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Dielectric breakdown of a random array of conducting cylinders
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We develop a two-dimensional model for breakdown of metal-loaded dielectrics based on the
breakdown of a random array of perfectly conducting cylinders embedded in a uniform dielectric
and determine the breakdown field, breakdown-path geometry, and dielectric constant as a function
of metal-packing fraction. The computer solution of Laplace's equation in the random geometry
uses the boundaiy-element method and the random-packing configurations are generated by the
Monte Carlo method. We compare the simulation results with exact lower bounds for the dielectric
constant and scaling arguments for the breakdown field.

I. INTRODUCTION

This paper addresses the problem of dielectric break-
down in metal-loaded dielectrics, which are materials
consisting of an inhomogeneous mixture of conducting
and insulating components. One example is solid-fuel
rocket propellant, which consists of a mixture of alumi-
num and ammonium perchlorate particles in a polymer
binder. It has been observed' that the breakdown field of
these materials is lowered significantly by the presence of
the aluminum particles and is a strong function of the
volume fraction of these particles. This unusually large
sensitivity to breakdown is a safety concern in the han-
dling and processing of solid rocket propellants and has
been implicated in several accidents involving the igni-
tion of these propellants under conditions where static
electric fields are believed to have been present. Our ob-
jective is to understand factors relating to breakdown
phenomena in these types of materials and to suggest
nondestructive tests for breakdown sensitivity.

In this paper we describe a two-dimensional model for
dielectric breakdown of these materials based on the solu-
tion of Laplace's equation in a medium consisting of a
random array of conducting cylinders embedded in a uni-
form dielectric. In Sec. II we begin by describing the
construction of randomly inhomogeneous systems of the
type mentioned above, and by outlining the procedure for
the solution of the Laplace equation for such systems.
We then discuss the breakdowJi dynamics for this model
by defining local breakdowns, global breakdown, and the
breakdown field. Finally; in Sec. II, we define the
effective dielectric constant for these systems, which we
will show can be used as an indicator of breakdown sensi-
tivity. In Sec. III we present some results of this model
and make comparisons to previous work on the break-
down of metal-loaded dielectrics. In particular, we show
an example of a sample which has undergone the break-
down process, and comment on the breakdown path and
the evolution of the maximum electric field in the sample.
We also study the dependence of the breakdown field Eb
on the area fraction of conducting particles. Next, we ex-
amine the effective dielectric constant e as a function of

metal fraction for the randomly inhomogeneous systems
and compare it to some analytically derived lower
bounds. Finally, we identify two geometrical quantities
that scale linearly with Eb over a large range of area frac-
tions and that may allow for the straightforward deter-
mination of the effects of mixture composition in real ma-
terials. Section IV contains a brief summary of our re-
sults and points out directions for further study.

Breakdown phenomena in metal-loaded dielectrics
have received some attention in recent years from the
standpoint of percolation theory. Theoretical efforts
have concentrated on lattice models in an attempt to see
if the basic physical mechanisms of breakdown in these
materials can be identified. Some efforts have focused on
the breakdown of fuse networks ' while others have con-
centrated on random-resistor-type networks. We will

briefly review a few of these models which are particular-
ly relevant to our work. The model of Beale and Dux-
bury is a bond-percolation model in which conductors
are placed on the bonds of a lattice with probability p and
capacitors with probability 1 —p. The capacitors are cap-
able of sustaining a 1-V drop, after which they fail and
become conductors. A voltage is applied across network
and the lattice Laplace equation is solved to determine
the voltages at each node and the capacitor sustaining the
largest voltage drop greater than 1 V fails. The voltage is
slowly increased and capacitors are allowed to fail in the
manner described above, until a conducting path forms
across the system. The breakdown field is defined as the
minimum external voltage required to cause complete
failure of the network divided by the linear dimension of
the lattice. One significant result of this model is that the
breakdown field Eb ~0 as p ~p„where p, is the bond-
percolation threshold. In addition, Eb scales with g
near p„where g is the percolation correlation length and
therefore E& scales like (p, —p ) . Finally, Eb is lower for
larger lattices and scales with 1/ln(L), where L is the
linear system size. A model by Bowman and Stroud is
similar to that of Beale and Duxbury; they also showed
that the breakdown field Eb scales like (p, —p )". In addi-
tion, they calculated a parameter I which is proportional
to the number of bonds that need to be broken in order to
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form a conducting path across the system. They showed
that this parameter l (p) approaches zero as p approaches
p„but they were unable to determine conclusively the
scaling of I with p. Also, they did not address whether
their parameter I actually corresponds to the minimum
number of bonds which need to be broken in order to
form a top-to-bottom connection across the lattice, a
length usually referred to as the minimum gap. In other
work Stinchcombe, et ah. have suggested that the break-
down field Eb is directly proportional to some kind of
minimum-gap parameter. They showed that when prop-
erly defined, this minimum gap behaves as an order pa-
rameter in the normal percolation sense and has predict-
able scaling behavior. This analysis was carried out for
the dilute Cayley tree with the result that the minimum
gap x -(p, —p )' as p ~p, . Adding this to the argument
of Beale and Duxbury described above, it can be conclud-
ed indirectly that Eb -x. In Sec. III we will explore the
suggestion that there may be geometrical parameters that
scale simply with the breakdown field.

Our objective is to extend this lattice work to more
realistic geometries by considering an approximation to
arbitrarily shaped metallic inclusions randomly distribut-
ed within a perfect, lossless dielectric. In such a system
the volume fraction of metal P is analogous to the bond
probability p, and the random close-packing limit P, re-
places the percolation threshold p, . The analogy should
not be taken too far, however, since particles randomly
packed into a dielectric do not have the same geometrical
properties near the close-packing limit as bonds do in the
lattice-percolation problem. For this reason we expect to
see departures from the scaling behavior of lattice-
percolation models and will explore these departures.

II. MODEL

As a starting point for a continuum model, we approxi-
mate arbitrarily shaped metallic inclusions as perfectly
conducting cylinders of radius a surrounded by oxide lay-
ers 0.01a in thickness. We choose cylinders to keep the
problem efFectively two dimensional and thus more tract-
able from a computational standpoint. Also, we will
draw analogies between this random continuous-
geometry model and the two-dimensional percolationlike
lattice models reviewed in the preceding section. We
have included oxide layers as a practical matter since
most metallic surfaces on small particles have thin oxide
coatings unless carefully prepared. We will assume that
the dielectric properties of the oxide are the same as
those of the background dielectric, so that the effect of
the oxide layers in this model is primarily to prevent any
cylinder pair from initially making electrical contact.

We now focus on the construction of a model "sam-
ple. " To begin with, we will assume that the background
dielectric is lossless (zero conductivity) with dielectric
constant unity for any applied field up to its breakdown
strength. For a given area fraction P of conductor the to-
tal area of the sample is fixed once the number of
cylinders and their radii has been chosen; we choose a
square box for the boundary of each sample. The
cylinders are placed in the box randomly via the Monte

Carlo method subject to the constraints that no two
cylinders including their oxide layers overlap and no sur-
face comes within two oxide layers of the boundary of the
box. The result is a square two-dimensional sample con-
sisting of perfectly conducting cylindrical inclusions oc-
cupying an area fraction P of the total sample randomly
distributed within a lossless dielectric.

We have chosen to apply a voltage to the sample via
capacitor plates which are in contact with the top and
bottom of the sample. Specifically, we place the sample
between two perfectly conducting plates and extend the
length of the plates to twice the sample length in order to
reduce fringing fields at the edges of the sample. The re-
sult is that application of a voltage Vo equal to the sam-
ple length produces a nearly uniform E field normalized
to l everywhere in the sample region in the limit of $~0.
The capacitor-plate method of applying a voltage has the
advantage of providing two surfaces which define in a
natural way the point at which the sample has broken
down completely, i.e., a top-to-bottom connection. In ad-
dition, this configuration is consistent with experimental
setups that are used and is also consistent with the way in
which voltage is applied in lattice models. A final advan-
tage to this method is that it enables calculation of an
effective dielectric constant in a straightforward manner,
as will be discussed later in this section.

We now turn to the matter of finding the electrostatic
potential throughout a given sample, which will be used
to identify regions of large electric field. Since this model
assumes that all bodies are perfect conductors and that
the dielectric has zero conductivity, this implies that all
charge resides on surfaces or boundaries assuming all
fields and charge distributions are static. This is exploit-
ed by the so-called boundary-element method, which we
will use to obtain an approximate solution for the charge
density on all surfaces and, more importantly, the elec-
trostatic potential of each conductor. In two dimensions,
the integral solution of Laplace's equation accounting for
surface charges only is

M
C&(r) = —g I o.(r')ln( ~r —r'~ )dl', (l)

j=i J

where o. is the line charge density (surface charge density
in three dimensions), M is the number of conductors, and
4 is the usual electrostatic potential. The boundary-
element method essentially discretizes these integrals by
assuming that the charge density along a line segment of
sufficiently small length is approximately constant and
can be replaced by a discrete charge located at the center
of that line segment. If we now choose each discretized
point as a place to evaluate @, the result is a matrix equa-
tion for the unknown charges and potentials which can
be solved uniquely, provided we include M constraint
equations. These equations express the fact that the net
charge on any initially uncharged perfect conductor must
remain zero, provided its potential is not externally
specified. External voltage is coupled in through the
plates, which cannot individually have zero net charge,
but whose total charge can be set to zero through the ad-
dition of one final constraint equation and a correspond-
ing unknown voltage that merely shifts the zero-voltage
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reference point. The potential must be modified for
points which lie on top of each other or are closer than
some arbitrarily small distance for which the charges
cannot be assumed to interact through the usual logarith-
mic potential; we choose this distance to be half a line-
segment length. The self-interaction term can be found
by integrating the logarithmic potential over the length
of a line segment; we approximate the potential at all dis-
tances up to the cutoff by linear interpolation between the
logarithmic form at a distance of half a line segment and
the self-interaction at zero distance. Using this method,
the unknown charges and voltages of each cylinder can
be found and, hence, the electrostatic potential uniquely
determined at all points in the sample.

Next, we describe how we incorporate breakdown dy-
namics into this model. The first step is to identify re-
gions of the sample which are vulnerable to breakdown
due to the presence of large E fields. The largest electric
fields in the sample lie along lines joining the centers of
cylinders which are closely spaced and whose center-to-
center lines are nearly parallel to the applied field. Since
the voltages are known from the boundary-element solu-
tion and we know that the largest electric fields are along
these center to center lines, we approximate the E field
between a pair of cylinders (or cylinders and plates) by
the voltage difference between the two conductors divid-
ed by their minimum surface to surface separation dis-
tance, d. This method provides a good estimate of the
average E field in the region between two conductors in
the sense that this average electric field is the line integral
of the actual E field along the line of minimum surface-
to-surface separation divided by the length of that line.
This approximation gets closer 'to the actual maximum
local E field as d gets smaller, since the E field is being
averaged over a shorter distance. We assume that break-
down occurs only between the pair of conductors which
has the largest E field between them, as defined above.
We then define a local breakdown as the formation of an
electrical connection between two conductors resulting in
those two conductors sharing charge and attaining the
same electrical potential. Experimentally, it has been
conjectured' that such local breakdowns do, in fact,
occur and the presumed physical mechanism is a vapori-
zation of a portion of the metallic particles followed by
resolidification as a single conductor. We assume that
the connection is a thin metallic surface between the con-
ductors which has negligible charge density, so that the
net result computationally is merely to change the con-
straint equations of the matrix. With these new con-
straints now in place, the system of equations is resolved
to determine a new set of charges and voltages. Using
the same criterion for breakdown, we continue this se-
quence of local breakdowns, storing the maximum Geld
enhancement E,„which caused the local breakdown at
each configuration. The sample is broken down com-
pletely when a top-to-bottom conducting connection is
made. This conducting path would then rapidly
discharge the capacitor plates; this is not included in our
model. The minimum E,

„

in the sequence is the largest
field enhancement that would be needed to break down
the entire sample just as in lattice models. Hence we

define the breakdown field Eb as the inverse of this
minimum E,„;as such, it is dimensionless field that is
normalized with respect to the breakdown field of the
background dielectric.

Finally, we want to define an effective dielectric con-
stant for our samples and look for the behavior of e as a
function of area fraction P. The effective dielectric con-
stant for a medium can be defined as the dielectric con-
stant that an isotropic, homogeneous sample of the same
size and shape would need to have in order for it to have
the same measured capacitance as the original inhomo-
geneous sample. Computationally, this amounts to re-
placing our samples with homogeneous samples of the
same size and determining the dielectric constant they
must have to induce the same total charge on the top (or
bottom) plate as the original samples did. To facilitate
finding e, we generated a table of capacitance as a func-
tion of effective dielectric constant for our geometry us-
ing standard finite-element electrostatic codes. Knowing
the capacitance for a given sample, we can now simply
read the effective dielectric constant off of this calibration
curve.

III. RESULTS

We now turn to a discussion of some results of this
model, beginning with a few comments on some of the
computational aspects. Samples containing 25 cylindri-
cal inclusions were generated as described in the preced-
ing section with area fractions ranging from 0.25 to 0.75;
the random close-packing limit is -0.81 for randomly
placed impenetrable cylinders. ' Our limit is lower
( -0.767) due to the presence of oxide layers and the fact
that our samples are not truly randomly close packed at
large area fractions. This is due to an inherent difficulty
in generating randomly disordered samples at large P. At
area fractions greater than or equal to 0.70, there is a
first-order phase transition in the Monte Carlo hard-disk
model from a liquid phase to a solid phase, "which tends
to lock in our random configurations very close to the
starting configuration of a square lattice. The small size
of our samples, combined with the hard-wall boundary
conditions, makes this problem even more acute. Conse-
quently, for samples with $~0.70, our configurations
consist of fluctuations about the equilibrium solid-phase
configuration, which is a square lattice for these sample
sizes and boundary conditions. These configurations are
statistically independent, but highly ordered. Below
/=0. 70 the equilibrium phase is liquid so that random
configurations are much easier to generate. Ten samples
were generated at each area fraction and were run until
complete failure. The results were averaged over these
ten runs and the error bars on the plots in the following
figures represent the standard deviation about those aver-
ages. By comparison with exact results for two cylinders
in a uniform external field, we found the electric field pre-
dicted by using 16 line segments per cylinder to be within
15% of the exact result for a surface-to-surface separa-
tion distance d of 0. 10a and —50%%uo for d=0. 02a, the
closest allowed spacing. Despite this large inaccuracy,
test cases with twice this number of patches yielded iden-
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FIG. 4. Average breakdown field Eb for the random array.

cial care was taken to avoid the formation of oxide layers
on the silver particles; because of this; electrical contact
could be made between particles, whereas in our model
such contact is prevented in the virgin sample. Neverthe-
less, the observed behavior is qualitatively similar and the
only effect is that the dielectric constant in our model
cannot go to infinity at random close packing, but in-
steaad approaches a large but finite value. Figure 5 also
shows two analytically derived lower bounds that can be
placed on e for any isotropic two-phase material; no
upper bound exists if one phase is perfectly conducting.
The Hashin bound is the best possible lower bound for a
statistically isotropic two-phase material given only
volume- or area-fraction information' and for our case
where the cylinders are perfectly conducting reduces to
the well known Clausius-Mossotti or Maxwell relation,

1+E'= 1—

function of area fraction P. The breakdown field de-
creases monotonically with increasing area fraction as ex-
pected and Eb approaches a small but finite value as the
random close-packing limit P, is approached. The break-
down field cannot go to zero because the oxide layers
prevent contact between the cylinders. We will show
later that this lower limit is 0.01. These results are analo-
gous to the results obtained in lattice models where El,
decreases with increasing bond concentration p, and
Eh~0 as p~p, .

Figure 5 displays a plot of effective dielectric constant
e as a function of P for our model. The dielectric con-
stant increases monotonically with increasing area frac-
tion; this is easily explained physically by noting that the
polarization of each sample clearly increases with in-
creasing metal fraction. In addition, e diverges as P~P, .
Analogous behavior has been observed in lattice percola-
tion where e—+Do as p~p, .' This effect has been mea-
sured experimentally in systems of silver particles ran-
domly embedded in a KCl matrix. '- In this material, spe-

The fourth-order Milton bound includes information
on the statistical distribution of phases and thus is a
tighter bound, but it contains some approximations that
start to break down as P, is approached. ' ' Our data as
shown in Fig. 5 are consistent with the bounds described
above. An additional check on the validity of our
effective dielectric constant was done by considering a
square array of cylinders. McPhedran' has derived an
analytic solution for the dielectric constant of an infinite
square array of cylinders embedded. in a uniform external
field which is valid for close spacings. We can only ap-
proximate this with our model, but a finite square array
placed in between our capacitor plates should provide a
reasonable test of the accuracy of our solution. Figure 6
shows the dielectric constant for our model plotted as a
function of area fraction. Also shown is the approximate
solution given by McPhedran in the range where it
should be valid, as well as the result for the random array
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FIG. 5. Average effective dielectric constant e for the ran-
dom array; the crosses represent our data.

FIG. 6. Average effective dielectric constant for the square
and random arrays. The squares represent the square-array
data and the triangles represent the random array. The solid
line is the McPhedran solution plotted over the range where it is
valid.
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of cylinders. The agreement between our results for the
square lattice and the analytic result is quite good and
can be taken as further evidence that our numerical solu-
tion for the capacitance is accurate. Finally, the
McPhedran solution predicts that the dielectric constant
for the ordered array should diverge like the inverse of
the square root of the separation distance between
cylinders. This separation distance is the minimum dis-
tance between surfaces just as we defined earlier and is
calculated along a line joining cylinder centers. This sep-
aration distance is a function only of the area fraction for
a fixed cylinder radius; hence, for a given area fraction
and a cylinder radius of 1, we can calculate the separa-
tion distance between cylinders in the infinite square ar-
ray. We find that this inverse square-root singularity also
exists in our model.

Earlier we indicated the desire to find geometrical
quantities that scale with the breakdown field Eb. The
first candidate is the minimum gap, which was defined in
the context of this model earlier in this section. The
breakdown path shown in Fig. 2 certainly suggests that
the backbone of the breakdown path may, in fact, be a
minimum-gap path. We have calculated the minimum-
gap paths for all our samples using the method of simu-
lated annealing, ' which has successfully solved
the"traveling-salesman" problem as well as other prob-
lems of combinatorial optimization involving large
discrete sets of variables. The minimum-gap problem is
analogous to the "traveling-salesman" problem with the
exception that we do not know how many points the
minimum-gap path actually connects. This is a minor
complication, however, and solution of the minimum-gap
problem using the simulated annealing algorithm is quite
straightforward. In addition, we have calculated the ac-
tual gap traversed in each of our samples using the quasi-
static breakdown model we have described. We found
that the breakdown path coincides with the minimum-
gap path in over 60% of the cases, and in the vast majori-
ty of remaining cases the lengths of the actual paths are
within a few percent of the minimum gap. In these cases,
it is common that the actual path is some small variation
from the minimum-gap path and the two paths share
many of the same connections. When averaged over the
ten random samples, the average actual gap is within 7%
of the minimum gap in the worst case and is within about
1% in most cases. Figure 7 shows a plot of the average
actual gap normalized with respect to the length of the
sample as a function of area fraction P. The gap de-
creases monotonically as the area fraction approaches the
close-packing limit for our model. Figure 8 shows a plot
of the breakdown field Eb as a function of the normalized
minimum gap x. Note that Eb scales linearly with x over
nearly the entire range of data. This result confirms
speculation that the breakdown field scales linearly with
the minimum gap, at least for this breakdown model.

The second parameter we will consider is the average
surface-to-surface separation distance of nearest-neighbor
cylinders, d, which we normalize with respect to the
cylinder radius a. Since each local breakdown takes
place between conductors which are in some sense neigh-
bors (although not necessarily nearest neighbors), we ex-
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FIG. 7. Average normalized minimum gap x.

rP(r) =2nnrg(r)exp —2mn dr'r'g(r')
0

in two dimensions, and

P(r)=4mnr g(r)exp 4mn I dr'r—' g(r')
0

(3)

(4)
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FICx. 8. Scaling of the breakdown field with the average nor-
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pect that Eb may scale with this length. This quantity is
much more easily calculated than the minimum gap; in
fact, d is derivable from the pair correlation function g(r)
which is utilized in the theory of simple liquids. This
correlation function g(r) is well known for hard spheres
in three dimensions (3D) from Monte Carlo simuations as
well as analytically using the Percus-Yevick approxima-
tion. ' The correlation function is also known ap-
proximately for the hard-disk problem in two dimensions
(2D). Once g(r) is known, the probability that the
first-nearest neighbor of a given particle lies a distance r
away is given by
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in three dimensions, where n is the number density of
particles. The average nearest-neighbor separation dis-
tance is then found easily by integrating the above distri-
bution function. The result is

m
d = —f dr P(r) —2,

a o
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FIG. 9. Average nearest-neighbor surface-to-surface separa-
tion distance d.

where d is normalized with respect to the particle radius,
and the subtraction of 2 indicates that d is measured be-
tween particle surfaces rather than between particle
centers. We do not calculate g (r) for the hard-disk prob-
lem, although, in principle, d could be found in this
manner; instead, we make a direct calculation of d from
our Monte Carlo systems. Figure 9 shows a plot of d as a
function of area fraction P. Note that d decreases mono-
tonically as P increases as it should. Furthermore,
d ~0.02 as P~P, due to the presence of the oxide lay-
ers. Figure 10 shows a plot of Eb as a function of d. No-
tice that Eb also scales linearly with d with a slope of —,'.
The slope of —,

' can be predicted at large area fractions
(small d) by considering an infinite square lattice of
cylinders and calculating the breakdown field in the same
way we have described. In this case the average electric
field across each gap is the same and Eb is determined
from the first breakdown; each subsequent breakdown
occurs at a larger local field. A simple calculation then
shows that Eb is given exactly by

d
(6)

d+2 '

where Eb is normalized with respect to the breakdown
field of the dielectric and d is normalized with respect to
the cylinder radius a. For small separations, the expres-
sion simply reduces to

Eb =
—,'d,

and this slope fits over the entire range of average separa-
tions for the random array. Note that since our random
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FIG. 10. Scaling of the breakdown field with the average
nearest-neighbor separation distance. The line shown has slope
of —,

'
~

array is very close to a square array at area fractions near
P„this formula predicts that the breakdown field ap-
proaches 0.01 as P~P, . This lower bound is consistent
with the data shown in Fig. 4.

IV. CONCLUSIONS

To summarize, we have introduced a new model for
dielectic breakdown in random metal-loaded dielectrics
which incorporates continuous-geometry effects and is
hence a more realistic model than lattice models which
have been focused on up to this point. In many instances,
our results have confirmed results found in previous mod-
els, and in a few cases new insights have been gained.
More specifically, our model predicts that the breakdown
field Eb goes to 0.01 as the metal fraction P approaches
the close-packing limit for this model and the effective
dielectric constant e approaches a large but finite value;
the dielectric constant cannot diverge due to the finite
minimum separation between particles imposed by the
presence of the oxide layers. In addition, e agrees well
with analytically derived lower bounds and its divergence
near the random close-packing limit suggests that this
could be used as a criterion for breakdown sensitivity.
These results are qualitatively in agreement with the
aforementioned lattice results. We have identified two
geometrical parameters: the normalized minimum gap x
and the average nearest-neighbor separation distance d,
which scale linearly with the breakdown field over nearly
the entire range of area fractions studied. These results
should allow for the estimation of the effects of mixture
composition in a straightforward way. The average
nearest-neighbor separation d can be estimated from ei-
ther Monte Carlo results or by use of the pair correlation
function for hard disks; similarly, the minimum gap is a
parameter which is easily obtained for this model by use
of the simulated annealing method, and seems to include
the essential features of the original breakdown problem.

Suggestions for further study include replacing the
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boundary-element method with a new approximation
scheme which will allow us to analyze much larger sys-
tems than are now possible in an attempt to see system-
size effects; this work is already in progress. The method
being used in this new work involves multipole expan-
sions of the scalar potential and enables us to utilize
sparse matrix techniques. We were limited to 25
cylinders in this project because use of the boundary-
element method results in a nonsparse matrix in which
the number of unknowns goes up as the square of the to-
tal number of discrete points in the system. Hence, com-
puting resources become strained even for modest system
sizes. Using this new technique, we expect to extend this
work to three dimensions and analyze systems of perfect-
ly conducting spherical inclusions. Also, we expect to in-
clude a distribution of particle radii in both the two- and
three-dimensional models. Finally, if the linear scaling of

the breakdown field with the normalized minimum gap
and the average nearest-neighbor separation distance can
be confirmed for larger systems and for higher dimen-
sions, the possibility exists for analyzing the entire
dielectric-breakdown problem from a purely geometrical
standpoint, which is computationally easier than treating
the full electrostatic problem.
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