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The critical behavior of sound attenuation and dispersion in a diluted Ising system with a non-

conserved order parameter is studied above T,. The dynamical scaling functions are computed by
the e-expansion method up to the first order.

As it is evident from the heuristic argument of Harris'
and from the renormalization-group (RG) approach, the
coupling of the order parameter (OP) with quenched
nonordering impurities, which induce random variations
in the local transition temperature leads to nontrivial
consequences when the specific-heat exponent of the pure
system is positive. In this paper we shall only consider
weak disorder far from the percolation threshold. When
we study the behavior of the Ising model (which is the
only one from three-dimensional n-vector models with
a )0) by means of the RG approach and e' ( 4 —d) ex-
pansion, then the O(e) Ising fixed point is driven by
quenched disorder effects to the O(Je) Khmel'nitskii
6xed point with negative speci6c-heat exponent a. On
the other hand if the Ising spins are coupled with isotropic
elastic degrees of freedom then a first-order transition,
usually proceeded by a pseudocritical region, is expected,
under a constant pressure. In the case of pinned bound-

ary conditions a continuous transition with Fisher-
renormalized exponents is predicted. In this work we are
going to determine the infiuence of dilution on critical
sound propagation in a solid under a constant pressure in
the limit of small compressibility. 5 We shall only discuss
the high-temperature disordered phase whose dynamics,
unlike in the ordered phase, is not expected to be affected
by long-lived droplet fiuctuations. The Hamiltonian of
the elastically isotropic system may be specified as

H d x frp+y(x) —V jS + —,
' upS + 2 Ct2 ge„

+C~~ g e'p+ [p+ tr(x))ge„+gpS'g e
a,P a a

(I)
consisting of (i) magnetic terms of the Ginzburg-Landau
form, (ii) an elastic part where e,tt(x) denotes the strain
tensor, p is an external pressure, and C,~ are the bare elas-
tic constants, (iii) a term describing the interaction of the
OP and the elastic degrees of freedom, where go is the
bare coupling constant. The random variables p(x) and
n(x) are the local transition temperature fiuctuations and
induced random stress, respectively. We assume them to
follow a Gaussian distribution with mean values of zero.

There are six 6xed points in the space of the parame-
ters (r, u, v, A), where v represents a total effect from the
homogeneous deformations (involving bulk modulus 8) as
well as from phonon modes (involving longitudinal

modulus C~~) and can be regarded as the strength of a
strain-mediated interaction in the effective OP Hamiltoni-
an; d describes the amount of disorder. These parameters
are de6ned as follows:

u u —2g /C(t, v ~2g (I/Ct) —I/8),

ht t, +4ght JC) t +4g 5 JC t t,
where

2(d —I )
C44.

It was shown7s that a random Ising (Khmel'nitskii)
fixed point (RI) is stable with respect to the elastic pertur-
bations and its asymptotic behavior is characterized by
the exponents of the rigid random model. However, a
6rst-order transition may appear if the quenched disorder
is sufficiently weak and a constant pressure is applied.

The dynamics of the system are described by the sto-
chastic Lan~evin equations for the OP field and the acous-
tic phonons

~ 8S,-—r, +g, ,8S—
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Q1,~ — —Ak Ql, ~+rishi,&Q-1,~

where $1, and t11,,q are Gaussian white noises. Using the
functional representation of the above equations and hav-
ing in mind that the transversal modes are not coupled to
the OP in our model, the self-energy of the acoustic
response function

Z(k, cp) -—2g'k' C(k, ro)

I + v 1'"C(k,cp)

which is the quantity of interest, can be expressed in terms
of the frequency-dependent speci6c heat

C(k, tv) [&I p(SS)1,, (S') 1, )
1N,],„,

where unitary density was assumed and S is an auxiliary
response Beld. ' The first average in the above expression
is calculated for the effective OP Langrangian, Lg, con-
taining the strain-mediated interactions. The specific heat
of the quenched random system is then obtained by
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averaging this expression over static random variables
y(x) and )r(x).

In order to discuss acoustic properties of the system, an
additional parameter, v v" 2g 2/Ci 1, is required. s It
fulfills the same RG equations as v but contrary to vo the
bare value of v vh is always positive. As the RG trajectory
approach the random Ising 6xed point, both v and vugh

tend to zero. Therefore the asymptotic behavior is only
determined by the numerator of Eq. (3).

In the calculations the presence of impurities brings
about additional diagrams which contribute to the value
of the dynamic critical exponent z and strongly affect the
OP shape function at small frequencies as T~ T,." For
this reason some changes in the usual calculations used for
the pure system are necessary. ' Apart from "mass re-
normalization" it is convenient to perform exponentiations
of the O(h) logarithmic singularities in the OP propaga-
tors" found in diagrams for the frequency-dependent

I

specific heat. These singular terms come from the first-
order graph in Fig. 1(a). After exponentiation we have

Gss'(k, m) g/ '+ k 2 im—F(m;l), (4)

with

I

I
I

(a) I

(b)
FIG. l. (a) Diagram contributing to the OP frequency-

dependent self-energy calculated up to O(h). (b) The addition-
al diagram contributing to the acoustic self-energy in first order
in 6,. The lines and circled lines represent the OP response and
correlation functions, respectively. The dashed line represents a
factor of I,.
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(m, e/21 o)"+g .'-I, (6)

where@) t "e 'is the static susceptibility with t being
the reduced temperature and x mg//I o. To the first or-
der in 4 the diagram displayed in Fig. 1(b) should also be
included in the frequency-dependent specific heat besides
those for the pure case. '

Integration of the RG equations leads to the following
expression for the acoustic response function:

G '(k, m) cPk —vj'"cPk C(me") —m, (5)

with cp c)R, vf" vghRe a/v)l R ~(1 a+ac(a/v)/) -1
a vg"/v, v a/v+0(e), where less singular terms
have been omitted in Eq. (5) and because the ultrasonic
wavelength is much longer than the correlation length the
limit k 0 in the frequency-dependent speci6c heat has
been taken. In this expression c is the longitudinal sound
velocity and the critical exponents correspond to the ran-
dom Ising fixed point.

Finally the flow parameter 1, for which the function
C(me' ) can be evaluated by perturbation expansion, is
determined by the condition

I

with the explicit solution

e' -t "+(y),
where

C (y) - tl+(y/2) "]
(7)

and y mt '"/1 o. Inserting Eq. (7) into Eq. (5) we find
that the sound attenuation coefficient and dispersion obey
the asymptotic scaling relations

a(m, t)-t 'm'g(y),

c'(m, t) c'(O, t—) tf(-y),
where p zv. +a,

g(y) -y 'e'/"(y) ImC(y)+O(e),

and f(y) f(y) —f(0) with

f(y) -e'"[1+v'ReC(y)]+O(e) .
To the first order in Je the function C may be written

as
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FIG. .2. Scaling functions for sound attenuation for e 1 with
normalization gaf(0) g~(0) 1. gR[ and g~ correspond to di-
luted and pure Ising behavior, respectively.

In Figs. 2 and 3 the scaling functions for the diluted Is-
ing model, calculated to the first order in Je, are com-
pared with those corresponding to the pure Ising model,
calculated to the first order in e, in the limit of weak cou-
pling go. s'2 A rather great difference in the slope of the
scaling functions for sound attenuation (Fig. 2) in the
critical regime (y~ ~) is to a considerable degree a re-
sult of an overestimation of critical exponents especially
for the random Ising model. Although neutron scatter-
ing' and Mossbauer effect' experiments on Fe Zn~ Fz
confirmed that the random exchange Ising system indeed
had different critical exponents from those of the pure sys-
tem and that the experimental values of static exponents
agreed quite well with the theoretical predictions, ' as far
as the authors of this paper kno~, there is no satisfactory
theoretical estimation as well as no reliable experimental
data' on the dynamic critical exponent of the random Is-
ing system. On the other hand, ' it seems that dilution
may produce more a dramatic effect on dynamic behavior
than has been observed for the static critical exponents.

FIG. 3. Scaling functions of sound dispersion for pure (f~)
and random (fR~) Ising model. The normalization f~(~)-I
and fa~(10) 10 ' has been used.

In the hydrodynamic regime (y 0) the scalin~ func-
tions for sound dispersion (Fig. 3) behave like y

' so in
the first-order approximation the slope of the curve for the
diluted model (fat) differs significantly from the conven-
tional value of 2 obtained for the pure model. Thus, low-
frequency measurements of sound dispersion might turn
out to be very helpful in the determination of the value of
the dynamic critical exponent in diluted Ising systems.
Unfortunately, we have not come across such results.
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