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Exchange and correlation eI'ects in anisotropic systems
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Exchange and correlation effects in an electron gas with an anisotropic effective-mass ratio are
investigated, within a self-consistent procedure beyond the random-phase approximation (RPA).
The plasmon dispersion relation and the pair-correlation function are shown as a function of the
electron density, mass ratio, and for selected angles of propagation. We have found sizable
differences from the RPA results.

I. INTRODUCTION

Many materials, such as polymeric polysulfurnitride,
(SN)„, show a strong anisotropy causing their electronic
properties to vary quite noticeably, according to the direc-
tion examined. ' These materials can, in general, be un-
derstood as consisting of bundles of fibers, composed of
parallel segregated chains of molecules, in which the elec-
trons are free to move. The electronic properties of these
materials are quite anisotropic due both to the microscop-
ic structure leading to higher conductivity along the poly-
mer chains and to the arrangement into 6bers. The
quasi-one-dimensional feature occurs since there is little
overlap between the electronic wave functions on different
chains. The interchain interactions are weak, but cannot
be ignored in trying to explain some of their properties.
Some of these materials have been shown to be supercon-
ducting at temperatures of the order of tenths of degree.
It has been suggested that the small diameter of the 6bers
may lead to quasi-one-dimensional superconductivity in
the temperature regime where the coherence length is
large as compared with the 6ber diameter.

The purpose of this work is to investigate the electronic
properties of anisotropic materials, within the self-
consistent-Geld approximation, as introduced many years
ago by Singwi etal. , for the isotropic electron gas. In
this method, the short-range correlation effects are taken
into account through a local-field correction. The results
will be shown as a function of the angle with the strand
direction, the masses perpendicular and parallel to this
direction, and the electron density of the system.

Let us 6rst introduce the effective masses mt and trt&,
respectively the masses parallel and perpendicular to the
strand axis. By choosing z as the direction of this axis,
we may perform a scale transformations getting an aniso-
tropic vector g which plays the role of the wave vector in
the anisotropic system, with components q (m&)
q~(m&) 't, q, (trt t) ', or & qP(8)/(rrts) 't, where
P(8) [cos 8+sin 8/R] 'i, 8 being the angle between q
and the z axis and R m&/trts, the mass ratio. With this
de6nition, the kinetic energ of a charge carrier of
momentum hq is E(g) h g /2. The dielectric function
of the system in the STLS scheme, for the present prob-
lem, can be written as

where Qo(g, co) —P(g)go(g, co), p(g) c~o(8)/pf is the
bare particle-particle interaction, with the anisotropic
plasma frequency co~~(8) co~&P(8) de6ned through the
usual isotropic plasma frequency co~& (4trpe /me )'
and the electronic density p.

For an anisotropic noninteracting electron system, the
real and imaginary parts of the density-density response
function, go(g, co), are given, respectively, by
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II. THEORETICAL FORMULATION

The self-consistent-6eld approximation proposed by
Singwi et al. (hereafter referred to as STLS) has been ap-
plied for different systems leading to better results than
the random-phase approximation (RPA). The RPA re-
sults are obtained from STLS simply by disregarding the
local-field corrections, corresponding then to the zeroth-
order interaction in STLS.4
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where II ~ hru+ E(g), A, 2JE(()EF, and the Fermi
energy EF (2A /mt)(3x p/R) ~ h gF/2. Here @(x)

1 if x & 0, and @(x) 0 otherwise.
The local-fleld correction G (g) is related to the

effective self-consistent potential y(g) through y(g)
p(g) [1 —G(g)], being therefore a measure for the devi-

ation of the dielectric constant e(g, ro) from its RPA
value, eRpA(g, co) 1 —p(g)go(g, ro) .In the STLS ap-
proximation it is related to the structure factor S(g) as
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Closing the self-consistent scheme, the structure factor

S(g) is related to the dielectric function e(g, ro) through
the fluctuation-dissipation theorem as

fO OO
1S(C)--

( ) J dmlm
( )

Equations (1), (4), and (5) constitute the set that has to
be self-consistently solved, to calculate e(g, ro) and related
quantities such as pair-correlation function, structure fac-
tor, effective potential, plasmon dispersion relation, etc.
In the present work we will choose units where the system
can be characterized by dimensionless parameters. It is
convenient to measure energies in units of EF, frequencies
in units of EF/5, and lengths in units of (F

(5)

III. RESULTS

We have numerically solved these self-consistent equa-
tions for an anisotropic electron gas with e 1 and
ms m„ the free-electron mass, as a function of the mass
ratio R, the angle 8, and the density p of the gas. The
electron density is represented by the mean separation be-
tween the particles, r, (3/4+pa))'~, where ao is the
Bohr radius for the free electron. The results for R 1
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FIG. 2. Pair-correlation function g(r) vs (Fr for r, 3,
8 0, and 8 90 and for various values of the anisotropic
mass ratio R.

correspond to the well-known isotropic electron gas. 3 In
the case of R )& 1, that is m & & ms, we are approaching a
quasi-one-dimensional system, favoring the transport
along the z axis. For R((1, the system is presenting a
quasibidimensional character, since it is much easier to
move carriers in the xy plane.

Figure 1 shows the plasmon dispersion relation results
for R 5.0, for several values of the angle and two
different densities. One can notice that even for somewhat
high densities (r, 3), there appears a minimum in the
energy, which becomes more remarkable when the density
is lowered. This minimum also increases when the angle
with the z axis is enlarged, for a flxed pair of values of r,
and R.

Figure 2 represents the pair-correlation function as a
function of the angle 8, for a given density and various
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FIG. l. Plasmon dispersion relation propagating along the

axis of the strand (8 0 ) and at 45' are shown for an aniso-
tropic mass ratio R 5 and for two different electron densities;
(a) r, 3 and (b) r, 8. For comparison the plasmon spectrum
in the RPA is shown by dashed curves.

FIG. 3. Pair-correlation function g(r) vs /Fr for r, 3,
R 0.5, and R 2.0 and for various values of 8, the angle with
the axis of the strand.
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values of the mass ratio R. The negative values that were
found for small separation between the particles are a
characteristic of STLS and should not bother us, since the
values of r are then very small. Also, when the value of
g(0) is negative, a negative slope near r~0 is expected,
since it can be shown that in this approximation the value
of the derivative of g(r) calculated at the origin is equal
to g(0)/ao. This result holds even for an anisotropic sys-
tem, as can be easily proved.

Figure 3 shows the pair-correlation function for a 6xed
pair of values of r, and R, and different angles. As can be
seen from this 6gure, there is a strong difference in the be-
havior of the pair-correlation function at different angles,
when we consider R smaller or larger than the unity. This
can be explained remembering that the angle 8 is mea-
sured from the z axis, and then 8 0' means measure-
ments along this axis, 8 90' corresponds to the xy plane.
When R & I, that is m~ & m~~, the system is acquiring a
bidimensional character. In this case, the probability of
6nding the second particle at a distance r from the 6rst is

larger when the angle is large, that is, when we are exam-
ining the properties of the system almost in the xy plane,
although not disconsidering the third dimension. On the
other hand, for R ) 1, we have the opposite dependence.
The system now is becoming quasi-one-dimensional and
therefore the probabilities should increase for low angles.

IV. CONCLUSIONS

In this paper we have shown that exchange and correla-
tion effects are quite important in an electron gas with an-
isotropic effective-mass ratio. Our results mark a de6nite
improvement over the calculations given by earlier
theories using RPA. The present results lead to a more
effective screening of the bare potential. It appears that
we will have an improvement in the calculation of donor
impurity screened in many-valley semiconductors with an-
isotropic masses, which is now being investigated in detail.
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