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Critical state in disk-shaped superconductors
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We have calculated the magnetic fields and currents occurring in a disk-shaped superconductor
(radius))thickness) in the critical state in a self-consistent way using finite-element analysis. We
find that the field shielded (or trapped) in the center of the disk is roughly equal to J,d, where d
is the thickness of the disk. The shielding currents also create radial fields which are of order
J,d/2 on the disk surface. For low applied fields H, i~i( J,d these self-field eff'ects dominate,
leading to a deviation of the local field direction from the applied field, which can exceed 90 to-
wards the outside perimeter of the disk. If J,d is large, as is the case for YBa2Cu3O7 —g single
crystals at 4.2 K, self-field effects persist up to several tesla applied field. The field dependence of
the calculated magnetic moment in the self-field dominated regime is independent of whether J,
is weakly or strongly (ce 1/H) dependent on field. The calculations were va1idated by comparison
to both magnetic and resistive measurements on a disk-shaped section of N13Sn tape.

The critical current density J, in type-II superconduc-
tors can be determined in various ways. For wires, J, is
traditionally measured by applying a transport current
and measuring the voltage generated in a four-probe
conGguration. Contactless measurements rely on measur-
ing the magnetic moment in increasing and decreasing
magnetic Gelds, and ac methods determine the Aux proGle
inside the superconductor. ' All of the magnetic
methods share a common basis, namely that the Aux

trapped in the conductor arranges itself into the critical
state. The J, determined from resistive and inductive
methods usually agrees well in metallic superconductors.
Mo~t measurements and calculations using the critical
state are carried out in slab or cylindrical geometry where
demagnetization corrections are negligible. Unfortunate-
ly almost all single crystals of the new oxide superconduc-
tors are in the form of thin plates with the c axis along the
thin dimension (e.g., Kaiser et al. ) If the 6eld is aligned

l

parallel to the c axis, we can approximate this conGg-
uration by a thin superconducting disk in transverse 6eld.
The disk still has cylindrical symmetry, but we expect the
critical state to be diH'erent from that of a long cylinder
due to large demagnetization effects.

We have extended the magnetic 6eld computations
done by Frankel for thin superconducting disks in a
transverse 6eld to disks with varying aspect ratio, and in
addition we have included radial Geld effects. The calcu-
lation was carried out for a disk of height d and radius ro
in cylindrical coordinates. The field II,vvi was applied in
the z direction. From the cylindrical symmetry it follows
that currents only 6ow in the circumferential direction.
The disk was divided into n xm ring segments (n along the
radius and ttt along the thickness), yielding up to 10 seg-
ments. The radial and axial 6elds (h„and h„respective-
ly) at arbitrary coordinates r and z created by a current
loop of radius a with the current IAowing are given by

2tt r[(a+r)'+z'l'/' (a —r) 2+z'
r

h, (r,z) .
2 z, /z

&(k)+
2 2 E(k)

2tt [(a+r)'+zz]'/z (a —r)'+z' (2)

with k2 4ar[(a+r)2+z ] '. The center of the loop is
1ocated at r z 0. EC and E are complete elliptic in-
tegrals of the 6rst and second kind. The magnetic 6eld at
the coordinates of each segment is then the sum of the
Gelds generated by all the other segments, plus the applied
Geld. The calculation proceeds as follows: First a con-
stant current density J is assumed to Bow in each segment,
the direction of which determines whether an increasing
or decreasing Geld case is to be computed. Then the Geld
generated by this current is determined and added to the
applied Geld. En most cases the computations were
stopped at this point, assuming J, to be Geld independent

across the disk.
In order to investigate the case of large self-Gelds, some

calculations were carried out with a 6eld-dependent J,.
After the Grst step the local J values then were modiGed
according to the critical state, fulGlling the condition
J J,(II) at all points in the disk where II is the total (ra-
dial plus axial) 6eld at each point. Then the 6eld was
again calculated from the modi6ed current distribution,
thus changing the fields (and currents) again, and so on.
A self-consistent state was usually reached within Gve
iterations. The 6eld dependence of the current used here
was of the Kim type with J, proportional to 1/(II+IIo),
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where Ho is a constant. Finally, the magnetic moment of
the sample was computed by summing up the contribu-
tions from the individual current loops, averaging over the
values found for increasing and decreasing 6elds. The
magnetization was then obtained by dividing by the sam-
ple volume.

The 6eld profiles generated here agree well with those
measured (and calculated) by Frankel for his geometry,
using his value for the current density. However, we note
that he used J, and Hp as 6tting parameters and did not
determine them independently (i.e., by a resistive J, mea-
surement). We have also computed the long-cylinder
geometry (d»rp) and obtain the standard results for the
6eld distribution. '

Figure 1 shows h„(at the surface) and h, (in the center
plane), normalized by J,d (in this case a field-independent
J, was used), as a function of normalized radius r/rp for
two disks with different radii but identical thickness. h, is
almost identical for the two disks, although the radii are
different by 2 orders of magnitude. II, depends only weak-
ly on z and is largest for z Q. The radial Geld is largest
at the surface ((z ) d/2), zero in the specimen center
(at r 0 for all z values) as well as the center plane at
z 0, and changes sign at z 0.

There are two central results of the calculations. (i)
The field h that is shielded (or trapped) in the center
now is of order J,d, instead of J,rp. The critical state in
the disk (where the 6eld gradient is J,) therefore actually
occurs through the thickness, not the radius. (ii) The
maximum radial 6eld is roughly h /2. The exact location
of the maximum in It„depends on the field dependence of
J,. This Geld is absent in the slab and long cylindrical
geometries.

The axial 6eld generated by the disk reverses polarity at
about 0.85rp. This leads to a demagnetization field of
roughly 15/p of J,d for moderate rp/d ratios (higher for

rp/d»10). This demagnetization 6eld does not depend
on the applied field (but on J,), contrary to the diamag-
netic case where the applied magnetic field at the edge of
the disk is enhanced by a factor of (4/m)(rp/d) '." If
h «H, ~III, then obviously a demagnetization correction
(in a measurement of the magnetization) is not necessary.

Problems can occur in deriving the Geld dependence of
J, from the Geld dependence of the magnetic moment. In
Fig. 2 the calculated magnetization and the current densi-
ty (both normalized to their zero-6eld values) are plotted
as a function of applied field for a disk with rp/d 5. We
see that the field dependence of the magnetization is
signi6cantly less steep than the field dependence of J, for
6elds that are lower than the self-6eld II, which in this
case is about 3 T with no external field applied. Therefore
the field dependence of J, can only be derived from mag-
netization measurements in 6elds which are much larger
than h*.

For h &&H,ppf the variation of 8 and thus J, across the
disk is small and the field gradient across the disk can be
approximated by a straight line, with deviations occurring
in the center and at the outer edge. The local-6eld direc-
tion at all points in the disk is now very close to the direc-
tion of the applied 6eld. In this case we obtain for the
hysteresis of the magnetization (the difference between
the up and down branch),

M 3 pro

This expression is not dependent on the sample thickness
and holds for all cases in which the current density is con-
stant throughout the disk. It also is identical to the ex-
pression for a long cylinder. '

We have measured the fiux gradient in thin disk speci-
mens of Nb3Sn in a transverse field, using the Campbell
ac technique, thus obtaining h directly. The J, deter-
mined both resistively (at a voltage criterion of 1 pV/cm)
and from the h measurement (using a frequency of 17
Hz) for the N13Sn specimen are shown in Table I. The
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FIG. 1. Radial (h, ) and axial (h, ) self-field of the current

carrying disk of thickness d normalized by J,d vs reduced radius
for two different disks (, rp/d 10; ---, rp/d 103). The
lines shown represent a cubic spline fit through the calculated
points.
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FIG. 2. Normalized Inagnetization hM/AMp (---) and criti-
cal current density J,/J, p ( ) vs applied field. The lines are
calculated using a spline fit.
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TABLE I. Comparison of inductively and resistively
(I pV/cm) measured J, for Nb3Sn tape.

Field 8 (T) J,' (A/mm2) Jind (A/mm 2)

2170
1630
1390

2940
2572
2013

specimen always quenched in resistive measurements in
fields below 5 T, and the highest field available for the in-
ductive measurement was 7 T, thus only three values are
given. The total N13Sn layer thickness (5.4 pm in this
case) was used as the scaling length. Since h in this case
is several tens of mT, we can safely assume that J, does
not change appreciably across the specimen in our large
applied fields. This con6guration provides an explicit test
of the model since ro/d is = 200 and there is no possibility
of J, being uncertain to more than a very small part of
this factor. Indeed we found that h J,d, not J,ro.

All inductively measured J, values tended to be roughly
40% larger than their resistive counterparts. We think
that the discrepancy is mostly due to the different voltage
criterion in the two cases. The resistive transition was
found not to be very sharp. A 5 pV/cm criterion (the
highest voltage measured resistively) already led to an in-
crease in the resistive I, of = 15%-20%. With a frequen-
cy of 17 Hz, h 0.02 T, and an average radius of 0.5
mm, we find an effective voltage criterion for the inductive
measurement of 10 pV/cm. Thus, the real difference be-
tween the inductive and resistive measurements is less
than 20%, which is really a very good agreement.
Kroeger, Koch, and Charlesworth also compared various
methods of J, determination for long cylindrical speci-
mens. They found similar values for the discrepancy be-
tween J, values determined by Campbell's method and
the resistive method.

These results have important implications for the
analysis of magnetization curves of typically aspected sin-
gle crystals of high-T, superconductors. In a typical ex-
periment, the zero-field current density is determined by
measuring the trapped flux generated in the specimen by
ramping the applied field to a 6nite value and then back to
zero. In this case the field present in the sample is gen-
erated exclusively by the shielding currents of the sample
itself. The present analysis shows that the direction of the
total magnetic 6eld is not perpendicular to the surface of
the disk, especially near the outside perimeter, ~here the
Geld is actually parallel to the surface. For an anisotropic
specimen such as a single crystal of YBazCu307 q this
has important implications, since the direction of the mag-
netic Geld varies throughout the specimen. Values of the
zero-field J, anisotropy therefore cannot be reliably ex-
tracted from measurements of the trapped flux in the
specimens of disk geometry. The overall current in the
specimen is always fiowing in the ab plane, supported by a
fluxon density gradient. However, the local current flow
around the center of each fiuxon is more complicated,

since the direction of the current 6eld depends on the
direction of the magnetic 6eld and the anisotropy of the
superconducting parameters. In isotropic superconduc-
tors the currents are always flowing perpendicular to the
local-field direction. This is not the case for anisotropic
materials. '

Problems occur also in determining the 6eld depen-
dence of J,. At 4.2 K the self-field generated by a typical
YBa2Cu307 s single crystal is several tesla. Therefore,
the self-6eld dominated regime is quite large (0-10 T),
and field dependencies of J, determined from these mea-
surements are not reliable. The anisotropy and 6eld
dependence of J, derived from aligned powdered speci-
mens' ' should therefore be more accurate, since they
avoid the disk geometry and, due to the small size of the
aligned particles, their self-6eld is lower.

Finally, we would like to make some remarks on the
stability of the critical state. The adiabatic stability
criterion ' for a slab de6nes a stability parameter
P poJ, a /[3yC(T, —T)], where 2a is the width of the
slab, y is the density, C is the speci6c heat per unit
volume, and T (T, ) is the (critical) temperature. The
slab is flux-jump unstable if p&1. The calculation is
based on the contribution of the shielding currents to the
speci6c heat of the sample. At P 1 the effective speci6c
heat of the sample is zero. We have to modify this cri-
terion for the disk geometry since the shielding 6elds are
different for the two cases. The result is Pq;,q

poJ2rod/[5yC(T, —T)l. Experimentally, we found
that our N13Sn specimen exhibited flux jumps at low ap-
plied fields, as soon as the Nb substrate tape became su-
perconducting (below about 0.5 T). Pq;, k in this case was
roughly 9. We calculate pq;, k 10 for Frankel's NbTi
specimen, which, however, was stabilized by copper.

Others'6 's have estimated the magnetic stability of
YBa2Cu30& z, however, only down to a temperature of
20 K, and in slab geometry. Taking values of J, (Ref. 19)
and C (Ref. 20) from the literature, we find Pq;,q 678 for
a crystal with r 0.5 mm and d 50 pm in transverse
6eld at 4.2 K. Therefore, any disturbance should lead to
the decay of the critical state. Actually, flux jumps should
have occurred long before the sample reached this state
(and they do, in Nb). To the knowledge of the authors
only in one case have flux jumps been observed in Y-
BazCu307 —b single crystals. ' A possible explanation
could be found in the difference in T, between the two
materials. A flux jump in a 1:2:3crystal would not be ex-
pected to run to completion since the material becomes
stable in the 20-K range. However, we do not find this ex-
planation satisfactory, since partial flux jumps should still
take place. There is also the possibility that the specimen
is subdivided internally, and therefore that only part of
the current is flowing across the whole specimen. ' This
would certainly increase the stability of the system, while
still keeping the magnetization of the specimen high.

In summary, we have calculated the magnetic fields
generated by a superconducting disk in the critical state in
a transverse magnetic 6eld. We 6nd that the field shield-
ed at the center of the disk is J,d, not J,ro. A radial 6eld
appears on the surfaces which is of order J,d/2, a field
which is absent in long cylindrical geometry. These calcu-
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lations were compared to flux-penetration experiments
done on N13Sn tape and good agreement was obtained.
The relevance of the Geld pro61es to measurements of the
remanence in high-T, oxide superconductors was dis-
cussed. Finally, we discussed the flux-jump stability of
the critical state in this geometry. We found that disks
are more stable than cylinders (with identical J,) and we

noted that high-T, crystals are much more flux-jump
stable than expected.
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