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We examine two a priori different definitions of a diffusion coefficient for tracer particles in

static random media. The "quenched" diffusion coefficient D characterizes the spread of a pack-
et in a single environment. The "annealed" coefficient D" characterizes the spread of the
configuration-averaged packet. For one-dimensional diffusion with a drift D &D~ whereas for
d & 1 D" D~. For some models displaying anomalous diffusion we also find D" & D.

In this paper, we examine whether diff'usion of mutually
independent particles in a random environment with static
disorder can be characterized by a unique diff'usion tensor.
This question is important in view of the considerable
current experimental interest in diffusion in disordered
porous materials, such as studies of tracer dispersion in
natural rocks or bead packs' diffusion of polymers in
porous glasses ' and gels. Because of spatial inhomo-
geneities it is not clear a priori whether different experi-
ments designed to measure a diff'usion coefficient will ac-
tually measure the same quantity, even if performed on
the same sample. For instance, it is not obvious that out-
of-equilibrium experiments measuring the spread in time
of a packet of test particles initially concentrated in a
small region' should give the same result for the diffusion
coefficient (DC) as a light-scattering experiment realized
on the system in a stationary state.

In this Rapid Communication we study nearest-
neighbor random-hopping models described by the master
equation:

8P„(t) -g (W„„P„(t)—W..P„(t)), (1)

"thermal" average with respect to P» by &
. . &„, e.g.,

&x(t)&» g„xP„»(t). For d 1 (with obvious generaliza-
tion to d ) 1) we define the diffusion coefficient as

D(U) lim lim QU»&(x(t) —y) &»
1

f~ooA~oo 2E ~ y

— QU, &x(t) —y&, ',
, y

y

where 0 is the volume of the system. We now consider
two limiting cases of this de6nition. The first corresponds
to the spread of a packet which is initially located at the
origin, U» b»0. With this choice (2) yields the
"quenched" diffusion coefficient D2given by

D(2- lim lim (&x(t)'& —&x(t)&z)/2t (3)
t ~A

(here and below & &—=& &o). The second case corre-
sponds to tracer particles that are initially spread uni-
formly through the system, U» I/O. The "annealed"
coefficient D is defined by

D"—= lim lim
1 1 g &(x(t) —y) '&»

f~ooA~+o 2E 0 y

where P„(t) is the occupation probability on site x at time
t and the transition rates W„„are quenched random vari-
ables. Such models and their discrete-time or contin-
uous-space versions have been extensively studied in order
to describe tracer diffusion and hydrodynamic dispersion
in random media. 5s In d 1, an exact expression for a
diffusion coefficient has been obtained by Derrida for (1)
with general bond disorder from a 'study of the stationary
state (t ~) in a periodic medium of period I.~ vv. The
general site-disordered problem with a bias has been stud-
ied by Lehr, Machta, and Nelkin using a different
method, involving the opposite order of limits I.
t~ vo. Perturbative methods have been developed for
d & 1. However, to our knowledge, it has not been asked
whether these methods computed the same quantity.

We now introduce a general de6nition for the diffusion
tensor as a function of the initial distribution U» of the
tracer. Let P„„(t)be the solution of (1) which is concen-
trated at y at t 0: P„»(t 0) b„». The Laplace trans-
form P„»(z) is the Green's function (GF). We denote the

g &x(t) —
y&» . (4)1

To carry out analytical calculations and gain a better
understanding of D and D(I it is convenient to relate
these quantities to configurational averages. Let the aver-
age over realizations of [S"„„lbe denoted by [ ]. If we
suppose that D& is a self-averaging quantity, i.e., indepen-
dent of the configuration for almost all configurations,
then we have

D'2- lim [[&x(t)'&)—[&x(t)&']}/2t. (5)

This self-averaging property can be veri6ed in some spe-
cial cases. 7~ The validity of self-averaging hinges upon
the in6nite time limit in (3) which insures that the tracer
explores a large region of space. An average of many in-
dependent spatial regions occurs in D" because the initial
distribution is extended and the infinite volume limit is
taken in (4) before the in6nite time limit. ' If we suppose
that the spatial averages at fixed time of the first two mo-
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ments are equal to their con6gurational averages then we
obtain"

D"- lim [f(x(t) '&] —[&x(t)&]'}/2t . (6)f~ oo

Why might D& and D" differ? Consider a packet of
tracer particles initially localized near the origin. After
some time the packet P„o(t) can be expected to take a
Gaussian scaling form ' centered at (x (t) ). The
quenched diffusion coefficient gives the width of the pack-
et, —2D~t. On the other hand, according to (6), the an-
nealed diffusion coefficient gives the width of the con-
Sguration-averaged'2 packet [P 0(t)]. If the mean dis-
placement (x(t)) fluctuates from environment to environ-
ment and if these fluctuations grow linearly with time
then the two diffusion coefficients will differ. Specifically,
combining (5) and (6) we see that

D"—D&- lim t[&x(t)&'] —[(x(t))]'}/2tf~ oo

so that D" & D~.
Although the definitions (3) and (4) refer to special ini-

tial conditions and infinite time and space limits, the fore-
going considerations lead to the conclusion that D" will be
measured in experiments where the spatial extent of the
initial distribution is much greater than the diffusion
length (2D&t) ', since then tracer particles start in wide-
ly separated regions and explore different environments. '

On the other hand, D~ will be observed whenever the ini-
tial packet is localized in a region much smaller than the
diffusion length so that all the tracer particles explore
nearly the same environment.

More formally we conjecture'3 that D(U) D" if U is
"extended" while D(U) D~ if U is "localized. " Extend-
ed distributions are de6ned via a limiting procedure in
which U is normalized to unity for all Q and QU» goes to
a finite limit for each y as Q ~. Localized distributions
go to a finite limit normalized to unity, as L oo. An ex-
ample of an extended but nonuniform distribution is the
stationary distribution with a current discussed in Ref. 8
and below.

To illustrate the difference between D" and D~ we con-
sider a directed walk on a one-dimensional (1D) lattice
such that the walkers jump only to the right. Each site x
is characterized by a thermal distribution of release time
y„(t) with a Snite mean z„and variance cr„. Model (1)
with IV ~~,„~~ ', W„~„0is a directed walk, with
y„(t) z 'e ' " depending on a single time scale

Jcr . A configuration of disorder is speci6ed by the
set of functions [y, (t)} ~z chosen independently from
site to site. For a single particle in a given environment
the Srst passage time at x is T„ to+ . +t„-~, each f,
being chosen according to y, (t) (one has z, (t, ),. . .).
T is a sum of random variables with diferent distribu-
tions. The velocity V lim x/T„[z„] ' does not
depend on the particle or the environment. Thus there is
no ambiguity in the de5nition of a velocity. The diffusion
coefficients are related to the fluctuations of the Srst pas-
sage time:

D '~ V lim var~ g(T„)/2x.
%'e believe that this identity, trivially valid for pure sys-
tems, holds quite generally for random media' (this is

confirmed by some results below). In order to evaluate
D~ one must use vary (T„) [(T„)—(T„) ] and
var~(T ) [&T )]—[(T„)] to evaluate D". Since for a
given environment (T„) zo+ . + z„—~ and (T„)—(T ) pro+ +o —~, one Snds that

[o,] „[o,1 + [z,'] —[z,] '
2[z,]' '

2[z.]'
Thus 0 & D~ & D" as a combined effect of disorder and
bias (D& 0 if no thermal noise is present).

In dimension d ) 1 we expect that D„"„~Dg„,even in
the presence of a bias. Here and below we consider the
d-dimensional version of the biased site-disordered model

( ' — )(BSDM) of Ref. 8; 8'„„z„'e ' ' —=z„'W„„,with
hopping between nearest neighbors on a hypercubic lattice
and x (x~, . . . ,xq). The z„are identically distributed
independent random variables and e is the dimensionless
bias. We are free to set [z„l 1 and de6ne 6-[z„]—[z~] . Let us Srst give an intuitive argument, exact for
e~ , but which we believe to be generally valid for nor-
mal biased diffusion. A packet initially concentrated at
x 0 reaches the velocity V in the longitudinal direction 1
but spreads diffusively in the d —1 transverse directions as
xz.—+Dr t. Along the longitudinal direction the walk is
similar to the directed 1D model, except that the
thermal-averaged release time from the plane at x~ now
involves an average over xt ' —(x~/V) 'i~ sites with
independent z . The distribution of this quantity as a
function of the environment thus goes to a delta function;
thus, for d) 1, D~~ D~~. This argument also shows that
there are some exceptions, such as (i) quasi-1D media
with 6nite transverse length L~ for which D]~ —D~~—(Lr/f) " (this could be observed in porous media
which are heterogeneous on macroscopic scales g) and (ii)
layered or long-range-correlated media: If all z„ in a
plane are equal, D~~ ~D~~.Q

In Ref. 8 a perturbation expansion in the disorder of an
averaged GF was introduced. It permits one to compute
D(U) for the 1D BSDM in the case of the stationary dis-
tribution U» —z»/Q This met. hod is readily extended to
any d. Details will be given in a future publication. We
have sho~n that only terms up to second order contribute
to D(U). The result does not depend on the details of the
distribution U (we also checked for U» 1/Q). Thus this
method gives an exact determination of D and the lead-
ing behaviors of [&x„(t))]and [(x„x„(t))]. D~ is extract-
ed from the large-t behavior of [&x„(t))(x„(t))]obtained
from a similar perturbative expansion of an average of a
convolution of two GF's. We have also applied Derrida's
method to the BSDM and found that it yields D. We
believe this is because the initial distribution, though not
speci6ed in this method, extends over a 6nite length L,
the limit L~ oo being taken after t

Based on the methods of Refs. 8 and 9 we show that the
6nal result for the BSDM is D„"„'~ D„o„ for (pv)W(1, 1)
and D~ ~ Djo~+&V26+'~ with

1 +2K 1+2x

q" z+~(q) '

(8)
G~ lim —g

L,-- L v~0 A(q) '



ANNEALED VERSUS QUENCHED DIFFUSION COEFFICIENT. . . 9429

where D„„cosh(e)b'„„is the diffusion tensor of the pure
problem W~W . V 2sinhe is the velocity and

& (q) p 2(1 —cosq„) +2coshe —2cosh(iq &+e) .
p 2,d

Both G and G~ in (8) represent the diagonal element
P„„(z 0) of the pure GF, but with distinct limiting pro-
cedures reflecting the different methods: In G" the GF is
computed in the in6nite medium, then the limit t~ ~
(z~ 0) is taken while in G~ the GF is computed in a
periodic medium at z 0 (the summation is over
q„2ttn„/L, p 1, . . . , d with n„ integer 0 ~ n„&L) with
L~ ~ at the end. This gives the same result for d & 1

(leading to D" D~) but not in d 1. Both G" and G~
can be written as

e'(s —r~)(s —r )
'

with s e ' (the integral is over the positively oriented
unit circle and r+ 1, r e'). In—G the pole at r+ is
moved outside the unit circle and G" I/) V( from the
residue theorem. However in G~, r+ contributes as a
principle part leading to G~ 1/2 ) V(. Thus for the 1D
BSDM, D" coshc+6 ( sinhe( and D& cosh'+(6/2)
x (sinhe~. One recovers (7) (with [o,] [z, ]) in the
directed limit e ~ (up to trivial rescalings). In Ref. 14,
D" and D are computed using the 6rst-passage time
method [used to derive (7)l for arbitrary 1D hopping
models. The above results (8) are recovered for the
BSDM. For bond disorder (as in Ref. 7, each pair
W„~ &

„—={W,W ] is chosen independently from bond
to bond) one finds D" 2D& ——,

' (1+[W /W ])
x [1/W ] ', the quenched coefficient D~ being identical
to the expression (84) of Ref. 7. Note that D~
~ D4 ~ 2D~ holds for this model: both coefficients thus
diverge with the same exponent at the onset of the regime
of anomalous diffusion [(W /W ) ] 1.

For a given model, anomalous diff'usion occurs below
the critical dimension d, (such that for d & d, unbiased
diff'usion is governed by a homogeneous mean-6eld 6xed
point corresponding usually to ordinary diff'usion
x—t 'i ). d, 2 for (1) with weak uncorrelated bond dis-
order with asymmetric rates but d, is higher if disorder
has long-range correlations. The annealed and quenched
second moments are

M"(t) -[&x(t)'&] —[(x(t)&]'-D"t "",

M~(t) [&(x(t) —&x(t)&) &] -D~t "~.

D" and D~ are the generalized DC's. In the presence of a
bias the average motion of a packet center [(x(t))] may
also exhibit' anomalous behavior —t"', although in gen-
eral for d & 1 it is proportional to Vt. These situations
are a priori possible: (i) v~ vg, D D~; (ii) v~ vg,
D" &D&&0; (iii) lim, M&/M" 0. For d~d, the
fixed point is disordered and one expects (ii) or (iii). '

These behaviors can occur with or without a bias as illus-
trated by the following examples.

(1)Layered hydrodynamicPow We consider .the mod-
el introduced in Ref. 17 in a time and space discretized
version. Brownian particles diffuse in a 20 velocity flow

~(x) (~~(x2),0) parallel to the 6rst axis, the flow veloci-
ty being constant in each layer of constant xz. Anomalous
diffusion occurs' with x~ —t . Here v~ is chosen to be
+ 1, independently from layer to layer, and the Brownian
motion along x~ is neglected as irrelevant. One has
x~(t) QI, U(k)n(k, t), where n(k, t) is the total number
of passages at x2 k between 0 and t of the pure random
walk that each particle performs along x2. One easily
shows that

M~(t) g(tt(k, t) )—D+t t

and

M~(t) g&n(k, t) ) (n—(k, t)& D-~t
k

with D" & D~ & 0. One is in situation (ii): The width of
a packet (alon~ x~) is comparable with the fluctuations of
its center (—t t ).

(2)Broadly distributed waiting time models. We con-
sider (1) with uncorrelated site disorder W„„z„'and
a broad distribution of mean release time p(t)

~'+'&. For 0 & a & 1 this unbiased model exhib-
its's anomalous diffusion x—t" with v a/2 (d & 2) and
v ' 2+2/a —d (d &2). According to the renormal-
ization-group analysis of Ref. 18, for d & d, 2 this mod-
el behaves on a large scale as a continuous time random
walk with a single thermal waiting time distribution y(t)
at each site. Thus on long time scales there is no
difference between quenched and annealed averages.
Anomalous diffusion arises from the fact that y(t)

t ~'+'& ((t) ~). For d &2 the fixed point is
disordered and each site x is decreased by a mean waiting
time z„ itself distributed with a Levy stable distribution of
index a. The following argument suggests that this im-
plies D" & D&. After time t the configuration-averaged
packet is symmetric around the origin and occupies a re-
gion of size t . However, in a given environment, sites
within this region are occupied in proportion to i„. Since
a sum of Levy stable variables (for 0 & a & 1) is dominat-
ed by the largest summand and since this largest z„may
be anywhere in the region we see that the mean displace-
ment in a given environment also scales as t" so that
D"—D~ & 0. Thus we have case (i) for d & d, and case
(ii) for d & d, .

( )3Sinai' smodel In d 1., model (1) with uncorrelat-
ed bond disorder leads' to Sinai's diffusion [(x (t))]
-ln t in the unbiased case F [ln (W /W )] 0.
However, it seems to be less well known that for a related
model Golosov and Sinai proved' that in a given environ-
ment the width of a packet does rtot grow with time and
one has M (t)-ln t but M~(t)-0(1), an example of
case (iii). We emphasize that this is a remarkable exam-
ple of "classical" localization. Note that the average
packet [P„(t)],whose scaling form is computed in Ref.
15, is very different from the typical one' which roughly
concentrates on the deepest minimum available at time t.
In the presence of a bias F &0, this model renormal-
izes ' ' towards a directed, broadly distributed, waiting
time model [with a such that [(W /W ) ] 1] and
should be in situation (ii).

(4)Dispersiort in long range correlated go-w We con-.



9430 PIERRE Le DOUSSAL AND JONATHAN MACHTA

sider convection and diffusion of a tracer in a stationary
flow, v(x) vo+b, u(x) with hu(x) a long-range correlat-
ed random variable; [hu(x)] 0 and [hu(x)d v(x')]
—(x —x'( s with 0&g& l. In the absence of thermal
noise M& vanishes; however, M" is nonvanishing since
tracers in different environments experience different
flows. For small fluctuations in the velocity, the deviation
du(t) from the configuration-averaged displacement is
m(t) J(dt'Av(uot') so that

to VOt to VotM"(t) -uo 2„dxdx'[av(x)av(x')]
fo vot fo R/2

dR drr tt—t (9)
ot 0 -R/2

and vA -1—g/2. When a small amount of thermal noise
is added, a packet initially at the origin spreads, first due
to the thermal noise and then due to velocity 6uctuations
on the length scale of the packet. Velocity fluctuations on
longer length scales do not contribute to M'2 since these
merely convect the packet as a whole. We can implement
this idea as a self-consistent calculation for M~. Suppose
that M~ —t "o and then calculate M~ in the same way as
M" except that the integral over r in (9) is cut off at

r-t "a. This leads to the relation 2vg —
vugg+ v@+1 or

vg 1/(1+g) & vA so that we have case (iii). Note that
one obtains normal diffusion for g 1. More precise ap-
proaches are needed to test this argument.

As far as the majority of experiments are concerned our
conclusions are reassuring: Independent particles in ran-
dom media are generally described by a unique diffusion
tensor. However, we have analyzed some exceptional situ-
ations of possible experimental interest, where fluctuations
in the environment lead to correlated particle motions and
there are differences between the quenched and annealed
rms displacement of tracer particles. An alternative way
of viewing this phenomena is to regard the environment as
inducing an effective interaction between tracer particles
which is accounted for in the quenched diffusion co-
efBcient but not in the annealed one. It would be interest-
ing to apply similar ideas to other problems such as
diffusion on percolating clusters, diffusion of macro-
molecules, etc.
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