agreement between the model
and the experimental data for I, is still fairly poor below
100 K, which could be due to impurity or magnon
scattering.

In order to find a better estimate we have increased the
term W, until the agreement between the theoretical
function k~(T) and the experimental points extends to
the lower limit of our temperature range. The result of
this model, here called model II, is shown in Fig. 9(c),
where the terms A, and A. are almost equal in magni-
tude. Since we will take no account of magnon or impur-
ity scattering this analysis will actually give an upper lim-
it on k, except at low temperatures where the model
gives an unrealistically abrupt drop to zero. W is now
1 08X10 T W 'Km, while the low T limit of
A, =0.004T Wm 'K ', well below the experimental
value. However, to this we should add the low-T limit
of k, which should have a T dependence. The experi-
mental high-temperature ratio W /W, =0.28 can be
compared with the semiclassical value ' 8', /V',
=3/mn, Goo. d a.greement is found for n, = 1 electron
per atom, while for Gd n, =3. However, using Eq. (5)
with I =I.o, together with the high-temperature limit for
Wp given by But 1er and Wi 1liam. s, it is easi 1y shown
that n, in a Deb ye model should be replaced by
A„/AN(E~ )a co, which is not unlikely to differ
significantly from the free-electron value.

In theory, we could also calculate the components of
8' can be found from any of the various

Leibfried-Schlomann-type formulas,

W =K4y T/aQ (13)

where y is the Griineisen parameter. However, data
from literature for y vary from 0.55 to 1.62, and al-
though a value can be chosen to make the theoretical
value for W equal to the experimental value, this is of

A,p
'= Wp= Wpp+ Wp, ,

where W is the lattice thermal resistivity and subscripts
p-p and p-e designate scattering by phonons and elec-
trons, respectively. In a Debye model, W, can be writ-
ten"

little physical interest. 8', can be calculated from the
low-temperature limit of Eq. (12); inserting
N(E~)=1.82 eV/atom (Ref. 54) and 0=163.4 K, and
taking A=0. 3 as suggested by Tsang et al. , we find

kp Wp 0 013T W m ' K ', intermediate between
the values found above.

The two models studied are both fairly realistic, al-
though we have excluded scattering of phonons by both
impurities and magnons, and we have still no way of
choosing between them. We therefore postpone any dis-
cussion of A, until after we have discussed the pressure
dependence of A, .

C. Thermal conductivity at high pressure

d ( ln W' ) /d ( ln V) = 3y +2d ( lny ) ld ( ln V) ——,
'

where

y =a„/dxc, = —d(lnO)/d(lnV)

(14a)

(14b)

and ~ is the compressibility. The volume dependence of
y is usually not known, and the left-hand side of (7) is
often estimated' as 4y &d(lnW z)/d(lnV) &7y. In the
present case, however, we have tried to calculate
d (lny)ld(ln V) from data from literature for ~ as a func-
tion of T and P. ' We find a surprisingly large
d(lny)/d(lnV)=7. 9, which together with y=0. 55 (Ref.
63) gives a theoretical value d (inW~ ~)/d(ln V) =17.0 or
d (ln W& ) ldP = —0.44 GPa '; using instead y = 1.62
(Ref. 63) gives a value of —0.52 GPa

In order to compare this value with the experimental
data, we assume that the various components of W', (P)
can be calculated from the corresponding parts of p(P).
dW~, /dP can be found by differentiating Eq. (12) with
respect to volume and using the expression (14b) for y.
Assuming the pressure dependence of A to be equal to
that of A„(Ref. 53) given above, and inserting the known

The most striking feature of our high-pressure data
(Table II) is the very large pressure coefficient of L at all
temperatures; d(lnL)/dP=0. 2 GPa ', independent of
T. This could be due to some error in the experiment or
in the subsequent calculation of A, , but the experimental
data are internally consistent, and our method has been
tested many times before. A prime suspect might be the
large values found for dc /dP, but in the range above Tc
where d A, /dP is largest the data for dc~ ldP are very simi-
lar to those for other metals. We thus believe that the
high values of d A. /dP are real, and we proceed to find an
explanation.

We would not expect the electronic Lorenz function to
depend much on volume above 0, ' and we can thus cal-
culate A,, from our measured data for p, as before. It is
then obvious from the large difference between
d (lnp)ldP and d (Ink)ldP that the very strong pressure
dependence of A, must be due mainly to A, . In particular,
since W, should have a pressure dependence similar to
that of W, (see above), most of this strong pressure
dependence must come from W . Using again the sim-
ple- Leibfried-Schlomann expression the volume depen-
dence of W is easily shown to be
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pressure dependence of N (Ez ) (Ref. 49) we find
d(lnW~, )/dP= —8X10 GPa ' at T)O, which is
small compared to the estimated pressure dependence of
8' . We can then use the data for d(in', )/dP above Tc
to find experimental values of 8' in models I and II
presented above. The results are d (ln W z )/dP = —0.45
GPa ' and —0.57 GPa ', respectively, at 400 K, in very
good agreement with the theoretical values. This is
somewhat surprising, since the model used is very crude;
as shown by Pettersson it is necessary to use a much
more detailed model to obtain good agreement between
theory and experiment for the alkali halides.

Finally, we have used the experimental data for the
pressure dependence of 8' and 8„together with the
estimated pressure dependence of 8 „ to calculate
d(ink, )/dP at T (Tc in the two models. The results are
shown in Fig. 10, together with the corresponding experi-
mental data. In these calculations we have made the
same assumption regarding the T and P dependence of

as we did for p, i.e., that A, =Ef(T/Tc), where f
is independent of pressure; furthermore, we have as-
sumed E to be independent of P. It is clear from the
figure that model II gives a much better agreement with
experiments. We note, however, that if we assume that

completely disappears up to 1 GPa in model I, this
model also agrees fairly well with the data. We also note
that this is not realistic, since analyzing the data obtained
at 1 GPa in the same way as the zero-pressure data al-
ways yields a residual magnon term. This analysis thus
confirms that model II is a better quantitative model.

We can thus conclude the f'olio wing about the
magnon-thermal-conductivity term A, : The magnitude
is probably fairly close to that given by model II, i.e.,

=1.5 Wm 'K ' at 200 K, rising to 2.4 Wm 'K
at 100 K. The uncertainty in these figures is probably
high, especially below 150 K, but it is dificult to estimate
the numerical errors in the assumptions made. In our
model k drops to zero at 45 K, but in reality we expect
a more gradual decrease towards zero, since theory pre-
dicts A, ~ T at low temperatures. Our results do not ex-
clude such a dependence since we have omitted phonon-
impurity scattering. At high temperatures, the results of
model I are in excellent agreement with A, ~ T ', with a
more rapid drop near Tc. In the more realistic model II,
however, no simple power law (T ") seems to be valid
for I, . Although magnon-magnon scattering is believed
to dominate A, at high temperatures, both phonons
and electrons also scatter magnons, and our data are not
sufIiciently accurate to enable us to study these mecha-
nisms in any detail. The pressure dependence of k is
probably fairly small, but we cannot deduce an exact
value. The results shown in Fig. 10 indicate
d(ink, )/dP=(0+0. 1) GPa '. We also note that a
better agreement with experiment would be obtained in

(In'. ) /dP
(Gpa ~ )

0. 0 «

0 0
200 300

T CK&

400

FIG. 10. Pressure dependence of A, as a function of T.
Squares denote experimental data, dashed curve model I, and
solid curve model II.

the same figure if k was larger near Tc and smaller near
150 K.

V. SUMMA. RY AND CONCLUSIONS

We give above new, accurate experimental data for the
thermal diffusivity and the thermal conductivity of gadol-
inium as functions of both temperature and pressure.
These data differ from most older sets of data in that they
can be analyzed in a simple and consistent way, with A.„
A, , and the Lorenz function being smooth functions of
temperature. Furthermore, all of these also behave in a
normal way as functions of temperature and have magni-
tudes that are in good agreement with simple theoretical
estimates.

The pressure dependence of the lattice thermal conduc-
tivity is much larger than the commonly used theoretical
approximations indicate. We note that for other metals
and alloys we have also found that d A, /dP is larger than
predicted by the same theory. ' ' ' Although hcp Gd
might be a special case, it is possible that the standard ap-
proximation is not good enough, and that better agree-
ment with theory might be obtained for all metals if a
better model were used.

Independently of the model used in analyzing the data
we always find a small residual term in A, below T& that
we identify with a magnon heat transport term A, . Al-
though the numerical value of this term remains uncer-
tain, our best estimate is that it amounts to about 20% of
X below 200 K. We suggest that the low-temperature
thermal conductivity of Gd should be studied further in a
strong magnetic field in order to clarify this question fur-
ther and possibly find a better estimate of the magnitude
of A. . We also suggest that a theoretical calculation of
magnon heat conduction at high temperatures, and near
a Curie or Neel transition, including all possible scatter-
ing mechanisms, would be of great interest.
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