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The kinetic energy of tight-binding electrons on a two-dimensional lattice with a perpendicular
magnetic field has been studied using a recursion approach. For a fixed filling factor the energy
is shown to exhibit several local minima as a function of Aux. The minima correspond to the situ-
ation where the Fermi level lies in a gap. The absolute minimum corresponds to one Aux quan-
tum per particle.
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is the hopping integral in the presence of a magnetic Geld
with the vector potential A 8(O,x,O) in the Landau
gauge. The electronic structure of the system is described
by the density of states n;(E), which is related to the diag-
onal element of the Green's function G;(E+ie). In this

The problem of electrons on a two-dimensional lattice
with a perpendicular magnetic field has been well studied
during the last few years because of its relation to the
integer quantum Hall effect, in particular. Recently,
Affleck and Martson' and others have suggested that the
above problem is also related to high-T, superconductivity
in the t-J model. Hasegawa et a/. have recently proposed
that the energy of noninteracting spinless electrons has an
absolute minimum when the flux per plaquette @ (in units
of @0 hc/e) equals the electron density v per site. Using
this property and a renormalized mean-fleld theory,
Lederer et al. " have recently shown that commensurate
flux phases have special stability for J/t ~ 1 and are super-
conducting.

In this paper we present a study of the kinetic energy of
noninteracting spinless electrons on a two-dimensional
square lattice as a function of the flux @ per plaquette.
We show that the energy has local minima with cusp
when the Fermi level lies in a gap. Further, the energy
has an absolute minimum with a cusp for @ ~u and we
thus conflrm the hypothesis of Hasegawa et al. 3 We also
present results on the variation of the minimum energy as
a function of the Glling v.

Consider a system of tight-binding electrons on a
square lattice in the presence of a magnetic Geld described
by a Hamiltonian

work we determine the Green's function G;(z) using the
recursion approach which allows one to express G(z) as
a continued fraction

Z —aO—

z —a~—
z a2

where coefficients a„and b„are related to the moments
of the density of states. It is easy to see that the odd mo-
ments and hence the coe1%cients a„are zero for the square
lattice. In calculating G;(z) using (1), one is faced with
the problem of termination of the continued fraction since
only a flnite number of coefficients can be numerically cal-
culated. The asymptotic behavior of the coefficients is re-
lated to the singularities in the density of states and the
presence of gaps leads to undamped oscillations. In gen-
eral, these oscillations are complicated and, thus, the cal-
culation of G(z) is numerically difficult. However, we
empirically found a remarkable behavior of the coef5-
cients b„(a„O)when the flux is such that

e-+0+,
q

'

where p and q are incommensurate integers. In this case
the coefBcients b„were found to be periodic as a function
of n with a period q. This allowed us a fairly exact ter-
mination of the continued fraction and, hence, an accurate
determination of the density of states and the energy of
the system.

In Fig. 1 we show the coe%cients b„as a function of n
for @/@u —,

' . As is clearly seen, b„2 are periodic with a
period of 3 and with 100 calculated coeflicients the limit-
ing values are very well obtained. In Fig. 2(a) we show
the density of states for @/@u +s. There are 16 bands
which are symmetric around the energy E 0 and we only
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FIG. 1. Coe%cients b, for the square lattice with a Aux per
plaquette e @p/3 (@p is the ffux quantum hc/e) as a function
of n. The limiting value for @ 0 is b 2 4.
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show the negative-energy region. Figure 2(b) shows the
different bands on a magnified scale. We have also stud-
ied the progression of the spectrum in the limit of weak
magnetic fields. In Fig. 3 we show the density of states
and the coefficients b„ for +/+o —,', . Again the coeffi-
cients are periodic (with a period of 32). It is interesting
to note that they go periodically to a very small value
(which is probably zero for @/@o~0) and that the spec-
trum has a structure similar to Landau levels. However,
the spacing between the subbands decreases while the
width increasess as one approaches the middle of the
band. These results are in agreement with previous stud-
ies and indicate that the present approach is well suited
for studying density of states as well as the derived quanti-
ties in the presence of a magnetic field. We now present
our results on the band-filling energy.

In this work we have studied the band energy as a func-
tion of flux for various values of filling factor. For each
flux, we calculated 300 coefficients b„which permitted us
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FIG. 3. (a) The density of states for @/+p —,', . Note that
except around E 0 the subbands are dispersionless like Landau
levels. (b) Coefficients b„as a function of n. Periodicity with a
period of 32 is quite apparent.

to obtain periodicity of b„and hence the Green's function
to a great precision. To calculate band energy as a func-
tion of the flux N and 61ling factor v one has to perform
an integration of the density of states. This was accom-
plished by using analytical properties of the Green's func-
tion which permit a replacement of the integrations along
the real axis by integrations in the complex plane. We es-
timate errors in our computed band energy to be less than
10 in the worst cases and much smaller in mast cases.

ln Fig. 4 we show the band energy as a function of flux
per plaquette for five values of the filling factor v p/10
(1 ~p ~ 5). It is seen that the minimum energy is ob-
tained for N ~p as stated by Hasegawa et a/. Further-
more, the energy apparently has a cusp as a function of
flux for this value of the flux. This cusp has important
consequences in the theory proposed by Lederer, Poil-
blanc, and Rice. One also notices that each time the Fer-
mi level lies in a gap, the energy appears ta show a local
minima. This implies that the curve E(&) has a subtle
structure. For the case when the Fermi level lies in a gap,
Wannier has shown that

v M+N
+p

where M and N are two integers. From Fig. 4 it is seen
that there are well-pronounced local minima (apparently
with cusp) when the Fermi level is in the gap correspond-
ing to

FIG. 2. (a) The density of states for %/&p &'& (only nega-
tive values of energy are shown since the spectrum is symmetric
around E 0). (b) Magnified view of the subbands around
E —2.60 and E —0.01

v N
%p

Except for v 0.1, these minima are clearly visible up to
N 5 in Fig. 4. We also note that depending on the value
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FIG. 5. Energy Es as a function of the filling N for N/@0-0

(upper curve) and &/@0 N (lower curve). The difference in
energy is maximum for N 0.5.
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FIG. 4. The energy for filling the band, E&, as a function of
the flux (in units of the quantum Ilux). Curves a, b, c, d, and e
correspond to filling factors O. l, 0.2, 0.3, 0.4, and 0.5, respec-
tively. The arrows indicate the local minima corresponding to

v/n (n is an integer).

of the flux, the mean kinetic energy can be higher or lower
than in zero 6eld. Indeed, the usual theory of Landau di-
magnetism is based on an increase in kinetic energy in an
external 6eld.

Finally, in Fig. S we show the band energy for & 0
and @/@o v as a function of the 611ing factor. One no-
tices that the difference in energy increases and is max-

imum at half Glling.
To conclude, we have studied the variation of the kinet-

ic energy of electrons on a two-dimensional lattice as a
function of the applied magnetic Geld. The technique
used by us allows studies with small variations in Aux
(6@/@o,i'xi ). We 6nd that the energy presents a lot of
local minima with cusps as a function of flux for a given
6}ling factor v. It is likely that the number of these local
minima is inGnite and that they are obtained when the
Fermi level lies in a gap. The absolute minimum of ener-
gy is obtained when the 6ux per plaquette (in units of
quantum 6ux) is equal to the 611ing factor of the band.
This fact is the basis of the theory of high-T, supercon-
ductivity developed recently by Lederer et al.
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