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A scaling hypothesis is set up for the magnetization m (T,H;L), susceptibility g(T,H;L), and
correlation length gl T,H;L) of a finite-sized system, with O{n) symmetry (n ~ 2) and long-range in-

teractions decaying as 1/r"+ (0&o.&2), confined to geometry L" " X ao (o. &d &2o.,d'+o. ) and
subjected to periodic boundary conditions. Finite-size effects are predicted, in the region of a first-
order phase transition (T & T, ) as well as in the region of a second-order phase transition (T= T, ),
for different regimes of the parameters H and L. To test these predictions, a detailed analytical
study is carried out in the case of the spherical model of ferromagnetism (n = ~), and all predic-
tions based on the scaling hypothesis are seen to be fully borne out. In situations where L ))g,
finite-size corrections to standard bulk values of the various physical quantities pertaining to these
models are found to vary as {j/L) +, rather than as e ~r, which is characteristic of models with
short-range interactions.

I. INTRODUCTION

In recent years considerable attention has been paid to
the study of finite-size e6'ects in systems undergoing
phase transitions. For the most part, this study has been
based on the scaling hypothesis initially put forward by
Privman and Fisher' for application in the region of
second-order phase transitions (T=T, ) and later gen-
eralized by Singh and Pathria for application to the re-
gion of first-order phase transitions (T & T, ) as well. At
the same time, exact calculations have been done that
pertain to models with O(n) symmetry (n ~ 2) confined
to geometry L "Xoo (with d& &d &d& and d'&d&,
where d & and d & are, respectively, the lower and upper
critical dimensions of the system). Not surprisingly, cal-
culations for general n have often been restricted to spe-
cial geometries' such as the "block" (d'=0) or the
"cylinder" (d'=1), while those for general d' have been
restricted to models with special symmetry ' such as the
"mean spherical model" (n = ac ). Furthermore, barring
a few exceptions, the work along these lines has been
confined almost entirely to systems with short-range
interactions —exceptions being the work of Fisher and
Privman and of Brankov and Tonchev ' on the spheri-
cal model with long-range interactions decaying as
1/r"+, with 0&o &2. While the former authors have
studied properties such as the magnetization m (T,H;L)
and susceptibility y(T, H;L) of a finite-sized system in
the presence of an external field H, the latter have con-
centrated on the "singular" part of the free energy densi-
ty f"(T,H;L) and its derivatives with respect to T and
H in the limit H~O; in each case, the geometry of the
system is restricted to that of the "block" or at best the
"cylinder". This prompted us to explore the problem of
long-range models in general geometry I." " X ao" in a

G(R, T)=MO(T)+ d (T & T, ); (2)

the quantity mo(T) appearing in the definition of z2 is,
however, spontaneous magnetization per unit Uolume of
the (bulk) system. " Arguing on the basis of the singular-
ity encountered by a d'-dimensional bulk system as
T~T, (d') =0, we are able to make definitive predictions
for the various properties of the finite-sized system in the
regime zz «z„ i.e., L «g„(T,H), where

( T,H) —( TMc /mc AH) '~

manner similar to the one adopted earlier for short-range
models. The results of that exploration are reported
here.

In Sec. II we set up scaling hypotheses for the magneti-
zation m (T,H;L), susceptibility y(T, H;L), and correla-
tion length g( T,H;L) for a system with an arbitrary in-
teraction potential u (r) whose Fourier transform has a
long-wavelength exponent o such that 0 & o. ~ 2; as is well
known, the case o. =2 pertains to models with short-
range interactions (including the nearest-neighbor one)
whereas o. & 2 pertains to models with long-range interac-
tions decaying as 1/r"+ . The system in either case is
confined to geometry L "X ac (cr &d &2o, d'&o)
and is subjected to periodic boundary conditions. For
T & T„we adopt the scaled variables

Mo(T) „mo(T)H
A (T)

where Mo(T) is the spontaneous magnetization per spin
and A (T) a system-dependent coefficient, which appear
in the standard expression for the field-free bulk correla-
tion function '
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FIG. 1. Schematic plot of magnetization I (T,H;L) against temperature T of a finite-sized system in geometry L" X ao". The
bulk phase boundary mo( T), which serves as a useful line of reference for the actual system, corresponds to a universa/ value of the
ratio z2/z&. Different regimes, in which the susceptibility y depends in a specific manner on the variables H and L, are shown (i) for a
axed T & T, as well as (ii) for T= T„ the quantities yo, y&, and y2 appearing in the sketch are given by Eqs. (13b), (18), and (26), re-
spectively, while y& denotes the bulk susceptibility pertaining to the regime in question.

is the bulk correlation length at T & T, for H )O. This
regime, we find, is governed by a special combination z of
the variables z, and z2, viz. ,

z —z zd'&(~ d') HL ~(d —d')l(~ —d') (d~ &~)—Z Z2Z] (3)

which determines the scaling functions of the various
quantities of interest almost single handedly. The com-
bination z enables us to cover essentially the whofe of the
(m, T) plane below the phase boundary of the bulk sys-
tern; see Fig. 1. As the boundary is approached from
below, we encounter the "spin-wave region, "
L =O(g„(T,H)), where ~m —mo~-L ' ' and
y-L ". For L )&g (T,H), we recover the appropri-
ate bulk result, viz. , g —H ' "', with finite-size
corrections in the variable g /L. A distinctive feature of
the long-range models discovered here is that these corre-
lations are no longer exponentially small; they vary in-
stead as (g'„/L)"+ .

Next, we explore the region of second-order phase
transition (T= T, ) in which the variables z, and z2 get
replaced by the conventional variables'

x, =C,L'~ tttr =(T T, )/T, ,
—

predictions about the quantities m, y, and g in various re-
gimes of the variables x, and x2 —especially in the ab-
sence of the field (x 2

=0), with x, of order unity or much
greater than unity, and at the bulk critical point (xi =0),
with xz of order unity or much greater than unity.

In Sec. III we report the results of a detailed, analytical
evaluation of the quantities m (T,H;L), y(T, H;L), and
g(T, H;L) for the spherical model of ferromagnetism
(n = ~), in geometry L" X ~" (o &d &2o, d'&o ),
in difFerent regimes of the parameters T, H, and I., and
compare them with the predictions made in Sec. II. This
requires a substantially di6'erent line of analysis from the
one pertaining to models with short-range interactions;
nonetheless, all the predictions based on the scaling hy-
potheses are fully borne out. In Sec. IV we examine the
special case d'=0 which, at temperatures below T„
difFers qualitatively from the case d & a. Finally, in Sec.
V, we conclude the paper with some closing remarks on
the problem under study.

II. SCALING PREDICTIONS IN THE REGIONS
OF FIRST- AND SECOND-ORDER

PHASE TRANSITIONS

x, =C,I.~'II/T, ;
(4) Case1: T &T,

here, too, the nonuniversal parameters C& and C2 pertain
to the corresponding bulk system. Once again, we make

In this region the "singular" part of the free energy
density of the system may be written in the form ' '



9240 SURJIT SINGH AND R. K. PATHRIA

and

m (T HiL)= (df /c)H)TL, =moW (zi z2) (6)

f"(T,H;L)=(T/L )W/(z„z2),

where W/(z„z2) is a universal function of the variables
z& and z2. The magnetization m and susceptibility y per
unit volume of the system are then given by

with X0 universal. We readily infer that the ratio
go/go —/I /Ta ", and is independent of L.

Equation (9a) suggests that, for a certain range of H,
the variables z, and z2 may appear in the combination
(z2z~) '

) only; it turns out that this indeed is the case and
the relevant range is governed by the condition z2 &(z„
i.e., L «g (T,H) or, in other words, (H/T, ) (&(a/L) .
We may then write

y(T, H;L)= —(8 f"/c)H )TI

=(m()L /T) Wz(z), z2), (7)

where the scaling functions 8' and 8'& are again
universal. Formulas (5)—(7) may be supplemented with
the subsidiary hypothesis

m =moM(z)

mo dM
H dz

(z =z,zf ' ~H),

with the stipulation that, for vanishing z,

(lsa)

(15b)

g(T, H;L)=LW( (z)&z2) &

where 8'& is the universal scaling function for the corre-
lation length g of the system.

Now, in the zero-field limit (z2~0), the scaling func-
tion 8' should vanish while 8'& should be such as to
reproduce the "low-temperature behavior of a d'-
dimensional bulk system, " viz. , yT 0

—T ~, where
y=(T/((T —d') for d'(cr We.may, therefore, write

W (z„z2)= W()z2z, (9a)
(z, »1, z2~0)

Wz zi, z2 = Wozi (9b)

with 8'0 and 0 universal. To determine 0, we observe
that if the coefficient A ( T), which appears in the
definition of the variable z&, varies, in the limit T~O, as
T 1, then Eqs. (7) and (9b) yield the limiting result

T—(1+qO)L d+(d —o)0
XT—+0 (10)

L a(d —d')l(o' —d') (g& & ~ )T&T (12)

Comparing (11) and (12), we infer that q = 1 and hence
8=j —i=d'/(o —d'). Equations (6), (7), and (9) now
give

m =NOH,

y = W (m()L "/T)z

(13a)

To reproduce the desired T dependence, we obviously re-
quire qO= j' —1, whence

~—y p d+(d —o. )(y —1)/qST~0

At this point we recall a general result derived on the
basis of considerations on the "fluctuations in the order
parameter of the system, "with d &

=o, namely, '

M(z) = Woz (z~0) (16)

so that Eqs. (9) are correctly reproduced. At the other
extreme, where z ))1, i.e., z2 ))z

1

" " ' (though z2 is
still much less than zi ), we require the scaling function
M(z) to reproduce the "low-temperature behavior of the
d'-dimensional bulk system with H )0," viz. ,
pT 0(H &0)—TH ' " ' . This, in turn, requires
that

z(dM/dz)=W z ' "' (z»1)
with the result that

( m g /TM2 )d'/oTH —(2a —d'')laL —(d —d')
Pl 0 0

(17)

where

X.[(T/T, ))'(a/L)&«(H/T, ) «(a/L) ], (18)

g=(7(d —d')/(o —cI')) d ) cr . (19)

(20)

For z2&&z„we expect to recover the appropriate
d-dimensional bulk result, viz. , y T o (H & 0)
—TH '2 "'l . The function Wz of Eq. (7) should then
behave as

W (z, ,z, )=W z, " z, " "" (z, »z, »1),
with 8'~ universal. It follows that

(21)

o 8'~
W (z z)=1+ z, /z,' ' (z»z»1)

(22)

In this situation the system finds itself very close to the
phase boundary of the bulk system (see Fig. 1), with

(m —mo) ——(mop/TM02)d aTH

(
2 /T)(M2 /g )d'/(a d')L o(d —d')l(a d')— —
0 0

Equation (22) suggests that the bulk limit for T (T, is
governed by the combination

(L ))a, H —+0), (13b)
Zg Z2Z $

z dl(d a) (m
—H/T—)( g /M2 )dl(d —a)

P20 0 (23)

where a denotes a microscopic length, such as the lattice
constant, of the system. By similar argument, we obtain
for the correlation length (in the limit H ~0)

0 0 Z1 0
1/(a d') (M2 /g )I/(o —d—')L (d d )l(o —d')— '

7

and that expressions (21) and (22) apparently hold only
when zi) «1, i.e., (H/T, )(T/T, )

' '« l. It is now
straightforward to see that, in this limit,

(m g /TM2 )d/a TH
—(2a —d)/a (24)

(14) and
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(m —mo)-(moA/TMz) ~~TH' (25)

Of course, for a finite-sized system, Eqs. (24) and (25) are
expected to be modified by corrections which, in the case
of long-range interactions, are found to vary as an alge-
braic power of the variable (g /L).

Finally, in the spin-wave region, where z2/zi =0(1),
i.e., L =O(g„(T,H)) or (HIT, )=O((a/L) ), we find
that

Y~ (o,xz ) =M,x zi

Y,(O, x, ) =S,x,-""

with M, and S, universal. It now follows that

m -M C' +" (H/T )'

g, =S,C ' (H/T, )

(34a)

(34b)

(35a)

(35b)

and

y- T(mo A /TM ) L

)m —mo~/mo —A/MoL

(26)

(27)

For susceptibility, one readily obtains

y, =(M, /5)(C2 + "i IT, )(H/T, ) (36)

regardless of whether we approach this region from
below [via Eqs. (18) and (20)] or from above [via Eqs. (24)
and (25)]—with H becoming of order (TMolmoAL ).
This completes our predictions in the region below T, .

Finally, in the "core region, " where both ~x, ~
and x2 are

of order unity, we expect m -I. ~ -HI.~, y-l. ~

and g-L. This completes our predictions in the region
close to T, .

Case 2: T=T,

m =CzL ~ 'Y (xi,xz) (29)

y=(Cz /T, )L r Y&(xi,x2 ), (30)

where the scaling functions Y and Y& are also universal.
Once again, we supplement formulas (28)—(30) with the
subsidiary hypothesis'

The scaling predictions in this region are formally simi-
lar to the ones for systems with short-range interactions.
However, since comparison with actual calculations is in-
tended, we need to quote the main results here.

The scaling hypothesis for f"' may now be written in
terms of the variables xi and xz defined in Eqs. (4), that
1S,

f"= ( T, /L ) Yf(x i,x 2 ),
where Yf(x, ,x2) is a universal function of the arguments
x, and+~. It follows that

III. VERIFICATION OF SCALING PREDICTIONS
IN THE CASK OF THE SPHERICAL MODEL

OF FERROMAGNETISM

For comparison with scaling predictions we have car-
ried out a detailed analytical study of a spherical-model
system with long-range interactions decaying as 1/r"
(0 & a & 2), confined to geometry L X oo"
(ir & d & 2o, d' & o ) and subjected to periodic boundary
conditions. Since the derivation of the various results in
this case differs substantially from the one pertaining to
short-range interactions, we present son.e of the essential
steps in Appendixes A and B. Our final results are sum-
marized below.

' 1/2

Mii( T)- JK=-
T

Case 1: T (T,
In view of the fact that the quantities Mo(T) and A ( T)

of the corresponding bulk system are of the form

g=LY&(xi, x2), (31)
(37)

where Y& is the scaling function for g'.

Now, in the absence of the field and with t )0 and
I.~~, we expect to recover the standard bulk behavior,
viz. , y-t r and g t'. We-, therefore, require that

our scaled variables z, and z2 must be such that, see Eqs.
(1),

Yr(xi, o) =6+x i
&

Y,( „o)=s

go=S+ C, t (t &0, L~~) .

with 6+ and S+ universal. It follows that

go= 6+ (C2 IC AT, )t

(32a)

(32b)

(33a)

(33b)

zi -(K —K, )(L /a)"

z2 —(1—K, /K)' (L/a)"(H/T) .

For consistency with the case o.=2, we adopt

z, =2ix i i
=2(K K, )(L /a )"—

z2= ~x, ~' x2=(1 K, /K)' (L/a)"(H—IT),

(38)

(39a)

(39b)

On the other hand, in the presence of the field and with
t =0 and L, ~00, we expect to recover the behavior
m, -H'~ and g, -H ~ which, in turn, requires that

where Xi and xz are defined in Eqs. (Al 1). The con-
straint equation (A12) then takes the form
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z 2 g d 0' 2cT cj—1 z1= I I4o. 2 2o. 1 2o.—1 d/2
1

CT 0
2r(d/2) —om. (40)

where the scaled length parameter y and the function A are defined by Eqs. (AS) and (A10), respectively. Equation
(40) determines y as a function of zi and z~. The scaling functions W and Wz of Eqs. (6) and (7) turn out to be

W (z„zz)=

Wr(zi, z~) =

z2

z, (2y)

88'
7

Bz2 z

(41a)

(41b)

1

2g

while the scaling function W& of Eq. (8) is given by
1/o.

W(z ~ )-=&=' ~
1& 2 (42)

see Eq. (A4), which prompts a simple relationship between the correlation length g and the parameters a and P.
For most of the region below the phase boundary of the bulk system (see Fig. 1), the parameter y is much less than

unity. The function A' may then be approximated by the asymptotic expression (B4) which holds for d & o; the con-
straint equation then becomes

(W —1)z, = —I o.2 'm"'"I y
"' (d'&o )

2
(43)

d(4~)"'"r
2

Eliminating y between Eqs. (41a) and (43), we obtain
I'

T

(W' —1)+—r I.
0 0 0

(o —d') /0

=0, (44)

W = —(4m )"'"r
0

0 d

(45)
this takes care of Eqs. (13a) and (13b) for the quantities m
and yo in the limit of zero field. The corresponding result
for $0, see Eq. (14), is also verified, with

x,=w,". (46)

For z )) 1 (with zz still much less than z, and hence y still
much less than unity), the scaling function
W (z)[=M(z)] conforms to prediction (17), with the
universal number 8' given by

8rd'r2~ —d
0' 0

o.(4m. ) i I"
2

(47)

It is obvious that predictions (18) and (20) are also
verified. In passing, we note that, in the case of "block"
geometry (d'~0), our results for m and yo in this regime
turn out to be independent of the interaction parameter
0'.

where z =z2z", ' '. Thus, for z2«z, the scaling
function 8' is indeed a function of a single variable z
which agrees with prediction (15), with y=o/(o. —d ).
It may be mentioned here that, for the special cases d'=0
and 1, Eq. (44) reduces precisely to the corresponding
equations obtained by Fisher and Privman for the block
and cylinder geometries, respectively.

For z « 1, 8' varies linearly with z which agrees with
prediction (16), with the universal number Wo given by

o. /( cr —d')

We now consider the region z2»z1, and hence y»1,
which lies aboue the phase boundary of the (bulk) system.
The function A' is now small in value, so in the zeroth
approximation it may be dropped altogether. Equation
(40) then leads to a scaling function W (zi, zz ) in confor-
mity with prediction (22), with

W~ =I —I o (4n ) I'd 20 d d/2 d
a 0 2

which may be compared with (47). It follows that, in this
limit, the quantities y and ( m —m 0 ) would conform to
Eqs. (24) and (25), respectively. At this point we observe
that, since 8' in this regime is very close to unity,
y =—,'(zz/zi )' . Accordingly, the correlation length g is
given by

(4g)

I z,=I.
2P Z2

1/2 1/o

(49)

which obviously holds in the bulk limit. To study finite-
size effects in this regime, we replace%' by the asymp-
totic approximation (812) and obtain the following re-
sults:

m (T H;L) m(T H, ~)= —omoCd (T—H;L), (50a)

g(T, H;L) g(T, H; ~ )= g„Cd —(T,H;L), —
where

(50c)

g(T, H;L) y(T, H; ~ )=2o(mo/H)Cd —(T,H;L), (50b)
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Cd (T,H;L) = 1, 1

4(4~)d"
q(d )

d +47
2

2 0 (d —o )/o.
2~

8

d+o

(51)

here, g denotes the bulk correlation length, given by Eq.
(49), while

z =z z d/(d —a) —(m H/7 )[2(g Q )]
—d/(d —n)

(52)

It will be noted that the finite-size effects in this case vary
as an algebraic power of the variable (g„/L), which is in

sharp contrast to the case of short-range interactions
where these effects are known to be exponentially small.

Finally, in the very close vicinity of the phase bound-
ary mo( T), y is of order unity which means that, while z,
and z2 are both much larger than 1, the ratio
zi /z, =0(1). Equation (40) then tells us that

~
W —1

~
-z, ', with the result that

l
m —m, I /m, -(a /L)" /(K —K, ),

which agrees with prediction (27), while

y- (L /a) /Ja "(K —K, ),

which agrees with prediction (26). The correlation length
in this region is clearly -L.

Case 2: T=T,
In the region of second-order phase transition, the

variables x& and x2 reduce to the conventional variables
x, and xz of Eqs. (4},with

~ a
—(d —cr) C (~ a d+cr

)
—1/2 (53)

Our results for m and g now conform to the scaling
forms (29) and (30), with

X2
Y (x„x2)=, Yr(x„xz)=

2(2y }

BY

BX2 x)

where y (x „x2) is determined by the constraint equation
(A 12).

In the absence of the field (x2 =0) and for t &0 (which
makes x, »1), the scaling function Yr(x &, 0) agrees with
prediction (32a), with

1 d —a. 2o. —d
2 0' 0

o/(d —o )

o(4n. )"/ I.
2

(55)

&X0

+0

20 d 2 cTrr —rd
0'

o. , 1.+.
q(d*) &

where

g( T (}.~ ) at —1/(d —0 )

At the same time, the scaling function Y&(x &, 0)( = 1/2y) agrees with prediction (32b), with

S+ =(26+ )'/, v=y/a. ,

while the corresponding finite-size effect is given by

1
No/ko =—(5Xo/&o) .

Equation (33a) then gives the bulk susceptibility yo, while the finite-size effect in this case turns out to be
d +o

d d +or 2()'2' 2 L
(56)

(57)

(58)

(59)

1 4r d cT r 20 d
2 CT 0

On the other hand, if the system is at the bulk critical temperature (x, =0) and H &0 (which makes xz »1), then
the scaling functions Y (O, xz ) and Y&(O,x2 ) agree with predictions (34), with

o/(d+o)
~(4~)""r —"

,
5="+ (60)

2 0

and

S, =(2M, )'/, v/b, =2/(d +o ) . (61)

~3
4(d +~) d+~

q(d') q

d +CT

2
r —rd

2

5g, /g, =—(5m, /m, ),1

Equations (35) and (36) then give the bulk results for m„g„and y„while the finite-size effects turn out to be

6m, 2g,
Pl L

(62)

(63)
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and

5g, /y, = —[(d + 3cr ) /(d —o ) ](5m, /m, ),
W exp[o2 'm. ~ I (o/2)z, (W —I)]-z&/z, .

(64) For W «1, we obtain

(76)

where

g, =g( T„H; Oc ) —a (H /T ) (65)

z2

zj
exp[o 2 '~ I (o /2)zi ], (77)

Finally, in the core region, where ~x, ~
and x2 are of or-

der unity, i.e.,

which tallies with the zero-field expression (72) for Wr.
For 8' = 1, on the other hand, we get

Irl =O((a/L)' ' '),
(H/T, ) =O((a/L)"+ '"), (66)

ln(z, /z2 )+const
8 =1-

o 2 rr ~ I (o /2)z i
(78a)

g-a T, '(L/a)

m -a (H/T, )(L/a) -a "(a/L)"

while

(67)

(68)

the parameter y is also of order unity, with the result that

Alp

1

o2 +'m. i I (o /2)(K K, )—

8'~ =-- 1

o2 rr r I (cr/2)z, z2

so that

(78b)

(69)

Expressions (67)—(69) are indeed of the form expected on
the basis of the scaling hypotheses of Sec. II.

aX
L

1/2
X,

ln —1—
H K

a
IV. SPECIAL CASK d'=a

The results of Sec. III, especially the ones for T (T„
make it clear that the case d'=o. merits a separate inves-
tigation. In this case, the dominant behavior of the func-
tion A', for y «1, is given by Eq. (B6), rather than by
(B4). The constraint equation (40) then assumes the form

( W —1)zi = —[In(1/y)+const]/2 'a ~ I (cr/2),

(70)

while

aX
L

Pl 0 a
o2 +'rr ~ I (cr/2)(K —K, )H

+const

(79)

(80)

y(z„O)-exp[ —2 'rr ~ I (o/2)z, ] (z, )). I),
whereby

(71)

rather than (43). Now, in the absence of the field (z2=0
and hence W =0), we get Equations (79) and (80) may be compared with predic-

tions (18) and (20), respectively.
In all other cases, where the parameter y is either of or-

der unity or much greater than unity, no qualitative
differences appear between geometries d' & o. and d'=o.

Wz(z„O)- exp[o 2 'm I (o /2)z, ]
z]

(72)
V. CONCLUDING REMARKS

and hence

1 LJ Ja" a

Xexp[cr2 m I (cr/2)(K K, )(L/a)" ]—;
at the same time,

go-L exp[2 m
~ I (o/2)(K —K, )(L/a)" ] .

(73)

(74)

(75)

with the result that

In the presence of the field, so long as z2 &&z&, y con-
tinues to be much smaller than unity. Equation (70) may
then be written as

2 'vr ~ I (cr/2)zi(8' —1)=—In(zz/zi W )+const,2 1

In this investigation we have examined the conse-
quences of the finite-size scaling hypothesis for a magnet-
ic system, with 0 (n) symmetry (n )2) and long-range in-
teractions decaying as 1/r"+ (0&o (2), confined to
geometry L " X ~" (o &d (2cr, d'(cr ) and subjected
to periodic boundary conditions, in the presence of an
external field H. Our attention has mostly been devoted
to the study of magnetization m ( T,H ;L ), susceptibility.
y(T, H;L), and correlation length g(T, H;L) of the sys-
tem in the region of both first-order ( T & T, ) and
second-order ( T= T, ) phase transitions. The predictions
following from the scaling hypothesis are then verified in
the case of a finite-sized spherical model -(n = ~ ) by car-
rying out a detailed analysis of the quantities m, y, and g
of the system in different regimes of T, H, and L.

As in the case of models with short-range interactions,
the situation in the region of first-order phase transition
with L «g„(T,H) depends crucially on whether d' & cr
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or d'=o. , while in the former case quantities such as g
and g approach their standard bulk behavior through
power laws in L, in the latter case they do so exponential-
ly instead. On the other hand, in situations where
L ))g ( T,H), whether at T & T, or T=T„ finite-size
corrections to standard bulk values of the various quanti-
ties of interest depend crucially on whether the interac-
tions operating in the system are short-range (o =2) or
long-range (o & 2). While in the former case these
corrections are known to vary essentially as
exp[ L/g—(T,H)], in the latter case they are found to
vary as [g (T,H)/L]"+ instead; this is clearly a
reAection of the manner in which the bulk correlation
function G(R, T,H) of the system decays with R for
R ))g. Though derived here for the special case of the
spherical model (n = 0() ) with long-range interactions de-

caying as I/r"+ (0&o &2), this result may as well hold
for all O(n) models with n )2.
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APPENDIX A: CONSTRAINT EQUATION FOR THE SPHERICAL MODEI

In standard notation, ' the constraint equation for an X-spin spherical model under periodic boundary conditions is
given by

1 12K(1 —M )=—g (A 1)

where IC =J/T, Jbeing the interaction parameter, M is the magnetization per spin, while P is the (appropriately shifted
and scaled) spherical field; the qualitative nature of the interactions operating in the system enters through the function
Q(k), while the vector sum runs over the eigenvalues

27Tn
(n =0, 1, . . . , N —1;j=1, . . . , d; gNJ=N) .aX (A2)

The summation over I n Ican b. e facilitated with the help of the Poisson summation formula' which, in view of the
periodic character of the function Q(k), gives

(1//2}N ) cos(2n.q n)2E(l —M )=- dn.—(1/2))v) —() /2)Nd P+ Q(k )
J

In the region of phase transition ((t « 1), the function Q(k) may be replaced by its long-wavelength approximation
(ka), where 0 & o & 2. The constraint equation then takes the form

2I((l —M )=
d $ J . f ~ cos(y.ka ) d(ka) (yJ=N~qJ; j =1, . . . , d) .

(2m)" {q )= „—~ —~ P+(ka)
(A4)

The only term that contributes in the bulk limit is the one with y =0; that leads to the standard result

2'(1 M')=2', r— r — ~2"-'~'"r — y(d- " (~ &d &2~) .
0 0 2

(AS)

With M =H/2JQ, Eq. (AS) determines the singular behavior of the bulk system in all essential details.
To study finite-size effects we need to include terms with y%0. To put these terms in a tractable form we transform

the integral over dk into its polar form by using the volume element'

dk=k" '(sing)) . (singd 2)'dk dg) . . dgd 2dp (A6)

and taking polar axis in a direction parallel to y. The angular integrations are then readily carried out, and we are left
with the expression

(2 )d/2 (yl/o )(d —2)/2 I()
q

(A7)

where J (z) is the ordinary Bessel function, while y= ~y~ )0; it is not difficult to see that, for a system in geometry
L" X ~, it is only the components q„.. . , q„, of the vector q that contribute to the sum in (A7).
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At this point it seems imperative to introduce the scaled length parameter' y, de6ned by

y =
—,'(L/a)P' (L =N a;j. =1, . . . , d*) .

Expression (A7) then takes the form

y(d —v)/0

2 7T
d/2 ~

(A8)

(A9)

where

„x"+'J (2yqx)~ (vld*;y)= g' .J dx .
q(d )~d ~

~
(yq) o 1+x

Combining (A5) and (A9), and expressing parameters T, H, and L in terms of the scaled variables

x =(K K)(L—/a) x =(H/TK' )(L/a)'"

we finally obtain

(A10)

(A 1 1)

X 2X)+ 4o+ 1 2o
CT

~20'~d /2 g
I

2
2O'A ~ (A12)

It seems important to emphasize here that the constraint equation (A12) applies to o =2 as well as o (2. In the
former case, the radial integral in (A10) is precisely equal to the modified Bessel function' K (2yq) and we recover the
constraint equation pertaining to short-range interactions. We may also remark that the only other case where the in-
tegral in (A10) can be expressed in terms of standard mathematical functions is the one with o = 1; however, the result-
ing expression, which involves Struve functions as well as Bessel functions, is not particularly illuminating.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE FUNCTION JV (vld ~y)

For analyzing finite-size effects we need to know the behavior of the function A (vld;y) for y~0 and for y —+ oo;
not surprisingly, these two limits require quite difterent procedures of analysis.

Case1: y —+0

To obtain the dominant behavior in this limit, we replace the summation over q(d*) in Eq. (A10) by an integration
over d q; we thus get

x +'J (2yqx)

I (d*/2)y o 0 1+x
To avoid any problems of convergence, we make use of the representation

(Bl)

1

q
2v+2 d

1
e i"u +' du [(2v+2) & d*]

I (2v+2 —d*) (82)

and write (Bl) in the form

A (vld*;y)=, , —J f f e ~"u +' " q'+'du dq dx .
I (d*/2)1 (2v+2 —d*)y 1+x (83)

Integrations may now be performed over dq, du, and dx —in that order; no problems of convergence are encountered
and we obtain, ' for v=(d —2)/2,

(84)

where d'=d —d* and 0&d' & o..
For d'~0, which corresponds to the case of block

geometry, we obtain the simple result 2
' I (o./2)

d 2 d.y ) d/2y —d .
2

for d' ~o., on the other hand,
X ln

1 +const (86)
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Case 2: y~ ao

In this case we employ the customary representation

(v;ural)= w +'J (w)e "" e ""'" 'dw

w +'J w e "" 1 —ups +ugw
0

f —u(1+x~)d
1+x

and write the integral appearing in (A10) in the form

I (v yq)= f e " f x +'J, (2yqx)
0 . 0

Xe " dx du

e " w +'J w
(2yq) +

(87) +O(i) )]dw . (89)

The first and third integrals in (89) turn out to be'

2 +'I (v+ —,')ural

1/2( 1+ 2 2)v+3/2

2 +'I (v+ —,
' )ui)

(1+u rI )'in 2 z ~+s/2 ~

respectively; to order g, they cancel one another and
leave a remaind|„r of order g . The second integral turns
out to be

X e "'" dw du,

(88)

I (2v+2+o )ural u'g

( 1+ 2 2)(v+2+ cr)/2 ~+ i+~
( 1+ 2 2)1/2

J

where P&(z) is the associated Legendre function of the
first kind; to order g, we get '

where g=(2yq) . We shall evaluate this integral in the
limit g~O. For this we follow a procedure due to Mon-
troll and West, ' which suggests writing the integral over
dw in the form

2v+2+ o

(810)

Substituting (810) into (88) and integrating over du, we get

( )
2v+2+o 4~ 2 0

2
)
—(v+2+a) (811)

Equation (10) then gives, for v=(d —2)/2,

2 ~ d+0'0'I 2 0
2 y

—(d+cr)1
8+0'

q(d )

(812)

It will be noted that the foregoing expression holds only for o. (2, in which case it leads to finite-size corrections
-L '"+ '. For o =2, the integral I (v;yq) is precisely equal to the modified Bessel function K„(2yq), which leads to
exponentially small corrections instead.
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