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Polarization memory of multiply scattered light
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Light backscattered from an optically dense random medium is shown to exhibit a pronounced
polarization dependence. An unexpected memory of the incident circular polarization of multiply
scattered light arises because the wave's helicity is randomized less rapidly than is its direction.
A simple model is developed to account for the observed polarization dependence of the intensity
and temporal correlations of the intensity Auctuations of backscattered light.

The propagation of light in optically dense random
media is characterized by multiple scattering which ran-
domizes the direction, phase, and polarization of the in-
cident wave. This randomization accounts for the re-
markable success of scalar difII'usion theory in describing
the transport properties of multiply scattered light.
Recent experimentss have demonstrated the power of
this approach by extending traditional quasielastic light
scattering to the multiple scattering regime, thereby al-
lowing one to probe the structure and dynamics of optical-
ly dense media. The diffusion approximation, however,
fails to fully describe backscattered light, because such
light is comprised of a signi6cant contribution of rrtultip/y
scattered modes whose path lengths are comparable to the
transport mean free path. In this Rapid Communication,
we demonstrate that these modes lead to a remarkable
and unexpected persistence of polarization of multiply
scattered light. Single Rayleigh scattering is known to re-
sult in the polarization of scattered light in a cloudless
blue sky. What is surprising is that for rirctdarly polar-
ized light, randomization of the polarization requires
many more scattering events than are required for the
complete randomization of the wave's direction. This po-
larization memory has important consequences both for
the average scattered intensity and for the temporal corre-
lation of the intensity fluctuations of light backscattered
from a time varying medium. In particular, we show that
contrary to previous reports, the form of the autocorrela-
tion functions is not universal, but instead depends on
both particle size and polarization.

To demonstrate the polarization memory in a multiply
scattering medium, we consider a system composed of un-
correlated and noninteracting spherical particles of radius
a, suspended in a liquid. The multiply scattered light re-
sults in a random speckle pattern, which fluctuates as the
particles undergo Brownian motion. The backscattered

intensity is comprised of the contributions of light follow-
ing many different scattering paths. Each path leads to a
decay of the temporal correlations of the scattered 6eld,
which depends on the number of scattering events, and
consequently the path length. The 6eld autocorrelation
function is '

Here, P(s) is the number of scattering paths of length s
and io (A/2tr) /Dg, where X is the optical wavelength in
the liquid and Dg is the self-di6'usion coe%cient of the
suspended particles. The time averaged intensity is given
by G~(0). The transport mean free path 1 signi6es the
distance the light must travel before its direction becomes
completely randomized. For s )1,P(s) can be calculat-
ed within the di6'usion approximation. For shorter paths,
however, the de'usion approximation fails to characterize
P(s). Backscattered light involves many photon paths
which penetrate only 1 into the medium. We focus on
two limits, where a simple physical picture of the polariza-
tion dependence can be obtained. In the Grst case, a (&A, ,
so that 1 1,where 1 is the scattering length. Here, the
nondi6'usive paths involve a very small number of scatter-
ing events, and the polarization dependence re6ects the
behavior of single scattering at large angles. In the second
case, a A„and the scattering is highly anisotropic, so
that l~))1. Here, the nondiffusive paths involve many
scattering events, and the polarization memory results
from a slower randomization of circular polarization than
of direction of propagation.

For our measurements with isotropic scatterers, with
1* 1, we use a 1-cm-thick sample of 0.091-pm-diam po-
lystyrene latex spheres in water with volume concentra-
tion &~0.05. A linearly or circularly polarized beam
from a 488-nm Ar+ laser is expanded to 1-emdiam and is
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incident on one side of the sample. Scattered light of the
desired polarization is collected from the same side of the
sample. We measure the time averaged intensity (I) and
the normalized intensity autocorrelation function Gz(t)
—=&I(i)I(0))/&I) —1 cx:

I Gi(r) I, up to a constant deter-
mined by the optics. The autocorrelation functions can be
approximated by

( )
—zy(st/v()) 'i2

(1)
where ro is determined from the Stokes-Einstein relation
for the self-diff'usion coefficient: Ds ks T(1 —1.8&)/
(6xria). Here, r/ is the fiuid viscosity, and we have
corrected for the eff'ects of hydrodynamic interactions. '

The slope of the decay is characterized by the parameter
y, which directly reflects the fraction of nondiffusive paths
contributing to I'(s), since short paths yield a slower de-
cay of the correlations. The autocorrelation functions for
the four polarization channels are plotted logarithmically
versus (t/ro) '/ in Fig. l. All four channels exhibit nearly
linear behavior in this plot, consistent with Eq. (1). How-
ever, the slopes y depend strongly on polarization. The
two linear polarization channels exhibit the largest
difference in slopes, with yII 1.45 for incident and scat-
tered light of the same polarization, while y& 3.06 for
light backscattered with perpendicular polarization. This
difference is due to the fact that low-order backscattering
sequences favor the parallel polarization channel, result-
ing in a smaller decay rate in this channel. The difference
between the circular channels is also pronounced, with
y+ 2.68 for incident and scattered light of the same heli-
city, and y — 1.59 for the opposite helicity. For circular-
ly polarized light, low-order sequences yield backscattered
light primarily of the opposite helicity, for which incident
and reflected photons are related by mirror symmetry.
The greater contribution of short paths in the parallel and
opposite-helicity channels is also directly re6ected in the

measured intensity of scattered light in these channels
with (I~~)/&I~) 1.78 and (I )/(I~) 1.45. In all cases
the overall experimental error is about ~ 5%.

The values of y in the four polarization channels can be
calculated theoretically within the white noi-se model, "
assuming uncorrelated particles, and i 1. The auto-
correlation functions for the multiply scattered scalar" or
vector waves may be obtained from the sum of ladder di-
agrams, comprising the leading perturbative contribution
for i ))X. The inclusion of the nondiff'usive modes asso-
ciated with the vector model leads to the same trends in
the calculated as in the measured initial decay of correla
tions: we obtain y& 2.7, yII 1.6 for the linear polariza-
tion channels, and y+ 2.4, y 1.7 for the circular po-
larization channels.

The effects of polarization on backscattering are
markedly different when a A, . This is illustrated in Fig.
2, which shows the measured autocorrelation functions for
light backscattered from 0.605-pm-diam spheres, with

0.02. Here, I =10l, and the two linear polarization
channels have almost identical slopes: y& 2.18 and
yt 1.96. In addition, the average intensities in the two
linear channels are almost identical, with &Ii)/&I~) -1.05.
By contrast, the circular polarization channels exhibit a
high degree of polarization memory Their .relative be-
havior, however, has reversed: the helicity-preserving
channel decays more slowly than the opposite-helicity
channel. Furthermore, the helicity-preserving channel ex-
hibits more noticeable curvature. Thus we use the initial
slope to obtain y+ 1.72 and y — 2.62. This change is
also reffected in the intensity, with (I+)/(I ) 1.40.

The key to understanding these polarization eff'ects is
the behavior of paths with s —l . For a ~ X,, the scatter-
ing from individual particles is con6ned to a narrow cone
of angular width X/a about the incident direction. For
multiple scattering, we may regard the intermediate unit
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FIG. 1. Autocorrelation functions obtained for backscatter-
ing from 0.091-pm-diam polystyrene spheres for various polar-
ization channels. Inset shows measured initial slopes y for the
linear polarization channels as a function of particle size: yII

(o); y~ (O).

FIG. 2. Autocorrelation functions for 0.605-p.m-diam spheres
for various polarization channels. Autocorrelation function for
unpolarized light (dashed line). Theoretical curves GP (r) ob-
tained from Eq. (2) (dashed-dotted hne). Inset shows calculat-
ed values of n' and no vs particle size. Values of n' obtained
from fits of autocorrelation functions to Eq. (2) (ri).
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and

&R'i R& =1
2

For large particles, the probabilities for scattering with
and without a helicity flip, I (8) and I (8), respectively,
may be calculated within Mie theory. ' The results are
qualitatively the same as for small scatterers; for small 8,
the probability of helicity Hip is quite small. %'e may rep-
resent the angular average of the probabilities for scatter-
ing without (+ ) and with (—) helicity flip by

p &I —&/&I++I &=——,
' (1+ e 'i" ) .

wave vectors kj as executing a random walk on the unit
sphere between incident and 6nal directions, with small
step size A/a. The number of scattering events required to
completely randomize the wave direction, no-(a/k),
provides the de6nition of the transport mean free path:
i* nol B. ackscattered light is comprised of a large con-
tribution from paths of length s —i, which characteristi-
cally involve no scattering events. For a sufficiently large
no, the polarization vector for incident linearly polarized
light is completely randomized. A simple geometric argu-
ment demonstrates this. For each scattering event, the
polarization vector aj is related to the previous vector Zrj.

by i~ cs:ai ~
—(kj ij. ~)kj. In the limit of small scatter-

ing angles 8J, this is equivalent to parallel transport of the
~larization vector on the surface of the unit sphere from
kj —

~ to kj, along a great circle. Backscattering corre-
sponds to a random walk from one pole of the unit sphere
to the other. If such a path results in a backscattered
wave of parallel polarization, then an equally probable
path, determined by the azimuthal rotation of the sphere
through an angle p 45 about the incident direction, re-
sults in a backscattered wave of perpendicular polariza-
tion. s This reflects the azimuthal dependence of the linear
polarized scattering amplitudes. Thus, paths of length
s & 1 contribute equally to each linear polarization chan-
nel for large particles.

This is not the case for the circular polarization chan-
nels. For scattering through a small angle the amplitude
for helicity flip is small, independent of azimuthal rota-
tions Physic. ally, we can understand this by considering
small particles. The Born approximation yields scattering
amplitudes proportional to the overlap of the outgoing cir-
cular states ) R'&, )

L'& with the incident states [ R&, [ L&:

waves. This leads to a simple expression for the auto-
correlation functions in the two helicity channels in terms
of the autocorrelation function for scalar waves:

GP (r) cs G((t)+' G) (t+ zono/(2n')). (2)

3.0

2.5

The second term represents a shift in the time variable,
and is equivalent to the correlation function in an absorb-
ing medium, with absorption length n7 W.e can use Eq.
(2) to compare with experiment by taking the scalar value
of y 2.05, obtained from the unpolarized autocorrelation
function, and adjusting n' to simultaneously 6t both circu-
lar polarization channels. The results for 0.605-pm
spheres, with n' ~32, are shown by the dashed lines in Fig.
2. The shapes of the autocorrelation functions are repro-
duced quite well, including the curvature in the helicity-
preserving channel.

Physically, the polarization memory arises because n'
increases with particle size more rapidly than no, so that
more scattering events are required to randomize the heli-
city than to randomize the direction. The dependence on
the scattering particle size is illustrated in Fig. 3, which
shows the measured y for the circular polarization chan-
nels. A striking polarization dependence is apparent for
circularly polarized light in both limits of small and large
scattering particles. For small scattering particles, the
helicity is flipped by the nondiffusive paths and y ( y+.
For large particles, where forward scattering dominates,
the helicity is preserved over a longer length scale than i
and this polarization memory results in y ) y+. This
trend is correctly predicted by the values of y calculated
from Eq. (2) using Mie theory, as shown by the solid lines
in Fig. 3. The oscillations reflect the resonances charac-
teristic of Mie theory, and would be smeared out by any
polydispersity in the scattering particles. The 6tted values
of n', however, are substantially less than calculated from
Mie theory, as shown in the inset of Fig. 2. Nevertheless,
they are still larger than no, reflecting the large degree of
polarization memory. The discrepancy between the data
and the Mie theory predictions may be due in part to the
effects of particle concentration, and the resulting struc-
ture factor, which tends to reduce the forward scattering.
This will in turn increase the average angle of scattering

Physically, n'1 represents the path length over which the
helicity is randomized. The small amplitude for helicity
flip makes this length greater than I . This is the origin
of the polarization memory.

Paths of length s nl contributing to the two helicity
channels are characterized by an even or odd number of
helicity flips, respectively, each with probability p . The
number of these paths is then given by
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where P(s) is the number of scattering paths for scalar

FIG. 3. Measured initial slopes y for the circular polarization
channels as a function of particie size: y+ &a); y- (+).
Theoretical curves for y~ obtained from Eq. (2& using Mie
theory (solid lines).
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from the individual particles, leading to a less pronounced
polarization memory. Consistent with this, increasing p to
0.05 further reduces the observed polarization memory.

A full description of the multiple scattering of light in
random media requires a detailed knowledge of the nature
of short scattering paths, particularly for backscattering,
where the characteristic path length is of order I . These
nondiffusive paths are responsible for the striking memory
of the incident circular polarization. By contrast, linearly
polarized light loses its polarization memory as the parti-

cle radius increases, independent of particle concentra-
tion, with yt and y~ monotonically approaching the
asymptotic value of 2.05 as shown in the inset of Fig. I.
This behavior can be exploited to independently determine
zo, by measuring the autocorrelation function for both
linear polarization channels. This makes particle sizing
possible using diffusing-wave spectroscopy, and demon-
strates yet another way in which multiple dynamic light
scattering can provide useful information about dense
media.
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