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The pressure derivatives and uniaxial strain derivatives of the elastic constants of copper are cal-
culated using the embedded-atom method, and the results are in good agreement with experiment.
Also, the elastic constants of a 5 twist grain boundary [with (100) boundary planes] are calculated
on a layer-by-layer basis, and the elastic behavior is shown to differ by up to an order of magnitude
from bulklike behavior. This unusual elastic behavior is found to be similar to that of uniaxially
strained crystals, since the grain boundaries themselves are regions that are strained (expanded) in

one direction.

I. INTRODUCTION

The structure and mechanical properties of grain boun-
daries have been subjects of recent experimental' 7 and
theoretical interest.” ! Both transmission electron mi-
croscopy (TEM) (Refs. 2 and 3) and x-ray diffraction*™”’
techniques are currently used to pinpoint the location of
atoms at grain boundaries. Theoretical calculations by
Foiles'>!3 using the embedded-atom method (EAM)
(Refs. 17 and 18) are in good agreement with experiment
for the =5 tilt and 213 twist boundaries in Au. (An un-
resolved controversy exists for the =5 twist boundary in
Au; two experimental groups using x-ray diffraction have
suggested different structures; EAM calculations agree
with one of the structures.”)

The EAM has also been applied by Wolf and co-
workers!# !> to the study of the elastic properties of grain
boundaries, both in thin slabs and in superlattices. They
found that several typical grain boundaries have a larger
(than bulk) Young’s modulus (E) in the direction normal
to the boundary, and a much weaker shear modulus (G)
parallel to the boundary. They found the same qualita-
tive features using pair potentials.!*!> Phillpot, Lutsko,
and Wolf have also studied elastic constants of grain
boundaries in silicon.'®

Wolf and Lutsko'* carefully compared radial distribu-
tions of atoms in the bulk and at grain boundaries. They
found that atoms at the grain boundary were generally
farther separated from one another, although approxi-
mately 10% of the atoms were closer. They also calculat-
ed the Young’s modulus E and shear modulus G of a per-
fect crystal as a function of lattice constant, and found
that expansions of the lattice tended to decrease both E
and G. Since a grain boundary is an expanded region
(relative to the bulk), one might expect both E and G to
decrease, in contrast with their results.

However, since grain boundaries are only expanded in
one dimension (perpendicular to the interface), then their
elastic properties are expected to be similar to those of
crystals expanded in one dimension, not three.

The purpose of this paper is to present an explanation
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of the elastic behavior of grain boundaries. First, we fur-
ther establish the reliability of the embedded-atom
method by demonstrating that it correctly predicts the
pressure and uniaxial-strain derivatives of the elastic con-
stants of copper. These results strongly suggest that the
calculated elastic constants of deformed materials, such
as grain boundaries, will be similarly realistic. Second,
we calculate E and G for a =5 twist boundary in copper,

. and suggest a simple relationship between the elastic be-

havior of twist grain boundaries and uniaxially strained
crystals.
It should be pointed out that we have previously estab-

‘lished that the EAM accurately predicts both thermal ex-

pansion (which is related to the derivatives of the elastic
constants)!>?° and the derivative of the elastic constants
with respect to interstitial concentration.?! These results
further suggest that the EAM will reliably model the
elastic properties of defected regions such as grain boun-
daries.

II. EMBEDDED-ATOM METHOD
AND ITS APPLICATION

The EAM is a model of metallic cohesion developed by
Daw and Baskes.!” It is a semiempirical model whose
functions are developed by fitting to experimental data,
such as lattice constant, sublimation energy, elastic con-
stants, and vacancy-formation energy.'® It is analogous
to pair potentials, but it includes many-body terms to
properly describe metallic bonding. Summaries of the
EAM have been given previously, and we will not repro-
duce them here. In this work we use the EAM functions
for copper from Ref. 18.

The EAM has been shown to accurately predict many
physical properties, such as vacancy and interstitial prop-
erties,'® phonon dispersion,?? liquid metal structure,? al-
loys,'® bulk diffusion in metals and alloys,?*?> Gibb’s free
energies,zo and the structure of grain boundaries.” >3 It
has also been applied to calculating properties of sur-
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faces, including surface energies,!® surface relaxations,'®
surface reconstructions,?®~2° surface segregation,’®*! and
phonon dispersion at surfaces.*>3% The ability of the
EAM to accurately describe such a wide range of proper-
ties is one of the most surprising and powerful
justifications of the approach.

The EAM calculations described in this work could
have been carried out either analytically or computation-
ally. Whereas Wolf and Lutsko used an analytic ap-
proach to calculate the elastic properties, we chose the
computational approach, because it is simpler to carry
out and can be easily applied to defected regions such as
grain boundaries. . Using our numerical approach, elastic
constants could generally be calculated to only four
significant figures, due to a small amount of numerical
“noise.” The cause of the noise is due to the fact that the
EAM functions are defined numerically on a grid; they
are determined by a four-point Lagrange interpolation
between grid points.

The calculation of pressure and strain derivatives of
the bulk material involved systems of 256 atoms (288 for
calculating C,4). Adjustable periodic boundary condi-
tions were applied, using a modification of the algorithm
of Parinello and Raman.*> The calculations were carried
out at 0 K, using molecular statics (MS), in which atomic
positions are adjusted by a conjugate gradient method so
as to minimize the total energy. Calculations at finite
temperatures could have been carried out using molecu-
lar dynamics; however, such calculations would have
been much more computationally expensive. Since the
elastic constants at 0 K are generally within 10% of those
at room temperature, where the experiments were carried
out, our results should be comparable with the experi-
mental values.

Calculations involving the 5 grain boundary involved
an orthorhombic system of 1600 atoms, approxi-
mately 14.5X14.5X72.3 A. The grain boundary was
aligned perpendicular to the longest axis, with (100)
boundary planes. The surfaces perpendicular to the
boundary were treated with periodic boundary condi-
tions, and the two surfaces parallel to the boundary were
“free,” or solid-vacuum interfaces. Although the use of
free surfaces creates inaccuracies in the results near the
surface, we demonstrate in Sec. III D that these effects
are small and limited to only a few layers near the sur-
face. Periodic boundary conditions could have been used
instead of free surfaces, resulting in a periodic arrange-
ment of grain boundaries; however, our results show that
the grain boundaries affect the mechanical properties
somewhat more than free surfaces. Also, this choice of
boundary conditions allows the two crystals to shift rela-
tive to one another.

The structure of the boundary was determined by be-
ginning with a coincident-site lattice (CSL) and then per-

. forming a simple MS calculation to determine the
minimum-energy configuration. The resulting structure
was also annealed at 500 K using MC techniques, and
after cooling back to 0 K the same crystal structure re-
sulted. These results strongly suggest, although they do
not prove, that the final structure was the lowest-energy
configuration.
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III. RESULTS AND DISCUSSION

A. Pressure derivatives

The hydrostatic pressure derivatives of the elastic con-
stants were calculated by determining the elastic con-
stants at five pressures, from 10 to — 10 kbar. The elastic
constants were found to vary linearly, so their derivatives
could be easily calculated.

For a given pressure, the elastic constants were calcu-
lated by slightly varying the pressure in different direc-
tions, and determining the corresponding strain of the
crystal. The details of this procedure are listed in Table
I. For example, the Young’s modulus E was calculated
by varying the pressure in the x direction, with the y and
z dynamic boundaries were allowed to adjust (Poisson
contraction allowed).

For C,4, we used a crystal which was rotated 45° to the
reference lattice, so that its [110] direction was oriented
along the x axis. This orientation allowed a simple deter-
mination of C,, (see Table I).

Table IT compares the calculated pressure derivatives
with experimental measurement.’*" 38 The calculated
values for the bulk modulus B and the shear modulus C,
are 80-90 % of the experimental values, and the calculat-
ed value for the shear modulus G =(C;; —C,)/2 is in
the middle of the range of experimental values.

B. Uniaxial strain derivatives of the Young’s modulus

Although the uniaxial strain derivatives of the elastic
constants have not in general been determined experi-
mentally, the strain derivatives of the Young’s modulus
have been determined for several materials (see Milstein
and Rasky>®). The total strain € of a crystal subject to a
tensile stress o is usually expressed as

2
) (1)

g

o
e=—+8 ;

E,

where E; is the Young’s modulus at zero strain, and d is
a materials constant. For most fcc metals (including
copper), 8 is negative in the [100] direction and positive
in the [110] and [111] directions.® In other words, the
effective Young’s modulus increases for [100] strains and
decreases for [110] and [111] strains.

We used the EAM to calculate § for copper, using an

TABLE 1. Method for calculation of the elastic constants. o
is the pressure applied in a given direction. The asterisk indi-
cates that the crystal is rotated 45° relative to the reference lat-
tice.

Elastic Pressure
constant x y z
G o —o
Cus o* —o*
B o o o
E o
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TABLE II. Pressure derivatives of the elastic constants of"
copper.

Method B Cus G
EAM 45 2.1 0.47
Expt. (Ref. 36) 5.59 2.35 0.580
Expt. (Ref. 37) 5.44 2.63 0.375
Expt. (Ref. 38) 5.32 2.36 0.45

approach similar to that for pressure derivatives. In oth-
er words, the Young’s modulus was calculated by apply-
ing uniaxial stresses and determining the resulting strain;
the Poisson contraction was allowed by using dynamic
boundary conditions. Allowing for the Poisson contac-
tion is, of course, necessary to accurately calculate the
Young’s modulus. 8§ was found to have a small strain
dependence, so we averaged the values over small strains
corresponding to typical experimental ranges, namely 1%
strains for the [100] and [111] directions and 2% strains
for the [110] direction. Although these strains are large
enough to plastically deform polycrystalline materials,
the experiments on single crystals*®*' determined that
the measured strains were elastic (no hysteresis in the
stress-strain curves).

Table III presents the EAM calculations of § and com-
pares them with both experiment*>*! and the theoretical
calculations by Milstein and Rasky* using Morse poten-
tials. Both theory and experiment are in excellent quali-
tative agreement. The quantitative agreement is also ex-
cellent for the [100] [110] directions; in the [111] direc-
tion the experimental values range from 2.1 to 3.76,
whereas both theories yield low values (1.6-1.7), suggest-
ing that the actual experimental value is in the lower
range of the experimental results.

Table III also lists the Young’s moduli for the different
directions. The Morse potential is fit to the Young’s
modulus in the [100] direction, but cannot exactly fit the
Young’s moduli in the [110] and [111] directions since
C,, must equal C,, for a pair potential. Since the EAM
contains a many-body term, it can accurately fit the
Young’s moduli in all directions. The Morse model was
fit to elastic constants at O K, whereas the EAM was fit to
elastic constants at 300 K. It is interesting to note that
although both models yielded good agreement with the
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FIG. 1. The effective Young’s modulus (for infinitesimal

strains) in the [100] direction as a function of strain in the [100]
direction.

experimental results for & (see Table III), the EAM’s ab-
solute value of the Young’s modulus is more reliable in
the [110] and especially the [111] directions.

Figure 1 graphs the effective Young’s modulus in the
[100] direction for infinitesimal strain as a function of to-
tal strain in the [100] direction. For large strains, the
Young’s modulus is found to vary nonlinearly as a func-
tion of strain.

C. Strain derivatives of the shear modulus

The EAM was also used to calculate the uniaxial strain
derivative of the shear modulus C4, for shear perpendicu-
lar to the uniaxial strain. In order to compare the results
more directly with those for grain boundaries (see Sec.
III D), the crystal was strained in one direction without
allowing for a Poisson contraction. Although we could
have allowed for a Poisson contraction, we wished to
compare our results with the structure of grain boun-
daries, which are approximately regions strained in 1 di-
mension without a Poisson contraction. Allowing for a
Poisson contraction only slightly changes the shear
modulus (about a 7% change at an 8% uniaxial strain).

TABLE III. Young’s moduli and nonlinearity constant & for copper. The EAM calculations were carried out at O K, but were fit
to elastic-constant data at room temperature. The Morse potentials were carried out at 0 K, and were fit to 0 K elastic constants.
The asterisk denotes experimental values at 300 K. The double asterisk denotes values at 0 K.

Method E Eyo E, 8100 d110 S
EAM 0.616 1.256 1.939 —4.3+0.2 10.5+0.5 1.6+0.2
Expt. (Ref. 39)* 0.667 1.303 1.911
Expt. (Ref. 40) —4.3+0.5 10.0+0.5 3.5+0.1
Expt.? —4.51 10.57 3.76
‘Expt. (Ref. 41) —4.4+0.2 8.9+0.7 2.1+0.7
Expt. (Ref. 39)** 0.726 1.411 2.059
Morse (Ref. 39) 0.726 1.658 2.897 —6.0 10.0 1.7

#Calculated (Ref. 40) from experimental data (Ref. 37).



9482
1.0
0.8 1
03
° 0.6 1
L
g
5 0.4
-4
0.2 1
0.0 T T T
0 5 10 15

ID Strain (%)

FIG. 2. The shear modulus C,, (for infinitesimal shears) as a
function of strain (without Poisson contraction) in the [100]
direction.

The shear modulus was then calculated by applying a
shear strain to the crystal and calculating the second
derivative of the crystal’s enthalpy. Figure 2 plots Cy, as
a function of uniaxial strain.

D. Elastic behavior of a =5 twist grain boundary

As discussed in Sec. II, the structure of the grain
boundary is fairly similar to that of the CSL lattice. Fig-
ure 3 plots the average interplanar spacing between the
planes parallel to the boundary; even at the grain bound-
ary the atoms remain within 0.2 A of the average. The
plot clearly demonstrates that there is a large expansion
in the interplanar spacing at the boundary, but that the
other planes are not significantly affected. The change in
lattice spacing at the surface is seen to be relatively small
and not to extend more than a few layers into the materi-
al.

Also, it should be noted that in the bulklike region be-
tween the graln boundary and the free surface, the intera-
tomic spacing is 1.822 A instead of 1.807 A. This change
is due to a contraction of the slab in the direction parallel
to the boundary, in order to minimize the surface area;
the contraction results in a Poisson expansion of the slab
perpendicular to the boundary. This change in the lattice
spacing is purely a result of the finite size of the slab; for
larger slabs, the effect is smaller. This small change in
the lattice spacing has a small effect on the elastic con-
stants, as discussed below. (See Refs. 14—16 for a further
discussion.)

The biaxial Young’s modulus of the grain boundary
(the Young’s modulus perpendicular to the boundary)
was calculated by applying a small tensile stress (0.05%
of the Young’s modulus) to the crystal in the direction
normal to the boundary. The atomic positions and dy-
namic boundaries were then adjusted to minimize the to-
tal energy of the system. In Fig. 4 we plot the resulting
average Young’s modulus of each layer parallel to the
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boundary, defined halfway between each (100) plane of
atoms:
.o
Bl=—", @
€11
where o, is the applied stress, and the strain of each lay-
er i is given by

Ax'—Ax}

- , 3
e 3)

€=
where Ax{ and Ax’ are the average interlayer spacings
before and after applying the stress, respectively.

Between the free surface and the boundary, E’ is very
close to the perfect crystal value (0.67 and 0.61X 10'2
erg/cm’, respectively). The value for the slab is slightly
hlgher than that for the bulk because the interplanar
spacing is 1.822 A instead of the bulk value of 1.807 A;as
shown in Fig. 1, this strain of 0.8% results in a 10% in-
crease in the Young’s modulus of the slab.

At the free surface, E' is slightly higher than that for a
perfect crystal. At the grain boundary, E’is much higher
than the perfect crystal value. Oscillations in the
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FIG. 3. Interplanar spacing as a function of distance across a
slab containing a =5 twist grain boundary in its center. The
slab has free surfaces at its minimum and maximum x coordi-
nates.
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modulus closely correspond to oscillations in the interpla-
nar spacing (see Figs. 3 and 4).

The shear modulus for shears in the plane of the
boundary was also calculated by applying a small shear
stress (0.1% of the bulk shear modulus) to the crystal in
the plane parallel to the boundary. The direction of the
shear is the [100] direction of the reference lattice (each
half of the crystal was rotated 18.4° relative to the refer-
ence lattice to create the =5 twist boundary).

In Fig. 5 we plot the average shear modulus of each
layer parallel to the boundary, defined halfway between
each (100) plane of atoms:

C 54 =— 4)
€12
where the average strain of each layer is given by
dy'

e,= T 5
0

dy' is the difference in the average atomic displacement
(in the direction of the shear) on either side of the layer.
Between the free surface and the boundary, C', is very
close to the perfect crystal value (0.75 and 0.76X 10'2
ergs/cm>, respectively). At the free surface, C !, is slight-
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FIG. 4. The layer biaxial Young’s modulus (in 10'? ergs/cm?)
for biaxial stresses acting on a =5 twist grain boundary [see Eq.
(2)].
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ly higher than that for a perfect crystal. At the grain
boundary, Cj, is approximately -+ of the perfect crystal
value. Oscillations in the modulus closely correspond to
oscillations in the interplanar spacing (see Fig. 3).

Comparing Figs. 3—5 shows that the interplanar spac-
ing appears to be closely correlated with the elastic prop-
erties, in that small deviations in the interplanar spacing
correspond with large deviations of the layer elastic prop-
erties.

The interplanar spacing at the grain boundary is
greater than for a perfect crystal, namely 15% at the first
layer and 1% at the second. Thus, the atoms on either
side of the boundary see an average 8% expansion. For a
perfect crystal subject to a uniaxial strain of 8%, Figs. 1
and 2 show that E is increased by approximately 66%
and C,, is decreased by 33%; this agrees qualitatively
with the values of E; (53% increase) and Ci, (97% de-
crease) at the first layer on either side of the grain bound-
ary. Since the elastic constants of the grain boundary are
less than those of a similarly expanded crystal, it appears
that the nonideal crystal structure at the boundary tends
to lower the elastic moduli, especially C 34

In summary, it appears that the elastic properties of
the twist boundary are largely determined by the expan-
sion of the boundary, and the structure of the boundary.

1.0
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1

0.4

Monolayer Shear Modulus

Qe
=)

T T T T T T T 1
-40 -30 -20 -10 0 10 20, 30 40

Distance from Grain Boundary (A)

FIG. 5. The layer shear modulus (in 10'? ergs/cm?) for a slab
containing a 25 twist grain boundary, subject to a shear parallel
to the grain boundary [see Eq. (4)].
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IV. SUMMARY

In this paper we have shown the following:

(1) The pressure derivatives of K, G, and Cy4, of copper
were calculated and found to be in close agreement with
experiment.

(2) The uniaxial strain derivative of the effective
Young’s modulus was calculated and found to be in close
agreement with experiment.

(3) The uniaxial strain derivative of the shear modulus
C,, (for no Poisson contraction) was calculated and
found to be negative.

(4) The biaxial Young’s and shear moduli of a 35 twist
grain boundary were calculated. They agreed qualitative-
ly with the studies of grain boundary superlattices by
Wolf and Lutsko,'*!® who found an increase in the
Young’s modulus and a decrease in the shear modulus.
This behavior is similar to that of a perfect crystal which
has been expanded in one dimension.

(5) The nonideal crystal structure at the grain boundaries
appears to weaken both the Young’s moduli and especial-
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ly the shear moduli of the 25 twist grain boundary.

Further calculations on many different grain boun-
daries are required to determine if statements (4) and (5)
are applicable to other types of boundaries than the one
we studied. Since the uniaxial strain derivative of the
Young’s modulus has the opposite sign in the [110] and
[111] directions than in the [100] direction, it is expected
that the Young’s moduli of twist boundaries with (110)
and (111) faces will be smaller than the bulk value.

ACKNOWLEDGMENTS

We wish to thank Dr. Dieter Wolf of Argonne Nation-
al Laboratories for his useful comments and suggestions,
as well as for sharing his unpublished work with us. We
also thank Dr. Mike Baskes and Dr. Murray Daw of San-
dia National Laboratories, Livermore, California for
their useful comments and suggestions. Work was sup-
ported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Materials Science.

IT, Schober and R. W. Baluffi, Philos. Mag. 20, 511 (1969).

2T. Schober and R. W. Baluffi, Philos. Mag. 21, 108 (1970).

3W. Krakow and D. A. Smith, J. Mater. Res. 1, 47 (1986).

4. Budai, P. D. Bristowe, and S. L. Sass, Acta Metall. 31, 698
(1983).

SM. R. Fitzsimmons and S. L. Sass, Acta Metall. (to be pub-
lished).

6M. R. Fitzsimmons and S. L. Sass, Acta Metall. (to be pub-
lished).

7I. Majid, P. D. Bristowe, and R. W. Baluffi, Phys. Rev. B 40,
2779 (1989).

8P. D. Bristowe and A. G. Crocker, Philos. Mag. A 38, 487
(1978).

9G.-J. Wang, A. P. Sutton, and V. Vitek, Acta Metall. 32, 1093
(1984).

10p, D. Bristowe and R. W. Baluffi, J. Phys. (Paris) Colloq. 46,
C4-155 (1985).

11y, Oh and V. Vitek, Acta Metall. 34, 1941 (1986).

12§, M. Foiles, Acta Metall. (to be published).

135, M. Foiles, M. 1. Baskes, and M. S. Daw, in Interfacial
Structure, Properties, and Design, edited by M. A. Yoo, W. A.
T. Clark, and C. L. Briant (MRS, Pittsburgh, 1988).

14D, Wolf and J. F. Lutsko, Phys. Rev. Lett. 60, 1170 (1988);
(unpublished).

15D. Wolf, J. Lutsko, and M. Kluge, in Proceedings of the Sym-
posium on “Atomistic Modelling in Materials— Beyond Pair
Potentials,” Chicago, September, 1988 (Plenum, New York, in
press).

165 R. Phillpot, J. F. Lutsko, and D. Wolf (unpublished).

17M. S. Daw and M. 1. Baskes, Phys. Rev. B 29, 6443 (1984).

18§, M. Foiles, M. 1. Baskes, and M. S. Daw, Phys. Rev. B 33,

7983 (1986).

195, M. Foiles and M. S. Daw, Phys. Rev. B 38, 12 643 (1988).

203, M. Foiles and J. B. Adams, Phys. Rev. B (to be published).

21w, G. Wolfer and J. B. Adams (unpublished).

22M. S. Daw and R. D. Hatcher, Solid State Commun. 56, 697
(1985).

238, M. Foiles, Phys. Rev. B 32, 3409 (1985).

243, B. Adams, S. M. Foiles, and W. G. Wolfer, J. Mater. Res.
Dev. 4, 102 (1989).

25§, B. Adams and W. G. Wolfer, J. Nucl. Mat. 158, 25 (1988).

26M. S. Daw and S. M. Foiles, J. Vac. Sci. Technol. A 4, 1412
(1986).

27TM. S. Daw, Surf. Sci. 166, L161 (1986).

288, M. Foiles, Surf. Sci. 191, L779 (1987).

29M. S. Daw and S. M. Foiles, Phys. Rev. Lett. 59, 2756 (1987).

303, M. Foiles, Phys. Rev. B 32, 7685 (1985).

31S. M. Foiles, J. Vac. Sci. Technol. A 5, 889 (1987).

32), S. Nelson, E. C. Sowa, and M. S. Daw, Phys. Rev. Lett. 61,
1977 (1988).

333, S. Nelson, M. S. Daw, and E. C. Sowa, Phys. Rev. B 40,
1465 (1989).

34]. F. Lutsko (unpublished).

35M. Parinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

36W. B. Daniels and C. S. Smith, Phys. Rev. 111, 713 (1958).

37Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).

38K . Salama (private communication), reported by M. W. Riley
and M. J. Skove, Phys. Rev. B 8, 466 (1973).

39F, Milstein and D. Rasky, Philos. Mag. A 45, 49 (1982).

40H. Kobayashi and Y. Hiki, Phys. Rev. B 7, 594 (1973).

4IM. W. Riley and M. J. Skove, Phys. Rev. B 8, 466 (1973).



