
PHYSICAL REVIEW B VOLUME 40, NUMBER 13 1 NOVEMBER 1989

Quan&a Soltzma» equation and Kubo formula for electronic transport in solids

Liao-Yuan Chen and Zhao-Bin Su
China Center of Advanced Science and Technology (World Laboratory), Institute of Theoretical Physics,

Academia Sinica, Beijing, China
and Department of Physics, University of Houston, Houston, Texas 77204

(Received 17 July 1989)

We present a derivation of the quantum Boltzmann equation for linear dc transport with a
correction term to the Mahan-Hansch equations and derive a formal solution to it. Based on this
formal solution, we find the electric conductivity can be expressed as the retarded current-current
correlation. Therefore we explicitly demonstrate the equivalence of the two most important
theoretical methods: the quantum Boltzmann equation and the Kubo formula.

Because of its practical importance, the investigation of
electronic transport in solids has received much attention.
Of the theoretical methods for the linear transport pro-
cess, the Kubo current-current correlation formula' is
generally regarded as an exact formalism for quantum
many-body systems. The other general method, e.g. , the
Boltzmann equation, however, has often been treated with
classical or semiclassical approximations. Recently,
Mahan and Hansch and Mahan proposed a set of quan-
tum Boltzmann equations (QBE) for the linear transport
of many-electron systems. Their QBE is derived from the
Dyson equation of the nonequilibrium Green's func-
tion. ' In the Born approximation, the Mahan-Hansch
QBE produces the same results for dc conductivity of
electron-phonon-impurity systems as those derived from
the Kubo formula in the ladder diagram approximation.
Then it is natural to raise the question of whether the two
general methods, the QBE and the Kubo formula, are ex-
actly equivalent or not. Although the equivalence be-
tween them could be physically expected, it is not actually
obvious because their forms are quite different. The Kubo
formula relates the conductivity to an equilibrium
current-current correlation function which is a kind of
two-particle (four-point) Green's function. While the
QBE provides a kinetic equation for the nonequilibrium
quantum distribution function which is a kind of one-
particle (two-point) Green's function. In this Brief Re-
port:

(i) We present first a new derivation of QBE for linear
transport. Because electric field enters into and compli-
cates the functional dependence of self-energy upon the
Green's function, the expansion with respect to electric
6eld for obtaining the correct linear QBE has to be per-
formed very carefully. In this derivation, we find a correc-
tion term due to electric 6eld modification of the scatter-
ing effect, which has not been considered in Refs. 3 and 4.
Only when this correction term is included could the QBE
be equivalent to the Kubo formula for dc transport.

(ii) We derive an integral equation satisfied by the
four-point (two-particle) Green's function, of which the
kernel is the functional derivative of the two-point (one-
particle) self-energy with respect to the two-point (one-
particle) Green's function. With the help of this equation,

we find a formal solution of the linear QBE.
(iii) We show that the dc conductivity calculated from

this formal solution is exactly the retarded current-current
correlation. Therefore, we prove the exact equivalence of
the QBE and the Kubo formula.

In the presence of a uniform constant electric field (E
field) E, the Hamiltonian of the electron system can be
written as

iG++(x,x') &Ts y+(x) tlr+(x')) -&Ty(x) yt(x') &, (2)

iG+ (x,x') --&Tsy+(x) yt-(x') &
—&yt(x') y(x) &, (3)

iG +(x,x') -(Tpy-(x) y$(x')& -(tlr(x) tire(x')&, (4)

iG (x,x') &Tt, y (x)~t (x')& (Ty—(x)yt—(x')), (5)

where x (x, t) and ( ) means the statistical ensemble
average (generally nonequilibrium) Tr(p . . ). It is easy
to verify 6, —,

' g, ripG, tt and 6, —,
'

ri, gpG, p. Here and in
the following context the repeated time branch indices are
summed over "+"and "—"branches, g+ g 1 and

where H~„t is the interaction between electrons and pho-
nons or impurities, etc., and A(t) —Et is the vector po-
tential. This system is typically nonequilibrium for which
the nonequilibrium Green's function (GF) provides a con-
venient description. The retarded (advanced) GF, 6„
(G, ), characterizes the spectrum and the dissipation for
the system and the distribution GF, 6+ (—=6 of the
Kadanoff-Baym notation3'4 ), which is similar to the
Wigner distribution function, carries the distribution in-
formation. In fact, G„G„and G+ are three indepen-
dent components of the nonequilibrium closed-time-path
Green's function (CTPGF). s ' A more symmetrical
form of CTPGF, 6 (G,s), which has four components:
G,~ —i(T~y, tire) where a,P + or —,is much easier to
manage. They are defined on the closed-time path, which
runs from —oo to +oo (positive "+"branch) and then
returns back from +~ to —oo (negative "—"branch),
with T~ being the generalized time-ordering operator: '
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g+ 1 —g —. G,p satisfies the following Dyson equa-
tion:3

„dz[io (x,z) „Zg(x, ,z) „]g„G (z,x )„p

-b p(xi -x2), (6)

I OA (xlsx2)up t H~(t) ) b~p(XI x2),

where the generalized b function b+ ~ ( ) b( )—b (.) and b'+ b + 0. Because the interac-
tion FE;„& is independent of the vector potential, the self-
energy Zz depends on the E 6eld only through its func-
tional dependence upon the G~, i.e.,

there is a constant current and the properties of the sys-
tem are space-time translationally invariant. However,
the Dyson equation [Eq. (6)] for the Green's function Gz
is not translation invariant. Nevertheless, we could derive
a translation invariant description for the system from it
by making use of the following transformation (which has
been utilized by Mahan and Hansch and Mahan in the
momentum space):

G~ (x~,x2) exp[ —ieE(t ~+ t2). (x~ —xz)/2]g(x &,x2),
(9)

Zg(x~, x2) exp[ —ieE(t~+t2) (x~ —xz)/2]o(x~, x2),
(io)

where Z[G] becomes the equilibrium self-energy if G~ is
replaced with G. In order to avoid confusion, we use G, Z
to denote the equilibrium Green's functions to distinguish
them from all the nonequilibrium ones. From the Dyson
equation [Eq. (6)l, we will deduce the QBE, the kinetic
equations for G~„, G~, and G~+ for linear transport.

In a static E field, one would physically expect that
I

g and o here are introduced as the reduced Green's func-
tion and self-energy, respectively. For linear transport in
weak E 6eld, the nonequilibrium GF can be expanded as
the equilibrium part plus a linear response term: g,p

G,p+ bg, p. Utilizing the transformation in Eqs. (9) and
(10) and the expansion to the linear order in E, we obtain
the following translation invariant kinetic equation, the
QBE for the reduced GF's:

g,p(x), x2) — dzo, „(x),z)g„g„p(z,x2) -b,p(x( —x2) ——, eE. (xt —xz)+ (t) —tz) G,p(x) —xz)2' N1

——eE dx'[(xi —x')(t' —t2) —(x' —xz)(t i
—t')l

x Zg„(x ( x )T/pGyp(x x2) p

in which each function is only dependent upon the coordinate differences (x —x') (x —x', t —t'). The self-energy
8 Z+ bo and [using Eqs. (8)-(10) and making linear expansion]

bo Z[G+ bg] —Z[G]+b~ o,
in which

(i2)

bz.p(x i,x2)
bz a,p(x ~

—x2) „dy &dy2
' ' rt„rt„eE(t~ ~+ t~2——t„t —t„2). (yt —yz)G»(y i,y2), (13)

bGpv yl~y2

is a new term describing the E 6eld modi6cation of the scattering effect, which has been ignored in Refs. 3 and 4. This
correction term vanishes only in the Born approximation where the self-energy X is a linear functional of G.

Since Eq. (11) is space-time translation invariant, it could be easily transferred into the momentum-energy (p, c0)
space. Using the linear relation between g„, g„and g p, we arrive at the QBE, i.e., the quantum kinetic equation, for the
spectrum and distribution

2

N — g —0'g 1,
2ppl

2

ga aga
2/pl

(i4)

cr+ (p) [g, (p) —g. (p)] —[o„(p)—o, (p) lg+ (p) -ieE Rez, (p) + + Rez, (p) G ~ —(p)
8 8 p 8 8

8c0 p pl p c0

ieE —ReG„(p) Z+ (p) — Z~ —(p) ReG, (p)
Ia e a e

8p co p c0

(i5)
Equations (14) and (15) derived here exactly agree with Mahan-Hansch's equations [Eqs. (70) and (75) of Ref. 3] if the
self-energy correction term bqo in Eq. (13) could be set zero. This self-energy correction term indeed vanishes in the
Born approximation which corresponds to the ladder diagram approximation for the current-current correlation in the
Kubo formula. If one goes beyond the Born approximation, the self-energy is no longer linear in the full Green s function
and then the correction term has a nonvanishing contribution to the QBE. In order to show the exact equivalence be-
tween the QBE and the Kubo formula it is necessary to include this correction term.
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For the linear response term bg of GF: g G+ bg, we could derive the following integral equation from Eq. (11):

bgap(X l, XZ) — dy ldyZriappy(X l, XZ,y l,y Z) r/pr/vbgpy(y l,y2)
J%

eE. dzG, „(xl,z)r/„G„p(z, X2) (2t, —t„,—t„,)

l
dyldy211, »v(xl, xz,yl, y2)(tz +t ty ty ) (yi yz—)r/„t/vG»(y ly z), (16)

(is)

b&s,(y i,yz)
IIapl)y(X l,XZ,Z l,ZZ) dyldyZG, S(Xl,y l )r/S

" '
r/7G7p(yZ XZ) (i7)

av Zl&Z2

where the momentum operator p (V —V)/2i. It is interesting to verify that the solution of Eq. (16) can be expressed in
terms of the two-particle (four-point) CTPGF:

6aptI y (X l ~ XZ rX 3~X4) (Tt) l/ta (X l ) l/tII (X2) /l i())X3 ) I/I y (X4)) ~

And G (z) satisfies the following integral equation:"

GaP)( v (X 1 s X2~ X3»4 ) dZ l dZ 211aPSy(x 1» 2~ Zl» 2 )t/Sr/rGS r(d v (Z 1»2» 3»4) Ga v(x 1 s X 4)Gl(P (X3s X2 ) ~

{2) (2)

Utilizing this integral equation, we find the formal solution of Eq. (16) as follows:

(19)

bg,p(xl, x2) eE dzG,.'p„'„(xi,x2,z,z)t/„' (2t, t„, —t„,)—. (20)

Actually, the proof for Eq. (20) being the solution to Eq. (16) can also be achieved directly by the Feynman diagram ex-
pansion method. The perturbative solution of Eq. (16) can be obtained, without much difllculty, to show that the Feyn-
man diagrams for it and those for Eq. (20) coincide graph by graph, order by order.

According to the transformation in Eq. (9), the electric current j ( —e/trn)(p„—eA)G&+ (x,x) can be expressed
as ( ie/rrt)—p„bg+ —(x,x). From Eq. (20) and after some management concerning the closed time path time ordering
definition [see Eqs. (2)-(5)l, the conductivity a(j a- E) takes the following form

A A

(e J dz—(rt, ) *, * GP—.-»(x, x,z,z)q„- ds( —()e(x —z) vt(x) * v(x), vt(x) *
v(z) ). (21)

7Pl N2

Obviously, our result for dc conductivity, Eq. (21) derived from QBE does exactly coincide with the Kubo formula.
Therefore, we prove the equivalence between the kinetic equation approach (QBE) and the Kubo formula for linear
transport in weak static uniform electric field.
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