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Energy spectrum and persistent current in one-dimensional rings
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The correlations in the energy spectrum and persistent current of electrons in one-dimensional
disordered rings threaded by an Aharonov-Bohm magnetic Aux are shown to be so strong that the
current of any level is sufficient to cancel the sum of the contributions of all previous levels. Hence,
the sign of the sum of the n lowest single-level currents alternates as a function of n. A new relation
between the real part of the inverse transmission coefficient and the energy spectrum is also derived.

I. INTRODUCTION
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Here, P is the magnetic flux enclosed by the ring,
go =bc/e the Aux quantum, and N is the number of lat-
tice sites as well as the number of levels in the system. In
the following we set V = 1, so that energies are measured
in units of V. We consider the case of nonmagnetic im-
purities and neglect spin degeneracy and electron-
electron interactions.

The magnetic Aux P enters the Hamiltonian (1.1) ex-
plicitly and the wave functions satisfy periodic boundary
condition. It is mathematically equivalent to consider
the above Hamiltonian at zero Aux with the Aux then
entering via the phase-shifted boundary condition,

11j(N+n) =exp l 2&
g(n) . (1.2)

In this case one can change the boundary condition con-
tinuously by varying the Aux P.

Byers and Yang showed in 1961 that the energy spec-

Consider electrons in a one-dimensional ring without
leads threaded by an Aharonov-Bohm flux. If the ring is
smaller than the phase coherence length, then quantum
coherence effects will be important. Some phenomena
will depend on the structure of the discrete energy spec-
trum. An example is persistent currents in such rings. '

Advances in semiconductor technology have begun to
make it possible to study such systems experimentally.
Here we discuss some general properties of the energy
levels. We show that strong correlations exist between
the slopes of the levels as function of Aux, such that the
total persistent current as function of filling alternates in
sign from one filling to the next.

The model that we use is the Anderson model, which is
a tight-binding model with diagonal disorder. However,
the results hold also for other models, such as models
with off-diagonal disorder, or free electrons in a random
potential. The Hamiltonian for the Anderson model is

N N —1

H= g e;a;+a, —V g (a;+a;+, +a, +,a, )

trum E„of the system is periodic in the magnetic Aux
with period $0, and that the persistent current of each
level is determined by the slope of the level versus Aux,

()E„'
ay

(1.3)

In 1983, Buttiker, Imry, and Landauer' addressed the
question of the persistent current from the mesoscopic-
physics point of view. They mapped the problem onto
the band-structure problem of a one-dimensional infinite
crystal. The idea is the following. After the electron cir-
cles the ring once, it sees exactly the same potential as be-
fore, but now has acquired an additional phase 2~$/ttio
The situation is equivalent to the one described by the
Bloch theorem. Hence the energy-Aux diagram is
equivalent to the band structure (E versus ka) of a one-
dimensional infinite crystal. Also the fact that the E„( ())t
have alternating slopes from level to level was already no-
ticed by these authors. Imry discusses this point further,
starting from results for the band structure of one-
dimensional infinite crystals. He concludes that E„(P)
cannot have an absolute minimum or maximum except at
/=0 and /=neo/2

Random matrix theory also applies here. The Ander-
son Hamiltonian (1.1) falls into the class of the orthogo-
nal ensemble when the Aux is zero or an integer multiple
of half flux quantum, and into the class of the unitary en-
semble for other values of the Aux. Two interesting re-
sults are the level repulsion and the extraordinary small
fluctuation of the number of levels within some typical
energy range, if the localization length is not much short-
er than the ring circumference.

Thouless pointed out to us that the first (N —1)th mo-
ments of the spectrum are Aux independent. A way to
see this moment condition is as follows. The Hamiltoni-
an contains on-site terms plus nearest-neighbor hopping
terms. Physically, every time the Hamiltonian operator
acts on the electron wave function, the electron can ei-
ther remain sitting at the same site or hop to the next
site. In order to contribute to the diagonal terms of the
rnth power of the Hamiltonian, the electron must return
to its initial site after exactly m steps, eacH step being one
sit or one hop. In a sequence of sits and hops, although
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the electron may cross the site with the flux and so ac-
quire an additional phase 2~//$0, it can hop back across
that site and cancel that phase. The only way that it can
go back to the initial site without canceling the phase due
to the Aux is to hop around the ring, which requires at
least N hops. So up to the (N —1)th power of the Hamil-
tonian, the diagonal terms cannot contain terms that de-
pend on the Aux.

It is interesting to see what the above moment condi-
tion implies. First of all, it imposes (N —1) constraints,
which means that the energy spectrum is a very rigid
function of P. With one additional relation between the
energies (e.g., the knowledge of one energy), one could
then, in principle, solve for the whole spectrum. In prac-
tice these are nonlinear equations, which have been stud-
ied under the name "moment equations. " If one takes
their derivative with respect to P, one obtains (N —1)
homogeneous linear equations for the currents, with
coe%cients depending on the energies. Hence, if the
whole spectrum plus one current were known, one could
solve for the other currents. This approach yields useful
information about the current. However, in the follow-
ing we shall use an alternative approach, which yields all
of this plus additional information.

II. TRANSFER-MATRIX MATCHING METHOD

The approach we use for finding the energy levels is the
transfer-matrix method. The method is discussed in An-
derson and Lee. Later it was applied by us to investigate
the persistent current in a one-dimensional ring. We dis-
cuss it further here, concentrating on the general proper-
ties of the system.

The transfer-matrix method for finding the energy lev-
els of electrons in a ring consists of two steps. In step 1,
imagine the ring being cut open and stretched out to
form a straight wire. Starting with some trial wave func-
tion of energy E on the first two sites (g, and t/r2), one can
obtain the wave function on the next site (f3) by solving
the eigenvalue equation Hf=Eg. [We let the fiux enter
via the boundary condition Eq. (1.2), so that H is fiux in-
dependent. ] The result is $3=(s2—E)$2—g„s2 being
the random site energy. This procedure is repeated until
the two sites corresponding to the starting sites are
reached, now with the wave functions gz+, and /iv+2,
respectively. The result is written in terms of the transfer
matrix T in real space,

r

Plv + I ~ Pl Pl (2.1)
Ply+ 2 P2 +21 ~22 P2

1/t* r/t
I' jt* 1/t .B . (2.2)

From the construction, one sees that the elements of the
T matrix are polynomials in E of at most order N. The
procedure can also be formulated in k space. Then the
transfer matrix T connects the amplitudes of right- and
left-traveling waves (A and B) at the left end of the wire
to the corresponding amplitudes (C and D) at the right
end,

Here, t and r are the total transmission and reAection
coe%cients for waves entering from the left. Now we
consider step 2 of the transfer-matrix matching method.
For a level to exist at energy E, the wave function g must
also satisfy the boundary condition (1.2). This is possible
if and only if the T matrix has an eigenvalue equal to
exp(i2irg/$0). Mathematically, det[ T—exp(i2~$/$0)]
=O. This matching condition for a level to exist reduces
to the following simple equation:

f (E)=Re —=cos
1 2~

(2.3)

The expression for the current is also very simple,

& sin(2mglgo)

fi f '(E„) (2.4)

(2.5)

This is a useful new relationship between the energy lev-
els of the electron in the ring and the total transmission
coefFicient around the ring, in .either clockwise or anti-
clockwise direction. Since f (E) is independent of Aux,
one may consider without loss of generality P= —,'$0 and
w~ite f (E)=—,'+„,[E„(—,'$0) —E]. The energies of all
levels E„(—,'Po) are real. From the above one infers that
the matching function f (E) has the following exact prop-
erties. (i) There are N zeroes, at E =E„(—,'Po). (ii) There
is only one turning point between any two adjacent
zeroes. Hence there are (N —1) turning points. (iii) At
those turning points

~f(E)
~

must be at least 1, as implied
by the definition f (E)=Re(1/t) and ~t~ (1.

The above properties may seem a mild restriction.
However, by asking how close one can move the energy
E„ towards E„+&

without violating these constraints
(keeping all other E fixed), we find that ther'e must be a
minimum energy separation between these two levels. If
one tried to reduce the separation further, one would
force

~f (E)
~

at one of the turning points to be less than l.
Moreover, there are long-range correlations in the spec-
trum. If one puts E„and E, +] at the minimum separa-
tion such that

~f (E) ~
at the turning point between these

levels is equal to 1, one cannot move any other levels

Alternatively, one can work in real space and the match-
ing function f (E) would then be equal to one-half times
the trace of the T matrix. From the above construction
of the T matrix, one knows that the elements of the T
matrix are polynomials in E of order not larger than X.
Since the number of levels is X, the above implies that
f (E) is a polynomial in E of order exactly equal to N.
Hence the function exp( i 2m P/Po—)det[T exp(i—2~$/
Po)], which is equal to 2 Re(1/t) 2cos—(2irg/$0), must be
proportional to Q„(E„E)=det(H— E). Bot—h func-
tions vanish at the energies of the levels. By comparing
the coefficients of the cos(2m//$0), one finds that the pro-
portionality constant is 1. So our main result is

r

f(E):—Re — =cos + —,
' + [E„(P) E] . —1 2~

4'0
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2e 1 2m/
+' [E (P)—E„(P)] 4o

(2.6)

This result also follows from the moment condition.
Equation (2.6) implies some of the results derived above.
It demonstrates explicitly that in the absence of degenera-
cy the single-level currents I„are alternating in sign with
n. Likewise, one current being zero implies that all other
currents must vanish, etc.

Next we consider the total current. First we define the
total current up to the nth level as the sum of the
currents of the first n level. We shall see that the total
current is also very rigid, namely, it is alternating in sign
with n.

To derive this result, first we rewrite the single-level
current in terms of a parameter E,

closer to this pair without forcing
~f (E)~ at this turning

point to be less than 1. This gives a rough picture for
viewing level repulsion and level rigidity.

For general fiux, Eq. (2.3) defines the energy levels.
Graphically, one may consider f (E) versus E intersected
with a constant equal to cos(2~$/$0).

Since f (E) is an oscillating function of the energy with
an amplitude not less than one, Eqs. (2.3) and (2.4) imply
the following general results.

Case 1'. The Aux is not equal to zero or an integer mul-
tiple of a half Aux quantum. Then the energy levels are
nondegenerate, and the currents of the levels are nonzero
and alternate in sign from level to level.

Case 2. The Aux is equal to zero or an integer multiple
of a half Aux quantum. In general the energy levels are
nondegenerate and have zero current. In the peculiar
"resonance" case t =+1 (t = 1 for even integer multiples
of a half Aux quantum and t = —1 for odd integer multi-
ples), the levels are twofold degenerate and their currents
add up to zero.

The first result follows because at these cruxes the mag-
nitude of the right-hand side of Eq. (2.3) is less than 1 and
therefore Eq. (2.3) cannot have multiple solutions. The
behavior of the current can be deduced from Eq. (2.4).
The result follows since f '(E) is finite, nonzero, and alter-
nates in sign from level to level. The second result fol-
lows by considering under which conditions multiple
solutions of Eq. (2.3) are possible. A double solution is
possible if and only if t =+1 at that energy and for those
fluxes. From Eq. (2.4), nonzero current requires
f'(E)=0, and this coincides with the conditions for de-
generacy. The sum of the currents of two degenerate en-

ergy levels is zero because f '(E), being determined solely
by the curvature of f (E), is antisymmetric very close to
that energy.

From Eqs. (2.3)—(2.5), one derives that the single-level
current is

—1 1cc
total (2.8)

4J
0

M

where the contour C encloses the first n poles. Alterna-
tively, one can integrate over the real axis by shifting the
first n poles by a small positive imaginary part, and the
others by a small negative imaginary part. The integrand
is similar in form to the standard Green's function.

The integrand has poles on the real axis only, see Fig.
1. We will deform the contour in the following way.
Define an angle 8„by E„E=—~E„—E~exp(i8„), with

vr(—8„~~ Th. en the integrand in Eq. (2.8) can be
rewritten as exp( —i+8 )/g~E E~. N—ow consider
the set of (X—1) lines defined by +8 =+la,
l =1,2, . . . , N —1, in the complex E plane. Ignore the
real axis for the moment. One finds that between any two
adjacent poles E and E +, there passes exactly one of
the above-mentioned lines. These lines have the follow-
ing properties. (i) They are mirror symmetric across the
real axis, since the E„are real. (ii) They never cross one
another, since +8 is the imaginary part of the analytic
function In+(E E). (iii—) All lines start from infinity
in the lower half plane and end at infinity in the upper
half plane. (iv) If one follows any one line from the lower
half plane to the upper half plane, the real part of E along
the line is increasing on one side of the real axis but de-
creasing on the other, whereas the imaginary part of E is
always increasing. Obviously, one can choose these lines
to be the contours of integration in the expression for the
total current. For the total current up the nth level the
contour to be chosen is the line passing between E„and
E„+&

and the direction is from the lower half plane to the
upper half plane. The integrand in Eq. (2.8) for the total
current has the following properties. (a) It is real and
does not change sign along a contour, since +8 =+l~
and l is fixed. (b) It is symmetric across the real axis along
a contour. (c) The sign of the integrand alternates with n,
since when n changes by 1 the contour index l changes by
1. By combining these properties of the integrand with
those of the contour lines stated above, especially (i) and
(iv), one concludes that the real part of the integral in Eq.

—1 1c(-

2vri g(E E)— (2.7) —5.0 -2.5 0
Re (F)

2.5 5.0

where the integral is over a closed path which encloses
only the pole at E =E„. Then the total current can be
expressed as

FIG. 1. Schematic representation of the poles (X) and con-
tours of integration in Eq. (2.8). (Figure obtained for a ring with
N =8 sites. )
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(2.8) vanishes by symmetry, while the imaginary part al-
ternates in sign with n. Therefore the total current I„„&
is always real and alternates in sign with n.

The last result is very interesting since it implies that
the total current has the same sign but is smaller in mag-
nitude than the current of the last level. The correlations
in the spectrum are so strong that the current of any level
is sufhcient to cancel the sum of the contributions of F11

previous levels.

III. OTHER CONSIDERATIONS

Some of the above properties of single-level currents
can also be understood from another viewpoint. Here we
give a mathematical explanation for why the current can-
not be zero at PWnPo/2. The flux enters the problem via
the phase-shifted boundary condition for the wave func-
tions, Eq. (1.2). When Ping /o2, the phase factor is a
complex number. This implies that none of the eigen-
functions can be chosen real on every site, which in turn
implies nonzero current.

We give another reason why at /=neo/2, when the
energy levels are doubly degenerate, the sum of their
currents is zero. Those Auxes correspond to either
periodic or antiperiodic boundary conditions for the
wave function. The Hamiltonian and the phase factor in
the boundary condition are real. So in case of double de-
generacy one can choose a pair of real orthonormal wave
functions as a basis. Since they are real, they carry zero

current. Other bases are possible, and their wave func-
tions may carry currents. However, when both of the
two degenerate energy levels are filled, the sum of the
currents must be zero since the result should not depend
on the basis.

IV. SUMMARY

We have derived a useful relationship between the
transmission coefticient and the energy levels for elec-
trons in a one-dimensional ring. An understanding was
developed for two important properties of the spectrum,
namely, level repulsion and spectral rigidity. We find
that the energy levels can be degenerate only if both the
Aux is equal to zero or neo/2 and the transmission
coeKcient is equal to +1 at that energy. For all other
values of the Aux, we find that the sign of the single-level
current I„alternates with n and that the total current
It t i has the sign of the current of the last occupied level.
This strong correlation is remarkable.
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