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The renormalization-group recursion relations obtained by Chen and Lubensky for the multicriti-
cal point associated with simultaneous critical fluctuations in both the spin-glass and ferromagnetic
order are reanalyzed. To first order in e=6—d we find that the multicritical fixed point is located
inside the Nishimori manifold and that the scaling axes agree with those obtained recently from
general arguments. It is confirmed that the scaling along the Nishimori line and at the
paramagnetic-spin-glass transition are related. We also point out some universal properties of the
multicritical point of possible experimental interest.

This paper concerns the nature of the fluctuations in a
random magnet near the multicritical point where the
paramagnetic, ferromagnetic, and spin-glass phases coex-
ist. In a recent Letter' it was shown that under rather
general conditions this multicritical point lies on the so-
called Nishimori line,? defined by the occurrence of a par-
ticular type of gauge symmetry. In addition, it was
shown that constraints on the phase diagram led to an
unambiguous identification of the scaling axes near this
multicritical point. It was also noted that the scaling
axes obtained by this general argument agreed with the
results of the renormalization-group € expansion of Chen
and Lubensky.® Here we show this explicitly, since the
scaling axes were not given in Ref. 3. In addition, we ver-
ify the prediction* that the scaling behavior on the Nishi-
mori line (or within the Nishimori manifold if more cou-
pling constants are allowed) can be related to the thermal
scaling exponent at the spin-glass—paramagnetic critical
point. Finally, in order to manifest the gauge symmetry
in replica space which characterizes the Nishimori mani-
fold, we display explicitly the dependence of the results
on the number of replicas », rather than immediately tak-
ing the limit » —0.

We consider an Ising magnet with quenched random
bonds. For a given configuration of exchange integrals
J(x,x'), the Hamiltonian is

H=— 3J(x,x")S(x)S(x’) , (n

x,x"

F(M,Q)=1 [dr 3 [ryM(0*+|VM (D] +1 [ dr
a=1

—2w, fdr 3 M DMy0)Qu(n)—6w [dr 3

1<a<B<n

Apart from the sign convention for the cubic potentials,
this is exactly the free energy analyzed in some detail by
Chen and Lubensky?® and we follow their treatment close-
ly. (In any case one has (Q.5(r))=y[{S(r))?],,. The
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where S (x) is a spin variable at site x which can assume
the values +1 and —1, and J(x,x’) for any given
nearest-neighbor bond x—x' is a random variable such
that the exchange integral has an average value J and a
variance which we denote A%2. We use the so-called repli-
ca trick which involves calculating ZW=[Z"],,, where
[ 1., indicates an average over the random variables
J(x,x'), and Z=Trexp(—pBH). The quantity Z'™ can
be conveniently calculated as the partition function for
the x-replicated Hamiltonian H'™, where

H(n)=_z é](x’x')sa(x)sa(x') . (2)

xx'a=1

In the limit n —O0 the annealed free energy obtained from
[Zz"],, is identical to the quenched free energy
—kT[InZ],, of the model of Eq. (1). It is convenient to
recast the partition function for H'™ in terms of a field
theory by performing a Hubbard-Stratonovich transfor-
mation in which fields M (r) conjugate to S, (r) and
fields Q, 5(r) conjugate to S,(r)Ss(r) are introduced fol-
lowing closely the procedure used by Bray and Moore.’
The result is then that

[Z2"),,= [ DMDQe 7O (3)

where DM indicates integration over all fields M (r) and
DQ integration over all fields Q,45(r), and the new free-
energy functional is

S [rgQup(r)?+1VQ, 4]

1fa<B=n

Q.5(1)Qp ,(1)Q, () . @)

1<a<f<y<n

[

sign of the cubic potentials we choose is such that the
constant y is positive. This choice of sign is essentially
arbitrary.) Also in Eq. (4), rM=a(T~T1‘\),, ), where a is a
constant and Ty is the mean-field transition temperature
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for ferromagnetic ordering, so that ry,=a[(kT /zJ)—1].
Similarly, rg =a'(T—-T8 ), where a’ is a constant and Tg
is the mean-field transition temperature for spin-glass or-
dering, so that ry =a'[(kT/A)?/z—1]. The multicritical
point we wish to study corresponds in mean-field theory
to 7, =ry=0. The Nishimori line® is characterized by
the condition*

P(—J)=e~2p(J) - (5)

or a generalization thereof when more complicated cou-
plings are allowed.* When Eq. (5) (or its generalization)
is satisfied, the free-energy functional is invariant under
the local gauge transformation Q,,(r)e=M,(r). Note
that this symmetry can occur for integer n and not just
for n—0. In fact, this gauge symmetry must be
preserved under the rescaling of the renormalization
group.* Our results for arbitrary n will be consistent
with this symmetry. One can easily see that this condi-
tion implies that the Nishimori line occurs in the field
theory when

M=o (6a)
and
w=w,;/3. (6b)

This gauge symmetry also implies that

No=Mum > (6¢)

where 7, and 7, are the exponents governing the
power-law decay of Q and M correlations, respectively,
exactly at the multicritical point. From the general argu-
ments in Ref. 1 it was concluded that under transforma-
tion of length scales (as in the renormalization group),
one scaling direction lies in the Nishimori subspace and
another lies along the temperature axis. The purpose of
this paper is to verify that the e-expansion results of Chen
and Lubensky® agree with this and that Eqs. (6a)—(6c)
hold at the multicritical point, where e=6—d, where d is
the spatial dimension. Furthermore, it is shown in Ref. 6
that

[Zn + l(B)]av,.l:O
[Z(B)]av,1=0

[zn(B)]av,Nishimori = (7)

Here the left-hand side is evaluated at an arbitrary tem-
perature and for a distribution of J’s which satisfy the
Nishimori condition of Eq. (5). The right-hand side of
Eq. (7) is evaluated for J =0, which corresponds to the
usual spin glass. We wish to check that the € expansion
reproduces this interesting result which relates the prop-
erties of the spin-glass—ferromagnet—paramagnetic mul-
ticritical point (on the Nishimori line"'#) to those of the
spin-glass—paramagnetic fixed point.

We write the recursion relations of Chen and Lubensky
for the Ising case (m =1 in their notation) as

P =b2{ry—4n —w}[ 4(0)—K,(ry +ry)]inb

—4(n —1wiK rylnd} , (8a)
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ro=b*{rg—36(n —2)w?[ 4(0)—2K,rylnb]
—4w3[ 4(0)—2K 7y Inb ]
—1[36(n —2)w>+4w} K, rolnb} , (8b)
w'={1+(e/2)Inb—1[36(n —2)w?+4w?]K,Inb}
X {w+[36(n —2)w+4w}]K,nb} , (8c)

wi={14(e/2)lnb —1[36(n —2)w>+4w? K, Inb
—4(n —1)wiK lnb}
X {w, +4[w3+3(n —2)ww?]K,Inb} , (8d)

where A4(0) and K,; are constants whose values are not
needed here. Also they give

My =%n-—-1wikK,, (9a)
1o =1[36(n —2)w?+4wilK, . (9b)

One should note that the recursion relation does preserve
the gauge symmetry of the Nishimori line. That is, if we
set ryy=rg and w=w, /3, then ry;=rj and w'=w} /3.
At the multicritical point the fixed point values (indicated
by the subscript "c") are’

1 € 172

W= | Ka=m | (102)
1 € 172

wlc=—2“ m (10b)

Note that these values from the € expansion satisfy the
expected relation, Eq. (6b), for the Nishimori line. Also
when Eq. (6b) is satisfied, 7, =7, again as expected for
the Nishimori line [see Eq. (6c)]. Both these statements
hold before the limit n —0 is taken as expected.

The expression in Eq. (10) becomes imaginary for
n>1. We believe that this reflects the fact that the tran-
sition is no longer continuous for n > 1. In fact, within
mean-field theory Sherrington® has found that the transi-
tion is discontinuous for n > 1 for values of J and A corre-
sponding to the Nishimori point. (In the notation of his
Fig. 2, J®=gM)

Linearizing Egs. (9c) and (9d) about these fixed point
values we get

dw’'=8w{1+Inb[le+54(n —2)w2K, —2wi.K,]}
+4K 8w, (w}. —w,w, )nb ,
dwi=8w,{1+Inb[Le+(14—4n)wi K,

(11a)

+24(n —2)w, w.K;+6(2—n)w?]}

—12(2—n)K dw(wi, —w.w, )nbd ,
(11b)

where dw=w —w, and dw,;=w; —w;.. The fixed point
of Eq. (10) is stable with respect to variations in the cubic
coefficients w and w; and the corresponding correction to
scaling exponents are

A=—¢€ (12a)
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and

5—n

m . (12b)

}\.2= —€

Likewise we write t, =ry—ry. and to=ro—rg,,
where the subscript ¢ indicates the value at the multicriti-
cal point, in which case Eq. (8) yields

tiy=b’[(1—(2elnb )ty —(elnb)ty] , (13a)
tp=b? [ 2eInb)(1—n) "'ty
(5n—11)
+ 1+ e g (13b)

To display the scaling vectors g, and g, unambiguously,
we write

gi=ty—tp=b""ty,—15)=g, , (14a)

gy=ty—1(1—mity=b"ty,—L(1—n)ty]=g,, (14b)
with p;=2—2%e(1—1n)/(1—n) and p,=[2—(5¢/3)].
This gives the correlation length exponent v=1/u,=1
+2e(1—4n)/(1—n) and a crossover exponent ¢,

d=py/u=1+1e(1+n)/(1—n) . (15)

(In Ref. 3 the inequality p; <pu, is incorrectly stated.)

Now the initial values are ¢, =(kT/zJ)—1 and
tQ=(kT)2/[z(A2)]. The Nishimori direction is
JkT=A2?, or ty =ty i.e., g, =0. As expected, this condi-
tion, g, =0, does not involve n. Along the Nishimori
direction scaling is governed by the larger exponent p,.
If we start at the multicritical point (see Fig. 1) and vary
the temperature by an amount dT we find t,,=dT /Ty
and ty=2dT /Ty, where Ty is the temperature at the
multicritical point. Thus along the temperature direction
we have g, =0. Along this line scaling is governed by the
exponent u;.

We now point out two simple properties of the mul-
ticritical fixed point which could be of experimental in-

>l

Jz7A

FIG. 1. Topology of the multicritical point where ferromag-
netic (F), paramagnetic (P), and spin-glass (SG) phases coexist.
The vertical axis is temperature T and the horizontal axis is dis-
order A. The dashed line is the Nishimori line. The slope of the
F phase boundary at the multicritical point is infinite as re-
quired by general arguments. (Refs. 1 and 4).
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terest. The first of these is that spin-glass susceptibility
Xo and the ferromagnetic susceptibility x,, are asymptot-
ically equal as the multicritical point is approached along
any straight line not tangent to the phase boundary. This
is a consequence of (i) the fact that since u, is larger than
11, approaching the multicritical point along any straight
line except that tangent to the paramagnetferromagnet
phase boundary is equivalent to approaching the mul-
ticritical point along the Nishimori line, and (ii) the fact
that x, and x,, are equal on this line.! The second prop-
erty concerns the nonlinear suscéptibility, ;. For spin
glasses one often measures the dependence of the uniform
susceptibility X, on the uniform field H. Near the transi-
tion from the ferromagnetic to spin-glass phase, one has

XM(H)=X0+XNLH2 T, (16)

where Y, is finite and Yy diverges with the same ex-
ponent ¥, as the Q susceptibility. Near the multicritical
point the situation is quite different. Here x, diverges as

Xo~|T—T,|7"=¢t77, a7

and furthermore we expect that the free energy depends
on H through the scaling variable H /t*, where A=8+7.
Of course, in view of the symmetry of the Nishimori
point we do not have to distinguish between exponents
for M and those for Q. Thus at the Nishimori point we
have

Xnp~t 38 (18)

Thus the nonlinear susceptibility is predicted to be more
strongly divergent at the multicritical point than at the
usual spin-glass critical point.

Furthermore, from Eq. (7) we see that the partition
function for the spin glass (for n —0 and J=0) is propor-
tional to [Z"],, for n— —1 evaluated at the Nishimori
point. The relation (7) already implies the remarkable re-
lation that the n — —1 replica Nishimori point occurs at
the same temperature as the n —0 replica spin-glass tran-
sition.*® However, since we find that u, is independent
of n, we assume that our result u,=2—>5€/3 holds even
as n—1. This argument therefore predicts that u, is
equal to the thermal scaling exponent A, for the spin-
glass thermal order-disorder fixed point, in agreement
with the first order in € result'® A, =2—5¢/3. More gen-
erally, A, =p,(n =—1).

Let us make the following remark which is important
for discussing possible application of these results to real
spin glasses. It is obvious from Eq. (5) that unlike the
models with Gaussian or +J distributions,! the vast ma-
jority of models do not possess a Nishimori line (or mani-
fold). For example, consider the model, for which

P(J)=(1—p)d(J —1)+p&(J +a), (19)

where 0 <a#1. For suitable values of p and T this model
has a multicritical point of the type we have been consid-
ering but Eq. (5) is never satisfied: there is no Nishimori
manifold for this model. The fact that the multicritical
fixed point lies outside the parameter space of this model
is a familiar phenomenon: at this multicritical point this
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model differs from the coupling constants at the fixed
point by potentials which are irrelevant in the
renormalization-group sense. At the multicritical fixed
point, although not over the entire multicritical surface,
the coupling constants obey the Nishimori gauge symme-
try of Eq. (5). In other words, the potentials for models
like that of Eq. (19) which do not obey Nishimori symme-
try at the multicritical point are irrelevant. Thus the
multicritical behavior of systems which do not have a
Nishimori manifold are nevertheless asymptotically con-
trolled by that remarkable symmetry.

To conclude we may summarize our results. One can
look at the renormalization group fixed point correspond-
ing to simultaneous criticality of ferromagnetic order M
and spin-glass order Q. For simple models, this fixed
point is known!* to lie in the Nishimori manifold, and at
the corresponding field point the values of the coupling
constants and the critical point exponents 7,, and 7, are
found to obey the relations obtained by general argu-
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ments’* due to the gauge symmetry of the Nishimori
manifold. For systems for which the multicritical point
is in the Nishimori manifold it is found that the eigen-
directions correspond as expected: one lies along the
temperature axis the other in the Nishimori manifold.
The eigenvalue corresponding to the Nishimori manifold
is the larger one, so that the crossover exponent ¢ as usu-
ally defined [see Eq. (15)] is greater than unity. In addi-
tion, the scaling exponent corresponding to the Nishi-
mori manifold is related to that of the thermal spin-glass
order-disorder fixed point,'® again as expected from gen-
eral arguments.* The asymptotic behavior near the mul-
ticritical point displays Nishimori gauge symmetry even
when the bare Hamiltonian lacks this symmetry.
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