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Classification of interfacial wetting behavior in binary liquid mixtures
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On the basis of both the Blume-Emery-Gri5ths model and the Percus-Yevick theory we com-
pletely classify the wetting behavior of simple binary liquid mixtures at their liquid-vapor interface.
The criteria with respect to the atomic interactions are whether a particular binary liquid mixture
fulfills either the suScient conditions for the absence of a wetting transition, or the necessary condi-
tions for critical wetting, or the necessary conditions either for being wet already at low tempera-
tures or for undergoing a first-order wetting transition upon approaching the critical end point
along the triple line. The Percus-Yevick theory enables us to study systematically the dependence
of interfacial wetting on the atomic radii of those two types of particles forming the binary liquid
mixture. Also as functions of these radii, we determine all those boundaries in the parameter space
of the atomic interactions within which the Percus-Yevick theory predicts such bulk phase dia-

grams as expected for simple binary liquid mixtures.
MS code no. BX3803 1988 PACS number(s): 68.45.6d, 68.10.—m, 82.65.Dp, 64.10.+h

I. INTRODUCTION

Binary liquid mixtures are formed by two sorts of mol-
ecules which we call 3 and B particles. In the gas phase
at high temperatures these particles mix. Upon lowering
ihe temperature, one encounters a phase separation into a
gas phase of low density and into a fluid phase of higher
density. In both phases the two sorts of molecules
remain mixed. A further decrease of temperature finally
leads to a phase separation of the fluid into an A-rich-
and into a B-rich-liquid phase which can both still coexist
with the gas phase.

Figure 1 displays the schematic drawing of the corre-
sponding bulk phase diagram in the space of temperature
T and the two chemical potentials pz and pz of the two
sorts of particles. S& and S2 are sheets of first-order
phase transitions separating the gas phase from the fluid
phase and the A-rich-liquid phase from the B-rich-liquid
phase, respectively. S& and S2 are bounded- by lines I.

&

and I.2, respectively, of second-order phase transitions.
Si and S2 intersect at the triple line (TL) of the three-
phase coexistence. The intersection between the TL and
I-2 forms a critical end point T«p.

In general, first-order phase transitions, as they occur,
for example, at S& and S2 in the case of binary liquid
mixtures, may give rise to wetting phenomena. Consider,
e.g. , the interface between the A-rich liquid and the wall
of the container enclosing the fluid. Upon approaching
S2 along p, from the A-rich side by decreasing pz —

p&
(see Fig. 1), a thin layer of a quasi-8-rich-liquid phase
may form at the wall —A-rich-liquid interface. If its
thickness diverges by approaching Sz one has comp/ete
wetting and the interface is wet as soon as S2 is reached

where the B-rich-liquid phase is indeed thermodynami-
cally stable. If a different point of S2, say at lower tem-
perature, is reached along a diff'erent path pb (see Fig. 1),
this thickness may not grow and the wall —3-rich-liquid
interface remains nonwet on the A-rich side of Sz. Con-
sequently, the 2-rich side of S2 can be divided into a wet
and a nonwet region which are separated from each other
by a line L~ (see Fig. 1) such that one encounters a ioet
ting transition at coexistence, i.e., on the 3-rich side of
S2, from nonwet to wet by crossing this line along the
path p, (see Fig. 1). If at that wetting transition the
thickness of the wetting layer grows continuously to
infinity, it is called critical wetting, whereas in the case of
a discontinuous jump to infinity it is called first order wet-
ting. This discontinuity extends into the one-phase re-
gion of the wetting phase by forming a prewetting line. A
more complete account of the various wetting phenome-
na is given in Ref. 1, for earlier reviews see Refs. 2 —7.
An excellent introduction to this subject is given in Ref.
8.

Similarly, one can study the complementary case of the
wall —B-rich-liquid interface upon approaching the B-rich
side of S2 or the wall-vapor interface upon approaching
S, from the vapor side. Thus, binary liquid mixtures
ofFer the opportunities to study the wetting behavior at a
wall for difFerent fluid phases of one and the same physi-
cal system and to follow the nature of wetting transitions
by varying chemical potentials (e.g., along the line Lu, in
Fig. 1). The general features of these wetting phenomena
of binary liquid mixtures at a wall have been discussed in
Ref. 9.

Both in theory and experiment, the presence of the
wall complicates a precise determination and control of
the aforementioned interfacial structures. First, these
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FIG. 1. Schematic bulk phase diagram of a simple binary
liquid mixture in the space of temperature T and the chemical
potentials p& and p& of the two sorts of molecules exhibiting
the vapor phase and the A-rich- and B-rich-liquid phases which
are separated by sheets S& and S2 of first-order phase transi-
tions. Here the solid phase is omitted (see Fig. 2). L& and L2
are lines of second-order phase transitions, TL represents the
triple line and T„~ is the critical end point. L~ indicates a line
of wetting transitions at the container walls, which for reasons
of clarity is not continued towards TL. The meaning of the
paths p„pb, and p, is explained in the main text. The path p&
runs on S& along the A-rich side of TL, whereas p2 runs on S&

along the B-rich side of TL. For reasons of clarity p &
and pz are

taken slightly off TL. T~ indicates an interfacial wetting transi-
tion on TL along either p& or p2. If this wetting transition is
first order, a prewetting line is attached tangentially to TL at
T~ lying on the sheet S& ~ Similarly, a prewetting sheet may be
attached to L~. These prewetting singularities are omitted here
for reasons of clarity. The interested reader will find them in
Fig. 3 of Ref. 9.

wetting phenomena depend not only on the atomic in-
teractions between the components of the binary liquid
mixture, but also on two substrate potentials acting on
the A and 8 particles, respectively. This leads to a sub-
stantial enlargement of the relevant parameter space and
impedes a detailed comparison between model calcula-
tions and experimental data. Second, close to the wall
the substrate potentials lead to such a high local pressure
(pressure might be associated with p „+pz ) that one ob-
serves density oscillations (for a list of corresponding
references see Sec. III 8 in Ref. 1). These density oscilla-
tions signal the formation of a few solidlike layers at the
wall. Thus, any realistic calculation should allow for the
possibility of solidification —even if one avoids the vicini-
ty of the bulk solid phase (see Fig. 2). However, such
theories have only recently started to emerge for simple
one-component systems (see Ref. 10 and Sec. VIII A in
Ref. 1 for further references). Third, strictly speaking,
the wall-liquid interface represents a nonequilibrium situ-
ation because the substrate atoms tend to desolve in the
liquid. This changes the substrate and it leads to a con-
tamination of the liquid just at the interface of interest.

solid

(c)

FIG. 2. Schematic bulk phase diagrams of binary liquid mix-
tures including the solid phase. We use the same notation as in
Fig. 1. The presence of the solid phase leads to the melting
sheet S3 which limits the extension of sheet S2. As a conse-
quence, one finds two additional triple lines: at TL' the A-rich
liquid, B-rich liquid, and the solid coexist and along TL" the
liquid, solid, and gas phases coexist. The intersection of TL
and Lz gives another critical end point T,',„. The intersection of
TL and TL' leads to a four-phase coexistence at T4. (b)
represents cuts through the phase diagram (a) at various con-
stant temperatures T. The phase diagram in (c) corresponds to
a binary liquid mixture whose sorts of particles differ only
slightly so that T„~ is so low that it falls below TL". As a
consequence the phase separation into two liquid phases, i.e.,
S2, is wiped out. In the limit of identical sorts of particles L&
and TL" reduce to straight lines becoming independent of
p& —

p& and corresponding to the critical point and the triple
point, respectively, in a simple one-component system. Wavy
boundaries indicate that the corresponding sheets extend
beyond them. For reasons of clarity we consider only a single
solid phase.

Recent experiments for wetting of a wall by binary
liquid mixtures have been performed by Pohl and Gold-
burg, " Beysens and Esteve, ' Sigl and Fenzl, ' and by
Franck and co-workers. ' ' For a discussion of these

- experiments and further references, see Sec. V E in Ref. 1.
There are only a few model calculations for these kinds of
wetting phenomena. Most of them deal with short-range
atomic interactions, ' which are inappropriate for
Quid systems with van der Waals types of interactions.
For a discussion of the effect of long-range forces for
these wetting transitions see Ref. 9 and Sec. IV C in Ref.
1.

In view of the aforementioned difficulties induced by
the presence of a hard wall, it is a particular advantage
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FIG. 3. (a) Interfacial wetting of the vapor —3-rich-liquid in-

terface by the B-rich liquid along the path p& given in Fig. 1. (b)
Interfacial wetting of the vapor —B-rich-liquid interface by the
A-rich liquid along the path p2 given in Fig. 1. The dashed
lines indicate that, as in a grand canonical ensemble, these sys-
tems are connected to a reservoir of A and B particles. Thus
the spatial location of the v

~
A and of the v ~8 interface, respec-

tively, is not fixed. It should be emphasized that, in contrast to
many experiments, U denotes the equilibrium vapor phase and
not air. The wetted liquid phase is denoted by a, the wetting
liquid phase is called p, and the vapor phase is named y. Along
the path p, the a phase is A rich and the P phase is B rich,
whereas along the path pz the a phase is 8 rich and the p phase
is A rich.

that binary liquid mixtures offer the opportunity to study
wetting phenomena which involve fluid phases only, i.e.,
both coexisting bulk phases, which form the interface to
be wetted, and the wetting phase itself are fluids. Such
wetting phenomena require the coexistence of three fluid
phases in the bulk phase diagram, as it is the case along
the triple line in Fig. 1. The corresponding spatial struc-
tures are displayed in Fig. 3 for a grand canonical ensem-
ble in the absence of gravity. (A discussion of canonical
ensembles in the presence of gravity will be given at the
end of this introduction. ) Although the wetting phenom-
ena depicted in Fig. 3 are conceptually very similar to the
wetting of a wall, there are distinct differences.

First, the wetting layer is not formed at a geometrically
prescribed boundary but at an intrinsic interface, which
represents a thermodynamically stable configuration of
its own. This gives rise to the notation of interfacial Ivet

ting.
Second, due to the wetting transition the vapor-fluid

interface splits into another vapor-fluid interface and into
the liquid-liquid interface [v~ A —+v~8~ A in Fig. 3(a)],
which both exhibit capillary waves. (For comparison the
wetting of a wall involves only one tluctuating interface. )

Indeed, the location of a first-order wetting transition and
its prewetting line are affected by these additional capil-

lary waves. Since fluid mixtures are governed by long-
range van der Waals forces, continuous wetting transi-
tions, however, are unaffected by capillary waves. This
allows us to treat these interfacial wetting phenomena
within mean-field theory (MFT) (see Ref. 21 and Sec.
IV C in Ref. 1).

Third, the interfacial wetting phenomena only depend
on the interactions among the 3 particles and among the
B particles themselves and on the interaction between the
3 and B particles. Thus, interfacial wetting is character-
ized by a substantially smaller parameter space than wet-
ting of a wall by a binary liquid mixture, where twe addi-
tional substrate potentials are relevant. As a conse-
quence, interfacial wetting depends only on those interac-
tions, which determine simultaneously the bulk proper-
ties of binary liquid mixtures. Therefore, one might hope
that certain features of interfacia1 wetting phenomena are
fixed by the bulk properties of the participating phases.
Since bulk properties are more easily accessible than sur-
face properties, this would represent an important fact.

First, in experiments there is practically an unlimited
number of different binary liquid mixtures. Although
there are already numerous experimental studies of inter-
facial wetting (for a discussion of these experiments,
see Sec. V D in Ref. 1), they still explore only a very small
subset of possible binary liquid mixtures. In order to pro-
vide some guidance for a systematic further exploration
we classify the possible interfacial wetting behavior of
binary liquid mixtures on the basis of their bulk proper-
ties. In particular, it would be very interesting to find a
system undergoing critical interfacial wetting. Up to now
only first-order interfacial wetting transitions have been
reported, ' ' ' ' ' but without finding the corre-
sponding prewetting line, which is supposed to be associ-
ated with a first-order wetting transition. It should be
noted that it was the discovery of an interfacial wetting
transition by Moldover and Cahn, which triggered
many of the following experimental and theoretical stud-
ies of wetting in general; but this particular interfacial
wetting transition was induced by adding a third com-
ponent to a binary liquid mixture and thus occurred, in
fact, in a ternary mixture (see Ref. 35). Moreover, one
has to keep in mind that in most of the experiments men-
tioned above, the vapor has been air and not the equilibri-
um vapor of the binary liquid mixture. Thus, one must
be rather cautious by later comparing these experimental
data with the case of a pure binary liquid mixture, which
is the subject of this paper.

As in the case of the experiments only for a few partic-
ular binary liquid mixtures, interfacial wetting has been
studied theoretically by seriously taking into account the
long-range character of the A-A, A-B, and B-B interac-
tions. In these studies both first-order and critical
wetting have been found in agreement with general ana-
lytic arguments. In all these calculations only the excep-
tional case of those binary liquid mixtures has been con-
sidered, the components of which have equal radii.
(There is one study of interfacial wetting with diFerent ra-
dii. However, these authors use a square gradient ap-
proximation to the free-energy functional, which is inap-
propriate for systems with van der Waals interactions. )
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In this paper we present a systematic study of the
influence of different atomic radii on interfacial wetting.
This allows us to find general trends for the wetting tran-
sition as function of the ratio of the two radii. Since
these radii are known rather accurately this presents
again some guidance for experimental studies of interfa-
cial wetting. Furthermore, it provides a firm ground for
future, more detailed, numerical studies of specific model
systems. Here we refrain form such specific calculations
in favor of focusing on those properties of interfacial wet-
ting, which can be analyzed for all binary liquid mixtures
exhibiting a simple bulk phase diagram.

In the present study all explicit calculations for interfa-
cial profiles have been performed for grand canonical en-
sembles, which correspond to Figs. 1-3. Before we turn
to these calculations in the following sections let us com-
ment briefly on how these theoretical results are related
to experimental data, which normally stem from closed
systems under the influence of gravity.

These systems represent canonical ensembles in which
the number of A and B particles, Xz and Nz, the volume
V, and temperature T are fixed. The overall densities
p„=N& /V and pii =Xiii /V are chosen such that the sys-
tem is at three-phase coexistence whereby the relative
volumina of these phases within V depend on this choice.
Upon a change of temperature, these relative volumina
are changed but the system remains at three-phase coex-
istence (unless one phase disappears due to a choice of p „
and p~ which has not been sufficiently adapted). The
bulk values of the densities in the coexisting phases are
those which one obtains in a grand canonical ensemble at
the triple line in Fig. 1 for that given temperature. Con-
sider now the situation in Fig. 3(a) in which the 8-rich
liquid wets the vapor —A-rich-liquid interface along the
path p, in the grand canonical ensemble. Furthermore,
suppose now that the mass density of the A-rich liquid is
lower than that of the B-rich liquid. In the closed system
and below Tii, this leads to the configuration in Fig. 4(a).
Above Tii, the configuration looks like that in Fig. 4(b).
Both figures correspond to experimental findings. To the
best of our knowledge there are no theoretical calcula-
tions which prove that these configurations represent the
true thermodynamical equilibrium. Among the ques-
tions, which are still unresolved and are not the topic of
this paper, are the following: (i) Under which conditions
on X~, V, the shape of the cell, and gravity is the forma-
tion of the droplet with a finite contact angle more favor-
able than a vapor —A-rich-liquid interface only covered
by a microscopically thin quasi-B-rich-liquid film? [The
latter configuration is supposed to prevail in Fig. 4(a) out-
side the droplet region of the interface. However, the
crossover from the droplet to this microscopically thin
8-rich-liquidlike film is unknown. ] (ii) Does the vanish-
ing of the contact angle of this droplet signal the wetting
transition as obtained by the corresponding grand canon-
ical calculation? This question arises because the thick-
ness l of the wetting layer in Fig. 4(b) is limited by gravity
due to the height L„although above T~ l should be
infinite. This limitation due to gravity can be described
in a grand canonical calculation as a shift of the chemical
potentials such that the wetting layer is slightly off the

A
increase of
temperature A

i i
l[

L

(a) (b)

FIG. 4. Interfacial wetting in a closed system with gravity g
below (a) and above (b) T~. Here the wetting phase has the
higher mass density. Below T~ a droplet of 8-rich liquid with a
finite contact angle may be formed at the interface with the va-

por, which is not air. Above T~ the contact angle is zero, but
the thickness I of the wetting film remains finite due to gravity
depending on the height L. After taking into account this effect
of gravity by an appropriate shift in the chemical potentials, the
local interface structures within the dashed lines are supposed
to resemble the corresponding ones in Fig. 3(a) for a grand
canonical ensemble without gravity. For further discussions see
the main text.

coexistence with the bulk 8-rich-liquid phase [see Eq.
(3.29) in Ref. 40 and references therein]. Due to this
effect the surface tension o., ~ between the vapor and the
A-rich liquid is less than the sum o, z+o.~ ~ of the sur-
face tension between the vapor and B-rich liquid and be-
tween the two liquid phases. It is unclear how to recon-
cile this fact with a vanishing contact angle, which re-
quires o., z =o.„z+o.z ~.

Furthermore, the thickness I of the wetting layer is
limited by the finite number X~ of B particles. This re-
striction is generic for a canonical system and cannot be
described within a grand canonical framework. For I.
and Xii/V sufficiently large gravity represents the more
severe restriction. Since, in this case, gravity can be in-
corporated into the grand canonical description one can
argue that, after taking this correction into account, the
interfacial structures, as calculated within a grand canon-
ical ensemble, resemble the local structure of the inter-
face in the canonical system with gravity within the
dashed lines in Fig. 4.

If, however, the wetting phase, here taken as to be the
B-rich-liquid phase, has the lower mass density, it is more
difficult to find the connection between the canonical sys-
tem with gravity and the grand canonical system without
gravity. If the tube of Fig. 4 contains a volume fraction
of the B-rich and lighter phase, the equilibrium
configuration is given by Fig. 5(a) independent from
whether T & Tz or T ) T&, because at three-phase coex-
istence gravity does not allow one to maintain the
vapor —A-rich-liquid interface even below T~. This
could only be achieved if the system is always prepared to
be just at the boundary of three-phase coexistence but
without allowing for the formation of a bulk portion of
the 8-rich-liquid phase [see Fig. 5(b)] for T (Tii,. As
shown in Fig. 5(c) above T@, a layer of the B-rich-liquid
phase forms at the interface with the vapor. Since gravi-
ty favors the formation of this layer its thickness is only
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FICx. 5. Interfacial wetting for the case in which in the corre-
sponding grand canonical ensemble the vapor —A-rich-liquid in-
terface is wetted above T~ by the B-rich liquid which happens
to be the lighter liquid. The configuration in (a) is independent
from T~, since there is a volume proportional part of the con-
tainer filled by the B-rich phase. The configurations in (b) and
(c) also represent systems at three-phase coexistence but such
that there is just no volume part of the B-rich phase in the con-
tainer. (b) corresponds to T(T~ and in (c) T) T~.

limited by the number X~ of B particles. This way one
can detect whether the vapor —A-rich-liquid phase under-
goes a wetting transition or not, even if the wetting phase
is lighter. However, since, in this case, the limiting factor
for the thickness of the wetting film is given only by N~,
there is no obvious connection between the details of
these interfacial structures and those calculated in a
grand canonical ensemble. Finally, let us note here that
we do not consider those interfacial structures which are
induced by a mass density inversion between the A-rich
and the B-rich bulk liquids upon a change of temperature
as investigated in Refs. 27 and 30.

Figure 6 shows the possibility to maintain the interface
between the vapor and the heavier liquid even in the pres-
ence of the lighter liquid by using a closed U tube. ' This
configuration offers the opportunity to study both the
vapor —A-rich-liquid and the vapor —B-rich-liquid inter-
face simultaneously. Also in this case, the inAuence of
gravity and of the fixed numbers of A and B particles on
the interfacial structures above and below T~ deserve
further studies. In addition, the dynamics for building up
these equilibrium interfacial structures by diffusion re-
quires a detailed analysis.

It was the purpose of the latter parts of the Introduc-
tion to stress the importance of gravity and the fixed
number of particles for comparing experimental data
with theoretical calculations of interfacial properties in

(c)

FIG. 6. Binary liquid mixture in a closed U tube at three-
phase coexistence (Ref. 41). The A-rich-liquid phase has the
higher mass density p „. The equilibrium configuration is
shown in (a). For example, by closing the shutter S and tilting
one can prepare the configuration (b). For times less than the
diffusion time, which the A and B particles need to restore the
configuration (a), (b) represents a new, restricted equilibrium
configuration. After opening the shutter S it relaxes to the one
in (c). Again, on the time scale mentioned above, this
configuration enables one to study the vapor —A-rich-liquid and
the vapor —B-rich-liquid interfaces simultaneously. The relative
depression is given by Ah /h =1—p&/p„. The potential energy
divided by the cross section of the U tube is for (c) higher than
for (a) by the amount g(p& —p&)h p&/(4p& ). In order not to
lose three-phase coexistence upon a change of temperature, the
relative volumina of the liquid phases should roughly corre-
spond to the overall critical composition at T„„.This restric-
tion may cause the A-rich —B-rich-liquid interface to come close
to the lower bow of the tube. In such a case the aforementioned
gravitational instability leads to a sudden change from (c) to (a).
This can be avoided by choosing different cross sections for the
right and left wing of the U tube, respectively, which leads back
to a (meta)stable configuration similar to that in (c).

grand canonical ensembles. I.et us now turn to these cal-
culations which are prerequisites for solving these
aforementioned difficulties.

II. EFFECTIVE INTERFACE POTENTIAL

It is our aim to determine the dependence of interfacial
wetting on the details of the microscopic interaction po-
tentials between the A and B particles. For a specific sys-
tem this question could be addressed by a numerical
simulation. Up to now, however, this technique has been
applied only either to the wetting of a wall or to simple
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model systems with short-range forces (see Ref. 1 for
references). But none of these simulations have seriously
taken into account the long-range part of the interaction
potentials, which are crucial for wetting phenomena in
Quid systems.

Here we resort to the density functional theory which
has proven to be a successful analytical method for the
description of inhomogeneous simple fiuids. (For a re-

view see Ref. 42, for applications to wetting phenomena
see Refs. 1 and 7.) Within this approach the long-range
part of the van der Waals interactions can fully be taken
into account and the whole class of possible physical sys-
tems can be scanned.

Our starting point is the variational grand canonical
free-energy functional (its derivation and status are dis-
cussed in Appendix A)

Q[p;(r);Tp;]= f d r f t(p;(r), T)+—,
' g f d r f d r'wj(~r —r'~)p, (r)p (r') —g p; f d r p;(r) . (2.1)

Q gives the grand canonical free energy for a given
configuration of inhomogeneous densities p;(r) with
i = A and 8, The equilibrium densities po;(r; T,p; ) mini-
mize Q and they yield the grand canonical potential
Qo(T, V,p, ). ft, (P, , T) is a suitably chosen Helmholtz
free-energy density for a spatially homogeneous binary
liquid mixture (see below and Appendices A and 8). In
this section its specific form does not matter. wzz, wzz,
and w~z are derived from the pair potentials wz~, wzz,
and w~ii [see Eqs. (Al) and (A3)] between the particles,
which are modified at short distances by suitable refer-
ence potentials w, ; such that the potentials w; remain
finite [see Eq. (A26) and Appendix 8]. In accordance
with Fig. 3 we impose boundary conditions such that for
z —++ ~, po;(z) approaches the bulk values of the vapor
phase. Depending on whether we consider path p, or p2,
po, (z ~—~ ) is given by the bulk values of the A-rich-
or 8-rich-11quld phase. z dcnotcs thc dlfcctlon orthogo-
nal to the interface.

Equation (2.1) gives a microscopic description of inter-
facial structures. The interfacial wetting transitions we
are concerned with are critical phenomena which connect
two and three spatial dimensions. In Auids the long-
range van der Waals forces cause the upper critical bulk
dimension for the corresponding fluctuations to be less
than three. ' Therefore, Eq. (2.1) will yield reliable re-
sults for wetting transitions although it is a mean-field
theory. The local-density approximation for the refer-
ence free energy is appropriate for interfacial structures
between Quid phases, because they are monotonic and
smooth. This is in contrast to interfacial structures close
to a solid wall, where the sharp density variation gives
rise to density oscillations which are not captured by the
local-density approximation. However, a more serious
drawback of this approximation even in our case is that
the variational functional in Eq. (2.1) does not allow for
the formation of solid phases. Thus, we must modify our
results at low temperatures in order to take into account
the actual structure of the bulk phase diagram as shown
in Fig. 2.

Let us now describe the interfacial wetting behavior
depicted in Fig. 3. For density configurations with the
aforementioned boundary conditions the free-energy
functional in Eq. (2.1) splits into a bulk contribution and
into a surface contribution,

Q[p, (r); Tp; ]=VQ&(Tp, )+ 2 Q, [p;(r); T p, ] . (2 2)

Since we are at a-y coexistence, i.e., on S, in Fig. 1, we
have
Qi (T p;)=Q(p, ; Tp; )/V=Q(p; 'rT, p; )/V,
where p; and p, z are the equilibrium bulk densities in
the a and y phase, respectively. (Here we drop the index
0 which has been used in Appendix A to denote equilibri-
um values. ) In this grand canonical ensemble the posi-
tion of the interface of area 2 within the volume V is not
fixed; Eq. (2.2) is independent from this interface posi-
tion.

For the bulk free-energy density we have [see Eq. (2.1)]

Q(p;,;T p;)/V=f~(p;, .T) ,' g w;, p—;,.—p,.
g P(P(', ~ (2.4)

Along the triple line these functions are equal to each
other for ~=a, P, and y. But here, we always have
Q =Q&=Q&. In Eq. (2.4) we have introduced the total
strength of the (modified) interaction potentials w;:

w,"= —f d r iv; (r) & 0 . (2.5)

The surface tension between the a and y phase is the
minimum value of 0, :

o. ~(T,p; ) = min Q, [p, (r); T,p, ]
p,.(r)

= min Q, (l, T p, )=Q, (lo, T p, ) . (2.6)

Q, (l, T,p, ;)=l(Qti Q~)+cr ti+ott +—co(l) . (2.7)

o.
& is the surface tension between the two liquid phases

and o.
& &

is the surface tension between the wetting phase

. Here we have introduced the effective interface potential
Q, (l, T,p; ), which is the surface free energy per area un-

der the restriction that at the a-y interface a wetting film
with thickness l of the P-like phase is formed (see Ref. 1).
The actual equilibrium thickness lo( T, lj, ; ) minimizes

Q, (l, T,p; ). The importance of the effective interface po-
tential is due to the fact that its asymptotic behavior for
large I determines the wetting behavior of the corre-
sponding system (see Fig. 3.2 in Ref. 1). In the presence
of long-range interactions, as in our case of interfacial
wetting in binary liquid mixtures governed by nonretard-
ed van der Waals forces, one finds'
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(in the absence of the a phase) and the vapor. In Eq. (2.7)
both a & and o.

& are evaluated at the triple line. If the
P phase wets the a-y interface lo = oo and

The conjugate fields to M and Q are

and

(2.14)

otherwise lo( ~ and o ~(a &+o.&~. Due to the first
term. in Eq. (2.7), which is due to deviations from the tri-
ple line on S, and which describes complete interfacial
wetting (see Sec. III in Ref. 40), it is evident that wetting
can only occur on the triple line, where Q&=Q . Other-
wise,

Qp(p, p', Tp, ))0
because p; p are taken as those densities of the P phase at
the triple line but T and p; have values where the P phase
is thermodynamically unstable. Here we do not pursue
this further (see Ref. 40) but stay on the triple line. There
the wetting behavior depends on co(l), which is the
correction to the surface free energies due to the finite
thickness of l. For large l one has

co(l)=al +bl +. . . (2.8)

The coefficient a, which is also known as Hamaker con-
stant, depends only on the temperature, because for a
given temperature the chemical potentials are fixed by
the condition to be on the triple line. The Hamaker con-
stant can be expressed in terms of experimental data for
the dielectric functions of the Auids and thus one can
achieve a good fit for the thickness of wetting films. (For
the case of wetting a wall by a one-component Auid, see,
e.g., Ref. 45, for the case of interfacial wetting see the at-
tempts by Law. '"

) Here, however, we strive for a
first-principle calculation of the Hamaker constant on the
basis of statistical mechanisms which allows us to deduce
trends in the wetting behavior as function of the molecu-
lar structure of the particles forming the binary liquid
mixture. From Ref. 9 we have:

a(T)= —,'(Q —Qp)(Qp —Q )

X[(1+1p)(1+Xpr)t3 „„
+(1—A~p)(1 —

Xp )t3 iiii+2(1 —
A~pkpi, )t3 Qadi]

(2.9)

with

X p=(M —Mp)/(Q —Qp)

and

gp =(Mp M)/(Qp —Q )—.

(2.10)

(2.11)

aIld

(2.13)

Here M, and Q are suitable combinations of bulk densi-
ties for the various phases at the triple line corresponding
to the concentration difference and the overall number
density

(2.12)

(2.15)

respectively. t3 'j are the leading coefficients in the ex-
pansion of the partly integrated interaction potentials w;'

t,,(z)= J dz' Jd r m, ((r +z' )' )

= —(t. ..z '+t. ..z "+ . ) . (2.16)

The higher-order coefficients in the effective interface po-
tential [Eq. (2.8)] have, at least approximately, a similar
structure (see Refs. 1 and 9).

For the following reason, in this paper, we restrict our
discussion to the temperature dependence of a(T). The
expression in Eq. (2.9) has been first derived within the
so-called sharp-kink approximation in which Eq. (2.1) is
minimized in the subspace of piecewise constant density
functions. Later it turned out that Eq. (2.9) remains un-
changed if one allows for density profiles which vary
smoothly on the scale of the bulk correlation lengths at
the emerging a-P and P-y interfaces. There is even evi-
dence that Eq. (2.9) is exact, ' which means it can be de-
rived from Eq. (2.1). Therefore, the precision of our fol-
lowing discussion is only limited by the accuracy with
which the density functional in Eq. (2.1) predicts the bulk
densities, of binary liquid mixtures for given interaction
potentials.

The temperature dependence of sgn[a ( T) ] allows us to
draw the following conclusions (compare Fig. 3.2 in Ref.
1).

(i) a (T) &0 for all T: This means that l = oo is always
at least a local maximum of Q, (l). Thus, it never can be
its global minimum. Therefore, in this case, there is no
wetting transition at all.

(ii) a ( T) )0 for all T: This means that l = oo is always
at least a local minimum of Q, (l). If it happens to be its
global one for all T, the a-y interface is wet for all T.
Otherwise, due to higher-order terms in co(l), there will
be a first-order wetting transition at T~ (T„.

(iii) a (T) &0 for low temperatures and a (T„))0: In
this case, the O.-y interface is not wet at low tempera-
tures. Furthermore, there is a temperature T~ (T„
such that a ( T ) Tii ) )0, i.e., that 1 = ~ is at least a local
minimum for T ~ T~. This fulfills the necessary condi-
tions for critical wetting. [If b(Tir)) 0, the sufficient
condition for critical wetting is also fulfilled, provided it
is not spoiled by terms in co(l) of still higher order. ] If
critical wetting does occur, a ( T~)=0 is an exact, impli-
cit equation for the wetting transition temperature.

These are the three classes of interfacial wetting behavior
mentioned in the Abstract. In the remaining parts of the
paper we determine which binary liquid mixture falls ei-
ther in class (i), (ii), or (iii).

For that purpose we determine a (T) for low tempera-
tures and close to T„. [We assume that a(T) has at
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most one zero and that all bulk densities decrease mono-
tonically upon an increase of temperature. The latter
property is fulfilled for the models we shall consider in
Secs. III and IV.] Since a(T)=a0(Q —Qp) vanishes at
T„~, the necessary condition a ( T„)=0+ for wetting de-
pends on the sign of a0(T„)W 0 and on the sign of
Q —

Qp, which according to our remark above, does not
depend on temperature. Consequently, we have to distin-
guish four cases for the condition a ( T„)=0+:

(2.1)] there is no solid phase. Therefore, we must stop to
consider our formulas for T ~ T4 without knowing T4 ex-
plicitly. [We assume that T„„)T4, which means that we
do not consider the case in Fig. 2(c).] We do know, how-
ever, that upon lowering the temperature the concentra-
tion of A particles in the B-rich-liquid phase and the con-
centration of B particles in the A-rich-liquid phase de-
crease. We now assume that T4 is sufficiently low so that
we have

(I) Q & Qp and M &Mp. t, » & EI3,

(II) Q &Qp and M &Mp.. t3 „~ &Et),

(III) Q &Qp and M &Mp. t3»&E~,
(IV) Q &Qp and M )Mp.. t3 j3~ &E~ .

Here we have used the notation

(2.17)

(2.18)

(2.19)

(2.20)
and

p~, ~=p~ p&, ~ =0(0)

at T4onp, ,
p~, p=O~pa, p=pa

(0)
pw, a=o~pa, a=pa

(0) at T4 on p2
p~, p=pw pa, p=0

(2.24)

(2.25)

t3 ij t3, iJ /t3 AB

E~= —[(1+A, p)(1+Ap )]

(2.21)

X [(1—A~p)(1 Apr )t3»—+2(1 A~pi pr
—)],

p&
——O, p&

——0 at T4 . (2.26)

p'~' and p~
' represent the densities of the one-component

A Quid and of the one-component B Quid at their corre-
sponding triple points. Thus, we obtain

and

(2.22a)

and

a(T4)= —,pz (pz t—3» p„ t3 gg) on p((0) (0) (0) (2.27)

F.„=—[(1—A, p)(1 —Ap~)]

X[(1+A, p)(l+Apr)t3 „„+2(1—A, p&pr)] .

(2.22b)

In Eqs. (2.21), (2.22a), and (2.22b) we have evaluated the
functions A,«at Tcep'

=X„(T=T„). (2.23)

Similarly, in Eqs. (2.17)—(2.20) the various inequalities be-
tween the densities Q, Qp, M, and Mp should involve
these densities just slightly below T„. However, as al-
ready noted above, these inequalities are valid indepen-
dently from temperature.

Note that A. &=A,fj and that therefore this is the same
function both along path p) and pz (see Fig. 1). Xpr, how-
ever, is a different function along p& and along p2. But
since at T„ the difference between the A-rich- and B-
rich-liquid phase is gone, A,&z is again independent from
the path. Therefore, both E~ and Ez are independent
from the path. Only the fact, which of the four cases in
Eqs. (2.17)—(2.21) applies, depends on the choice of the
path along the triple line.

Finally, let us note that in the derivation of Eqs.
(2.17)—(2.20) we have used the fact that 1+A,p )0. This
is fulfilled due to pz p) pz and pz p) ps r, because P is
a liquid phase and y the gas phase; similarly Qp

—Q )0.
The cases I and II correspond to k &) 0, whereas the
cases III and IV belong to A, &(0.

If Eqs. (2.17)—(2.20) are fulfilled, the a-y interface is
wet at least close to T„,provided that 7 = ~ is not only
a local but also the global minimum of the effective inter-
face potential. For a wetting transition to occur, a(T4)
must be negative [see Fig. 2(a)]. Within our model [Eq.

(t(T4) —
p& (p& t3 Ag Pj3 3 Ap) onp2 . (228)

(0)/ (0) (R (0)/R (0))3pa pa = a (2.29)

where R„' ' and R~( ' are the diameters (see Appendix B)
of the A particles and of the B particles, respectively.
Thus the condition a (T4) &0 for the a-P interface to be
nonwet at low temperatures takes on the following form:

and

t3 ~z ) r0 along p& (2.30)

t3 g g & I'0 along p2 (2.31)

r0 =R~ '/R ~(
' denotes the ratio of the diameters.

Equations (2.17)—(2.22) and Eqs. (2.30) and (2.31) show
that the various wetting properties (i)—(iii) depend on
t 3 g g t3 gg 7 0 X &, and A,&~. Since A, & and A,&~ are ratios
of bulk densities evaluated at T„, they depend only on
the following arguments (see below):

where

( Wgg, W», 1'0 ) (2.32)

W)~
=

W]~ /Wgg (2.33)

Therefore, we are left with a five-dimensional parameter
space spanned by t3 gg t3 gg wing wing and r0. Strictly
speaking, these quantities are independent from each oth-

p'z' and pz' depend in a complicated way on w~„and
w~~, respectively, and on the sizes of the particles. We
now assume that in a dense Quid its density is mainly
determined by the repulsive part of the interaction poten-
tial. This means that the ratio p'z'/p~) depends only
weakly on wz~ and wzz so that
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8
3 AA

( 1 + )3 AAw (2.35)

and

QSr
t 3 88

( 1 + )3 88w (2.36)

With these two relations the relevant parameter space is
reduced from five to three dimensions: wz„, wz~, and rQ.
On the other hand, the bulk quantities depend on w„~,
w~~, w~~, R ~, and R~ . However, once one has used,(Q) (Q)

say, w~z as scale for the temperature and the two chemi-
cal potentials and, say, R~ ' as scale for the two number
densities, one is left with the identical parameter space
w„~, w88, and ro as above. [These arguments already en-
tered into Eq. (2.32).]

Thus, our considerations show that, within our
(reasonable) approximations, those three parameters,
which characterize the bulk quantities of a given binary
liquid mixture, determine via a complicated, implicit re-
lationship uniquely its wetting behavior with respect to
the categories (i)—(iii) given above. In other words, the
bulk properties of binary liquid mixtures allow one to

er. In practice, however, they are correlated with each
other. A typical form for I; (r) is (see Appendix B)

4e, ["(cr, /r)' (o—; /r) ] for r/o, ~2'~

,
' —e, for r/o. , &2 i

(2.34)

where a~„=:R~,o88 =:R8, and o „8=(o„„+a88)/2.(Q) —.(Q)

With this form one finds

categorize their interfacial wetting behavior. This
surprising result can only hold for interfacial wetting. In
the case of wetting at a wall, there is no chance to elimi-
nate the substrate potential as a relevant parameter in
favor of characteristics of the adsorbate-adsorbate in-
teractions.

Thus, the procedure we shall pursue in the following
sections is obvious. After choosing a particular form of
the reference free energy fh [Eq. (2.1)] we first explore all
those parts of this three-dimensional parameter space, in
which the corresponding binary liquid mixtures exhibit a
simple bulk phase diagram. Second, we use Eqs.
(2.17)—(2.22), (2.30) and (2.31) in conjunction with Eqs.
(2.35) and (2.36) in order to categorize within this param-
eter space the corresponding interfacial wetting behavior.

This wetting behavior depends, of course, on the path
along which T„~ is reached. Along the path p& (see Fig.
1) the a phase is A rich and the P phase is B rich. Conse-
quently, M~ pA, a pg, a is positive and Mp=p„p —

p~ p
is negative so that M )M&. Similarly along p2 we have
M &M&. This means that along p, we have to consider
only cases I and IV [Eqs. (2.17) and (2.20)], whereas along
pz only cases II and III [Eqs. (2.18) and (2.19)] are
relevant. This means that along p&, k &~~0 corresponds
to Q ~wQp, whereas along p2, A. 8~&0 corresponds to
Q.&~Qp.

III. INTERFACIAI WETTING IN THE
BLUME-EMERY-GRIFFITHS (BEG) MODEL

In this section we consider binary liquid mixtures
which consist of particles having all the same size. As
the reference free energy we choose [see Eqs. (2.1), (2.12),
and (2.13)]

fz(p;, T)=3/2R„k8 T —,'(Q+M) ln[(Q+M)/2]+ —,'(Q M) ln[(Q——M)/2]

Ply+(1—Q) ln(1 —Q)+ —', Q ln(2'~ Rz A~A8)+ 4M ln (3.1)

with

Q=2 ' R„(p~+p8) (3.2)

is the thermal de Broglie wavelength. Equation (3.1) is
the simplest choice of the reference free energy which, on
the one hand, reduces in the low-density limit to the free
energy of an ideal mixture of monoatomic gases

fh(p 0?)=k8T P p [ln(p;A;) —1], (3 5)

(3.3)

R„ is a known function of R„' ' (=R8 ') [see Eq. (2.34)
and Appendix B]„and thus represents the effective diame-
ter of the particles. R~ (which here is equal to R8) de-
pends weakly on temperature and density (see Appendix
B). For reasons of simplicity we disregard this density
dependence. m z and mz are the masses of the two parti-
cles and

(p~ +p8 ) -=&2/R '

so that

(3.6)

Q~1, /M/~Q . (3.7)

and which, on the other hand, takes into account that the
overall density of spheres with diameter R cannot exceed
the density of a close-packed structure

A,. =h (2nm; k8 T) (3.4)
Combining Eqs. (2.4), (2.14), (2.15), and (3.1) one obtains
for the total free-energy density f =Q(p;, T,p; ) / V:
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Q+M
1

Q+M + Q —Ml
2

+(1—Q) ln(1 —Q)

—
—,'(J M +k Q +2C'Q M) —KM+EQ . , (3.8)

where

and

J—
~ ( wing 2wps +was ) 2R

K = ~(wgg+2wgg +was ) 2Rg

C'=
—,'(wzz was )12R„

(3.9)

(3.10)

(3.11)

K =(w~„+wsz+2)/(w~~+ws~ —2),
C —(wAA wBB )/(WAA+wBB 2)

or equivalently on

w„„=(E+2C+I )/(K —1),
ws~ =(K —2C+1)/(I7 —1) .

(3.12)

(3.13)

(3.14)

(3.15)

Our first task is to locate that region in (IC, C) space,
where the corresponding bulk phase diagrams resemble
those of simple binary liquid mixtures (Fig. 1). On the
basis of Ref. 50, this problem has been solved in Ref. 9.

In Eq. (3.8) we have omitted the last two terms from Eq.
(3.1), because they are linear in the density variables and
therefore irrelevant for determining phase equilibria and
number densities. Equation (3.8) is identical to the
mean-field expression for the free-energy density of the
Blume-Emery-GriSths model. Note that according
to our approach the parameters and variables in Eq. (3.8)
are precisely specified by the characteristics of binary
liquid mixtures. If one uses J &0 as the energy scale, f
depends on the reduced variables T=k&T/J, H=H/J,
Z =b. /J, and on the two parameters X = 2/J and
C=C/J.

Although Eq. (3.8) does not represent a quantatively
reliable description of binary liquid mixtures, it nonethe-
less gives all the qualitative features expected for them,
e.g. , the phase diagram in Fig. 1. Thus the BEG model is
the simplest model to pursue completely the procedure
we outlined at the end of Sec. II. The symmetries of the
BEG model allow us to obtain a particular transparent,
qualitative picture of the possible interfacial wetting be-
haviors in binary liquid mixtures. This eases our corre-
sponding discussion of the Percus-Yevick (PY) model in
Sec. IV, which is a more realistic model but which is also
more complicated. In addition, there are considerable
e6'orts to understand the statistical mechanics for interfa-
cial wetting in the BEG model with short-range forces as
well as for the closely related Blume-Capel model, ' so
that our study of the BEG model represents an interest-
ing theoretical problem of its own.

The bulk phase diagram belonging to Eq. (3.8) depends
on the two parameters (see Appendix C; recall that there
all bars are omitted)

For the convenience of the reader these results are shown
in Fig. 7. They reAect the symmetry of the grand canoni-
cal free energy with respect to the transformation
C~ —C, which corresponds to the interchange of 3 and
8 particles.

The various boundaries of the enclosed area follow
from the following properties. Those systems lying
on the lines A zD, or A, Db have a critical end point T„
which touches I.t (see Fig. 1). In the phase diagram of
those systems which are beyond the boundaries D, A 4 or
Db A3 the line I.

&
of critical points develops a tricritical

point, which finally splits into a lower and an upper criti-

5-
io

A

A2

m

(b)

W«

FIG. 7. Within the enclosed region in the (K, C) plane (a)
and in the ($», w&z) plane (b), respectively, Eq. (3.8) yields
bulk phase diagrams of the type shown in Fig. 1. In (a) the re-

gion is unbound towards K = ~. For more details see Fig. 2 in
Ref. 9. Here we adopt the same notation as in Refs. 50 and 9.
The lines in (a) and (b) correspond to each other; the arrows in-

dicate the direction of increasing values of K and C, respective-
ly. Those systems located in the hatched areas have the proper-
ty that their critical fiuid at T„~, which coexists with its vapor,
is rich with those particles which have the weaker interaction
strength among themselves. For a discussion of this effect see
the main text. (The hatched areas, in particular for large values
of K, have not been determined systematically so that here their
extension is not precisely specified. )
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cal end point by forming another triple line which in-
volves a fourth phase. Beyond the boundary A

& A2, T„„
becomes tricritical and a fourth phase can emerge.

Now we concentrate on the interfacial behavior. In
the second step we analyze a(T) for low temperatures
[Eq. (2.9)]. In accordance with Ref. 9, Eqs. (2.30), (2.31),
(2.35), and (2.36) lead to the conclusion that the a-y in-
terface is nonwet at low temperatures under the following
conditions (here ro= 1):

C,
0

2.0
S

1.0
I

and

u)~~) 1 along pi,

wz& ) 1 along p2 .

(3.16)

(3.17)

0.5- Ko =7.8t

If the inequalities in Eqs. (3.16) and (3.17) are reversed,
I = ~ is at low temperatures at least a local minimum of
the effective interface potential.

In the third step we focus on the condition
a ( T„)=0+, i.e., that at least at T„ I = oo is a
minimum of the effective interface potential. For that
purpose we have to consider Eqs. (2.17)—(2.22), (2.35) and
(2.36) and the remarks at the end of Sec. II. The key
quantities are the functions A, ft(E, C) and A&r(K, C).
Their calculation is described in detail in Appendix B.
Their behavior for constant K as function of C is shown
in Fig. 8. Both are antisymmetric around C =0 [compare
Eqs. (C25) and (C26)] and A, &=+I and —1 on A, DI,
and 3zD„respectively [see Eq. (C30)].

Now we have to check Eqs. (2.17)—(2.20). Which of the
four inequalities we have to use depends on sgn(C) be-
cause within the BECi model we have

C&&0 Q„&&Q~ . (3.18)

Along the path p, a is the A-rich liquid and 13 the 8-rich
liquid so that, according to the remarks at the end of Sec.
II, for C)0 case (I) must be considered, whereas for
C (0 it is case (IV). Along the path pz for C )0 case (II)
applies, whereas for C (0 it is case (III).

As an example let us consider the systems with C) 0
along p]. For C close to the boundary A&D& both A, ~&
and l&~ approach + 1 (see Fig. 8) so that Es vanishes
[Eq. (2.22a)]. Since t3 „„is positive the conditi'on in Eq.
(2.17) is definitely fulfilled for these large values of C. On
the other hand for C~O+ E~ tends towards t3 zs [see
Eq. (2.22a) and Fig. 8]. According to Eqs. (2.36) and
(3.15) t3 ~~ (C=O)=(%+ I)/(K —1), which is equal to
t3 „~ (C=O) due to Eqs. (2.35) and (3.14). Thus, for
C —+0+ the condition in Eq. (2.17) starts to fail. The oth-
er cases can be discussed similarly.

In addition these properties of E~ and Ez allow us to
draw conclusions about the value of the wetting transi-
tion temperature T~ in the case of critical wetting in
which T~ is given by a (T = T~)=0 [see Eq. (2.8) and
the discussion in the second paragraph following Eq.
(2.16)]. For C~O the inequalities in Eqs. (2.17)—(2.20)
turn into equalities which means that for these values of
C the curly bracket in Eq. (2.9) vanishes at T =T„.On
the other hand, by definition, this curly bracket also van-
ishes at T~. Since a ( T) is a monotonic and continuous
function of temperature, we can therefore conclude that

1.0
0 i.0 2.0

'. 0

FIG. 8. Typical behavior of A. &(K,C ) and A.»(K, C) for the
BEG model as function of C with constant K=K0=7.81.
Co =Co(Ko ) =2.405 corresponds to a point on the boundary
A, Db. Towards that point both functions rapidly approach 1.
A,» vanishes at C =0 whereas A, & diverges at C=0. The behav-
ior of the functions for negative values of C follows from
A, &(C)= —A, &{

—C) and A,& (C)= —A,& ( —C). C (K ) is an
increasing function of Ko. As one can infer from this figure, the
curves A,» and A, & join smoothly and with a common vertical
tangent at C =Co where their value is 1. However, for values of
K which are larger than those belonging to D, and Db (see Fig.
7) there is a gap between the curves A, ~ and A,» at the corre-
sponding boundaries Co(K). This gap widens for larger values
of K.

T~ approaches T, p
for C~O. On the other hand, close

to the boundaries A, Db and 2 2D„ the differences
t3;; EJ are largest —so that according to Eq. (2.9) and due
to the monotonic behavior of a ( T) the difference
T„—T~ is also largest. For Sz&=1 along p& and
P„„=1 along pz, respectively [see Eqs. (2.30) and (2.31)]
T~ reaches T4 (see Fig. 2).

If these results are combined with those for low tem-
peratures as obtained in the previous second step we ar-
rive at our final conclusions. They are summarized in
Fig. 9. The different hatchings give for all bulk systems a
complete classification with respect to the three wetting
behaviors (i)—(iii) which we have listed in the second para-
graph after Eq. (2.16). The wetting behavior along the
two paths p, and pz (see Fig. 1) are, of course, comple-
mentary: If wetting can occur along one of them, it can-
not occur along the other.

A detailed discussion of these results will follow in Sec.
V which will include our findings from the more realistic
model analyzed in Sec. IV. Nonetheless, we want to
briefly list the main conclusions which can be drawn from
Fig. 9. Those with an asterisk are at least partly specific
for the BEG model.
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P no simple bulk
phase diagram

1.0
always wet

L

along p„

00
(a)

WAA

0.5
tting

ble

2- 0
4 4.5

TcQp

0'

along p2

(s)

g ~

W&A

FIG. 10. Size of the region where critical wetting is possible.
Xw =(w»+ &&&+2&»)/&» is the total strength of all three
interactions. hw = ( &» —w» ) /w» along path p, and
hw =(&» —&z& )/w» along path p&, respectively, measure the
difference of the interaction strengths among the particles them-
selves. For critical wetting to be possible 6w must be
sufficiently small and Xw must be sufficiently large. The op-
timum value is achieved for w»+ &zz =3w». The transition
temperature T~ for critical wetting increases towards T„~ for
decreasing values of b w.

FIG. 9. Classification of binary liquid mixtures with respect
to three different interfacial wetting behaviors (i)—(iii) along path

p& (a) and along path p& ', (b) respectively (see Fig. 1). In accor-
dance with the main text [see second paragraph after Eq. (2.16)]
one has (i) no wetting transition at the a-y interface, (ii) either
the a-y interface is wet for all temperatures or there is a first-
order wetting transition, (iii) critical wetting is possible. For
the behavior of the wetting transition temperature in case (iii)
see Fig. 10.

(1) There is no indication that there are binary liquid
mixtures whose liquid-vapor interface does not become
wet at least at the critical end point along either side of
the triple line. However, this does not prove Cahn's
statement, which is based on a model with purely
short-range forces, that wetting has to occur necessarily.
In the case of wetting of a wall, it is known that the com-
petition between short-range and long-range forces may
prevent wetting at all ' ' (see also Fig. 9.1in Ref.
1). Such a behavior cannot be inferred from our present
study since we focus only on the leading term in the
e8'ective interface potential.

(2') The wetting behavior is symmetric about the diag-
onal R„~=wz~ if the paths p, and p2 are interchanged
accordingly.

(3') The liquid phase with the higher number density
never wets the liquid-vapor interface [see Eq. (3.18) and
Figs. 8 and 9].

(4") Along one side of the triple line, one-half of the
system displays no interfacial wetting. From the other
half, 51% may undergo critical wetting and 49% are ei-
ther wet at all temperatures or undergo first-order wet-

ting. This also means that Sl%%uo of all binary liquid mix-
tures may exhibit critical wetting along one or the other
side of the triple line.

(5*) Critical wetting can only occur for such binary
liquid mixtures in which the values of the interaction
strengths among the A particles and among the B parti-
cles are sufficiently close to each other (see Fig. 10). This
is the case if at low temperatures the number densities of
the pure A and B liquid are similar.

(6*) The region in which critical wetting can occur
shrinks rapidly to zero if the total strength of all interac-
tions together becomes too small.

(7') The transition temperature for critical wetting in-
creases towards the critical end. point if the number den-
sities of the pure A and of the pure B liquids become
similar.

The statistical statement in conclusion (4) assumes that
the binary liquid mixtures as found in nature are distri-
buted homogeneously over the enclosed area in Figs. 8
and 9. In general, however, wzz is not independent from
w~z and uzi so that, in fact, physical systems will be
concentrated around a certain line was(w„„). As a
consequence probabilities are no longer given as ratios of
areas but as ratios of line segments of the curve
w~s(w„„). This will be discussed in more detail in Sec.
V.

At the end of this section we would like to remark that
in Ref. 9 some of those above conclusions, which involve
the densities at T, p

were attempted without being able
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to resort to the quantitative results derived here. Those
limited conclusions in Ref. 9 were based inter alia on the
assumption that sgn(M (T„))=sgn(C). Our actual cal-
culations show, however, that even within the BEG mod-
el with its special symmetry around C =0, not all binary
liquid mixtures fulfill the above equation. Instead there
are mixtures in which the critical Quid at T„,which is
coexisting with its noncritical vapor, is richer in those
particles which have the weaker interaction among them-
selves. Those systems are indicated in Fig. 7 by a hatch-
ing.

This effect can be understood as follows. The vapor
should be dominated by the less attractive particles, i.e.,
sg n(M r(T„~))=—sgn(C). Upon approaching the boun-

daries A, D& or A2D, the difference between the Quid
and the vapor phase vanishes because T„ touches I.]

[see Fig. 1 and the second paragraph after Eq. (3.15)].
Therefore, M (T„) M~(T—„~)~0 close to A, Db or
A2D, . Since, however, neither M (T„)nor Mr(T„)
vanish on these boundaries, M ( T„„)must take on the
sign of Mr(T„~), which is opposite to that of C (see
above). What remains true is that the density of the more
attractive particles is larger in the Quid phase than in the
vapor phase so that

sgn(M (T„)—M~(T„~))=sgn(C) .

IV. INTERFACIAL WETTING
IN THE PERCUS- YEVICK MODEL

with p, =2 '"R~p, and

(4.1)

(4.2)

ph and p&, are the dimensionless pressure and chemical
potentials, respectively, of the hard-sphere-Quid mixture

(4.3)

and

(4.4)

pI, and pI, ; are given as

The discussion of the BEG model in the previous sec-
tion allowed us to find several important results for the
interfacial wetting behavior in binary liquid mixtures,
which also will serve us as a guide in the present section.
However, Eq. (3.1) represents an approximation for the
free-energy density of a mixture of hard spheres, which is
valid only for small values of the number densities (see
Appendix D). At larger values of the number densities,
for example, the different size of the two types of parti-
cles will start to become important. This aspect is not
contained in Eq. (3.1). The following choice represents a
more accurate expression for the reference-free-energy
density (we use the same notation as in Sec. III):

fh(p;, T)=&2Rg k~T fI(P;)+3+p;ln(A;/R~)

ph(p;)= (1+d3+d3) g p.

—PgPg (1—r) (1+r +d2r) (1—d, )
2 ''

and

(4.5)

P~,;(p; )=»(p, /(1+d, ))+3R,d, /(1 —d, )

+ 9R 2d2/(1 —d )2

+3R;d, /(1 —d3)+ R 3Ph(P, . ) .
3 2

Here R „=1, R~ =r =Rz /R „[seeEq. (B18)],and

(4.6)

—g R,"p;, i = A, B, k =1,2, 3 .
l

(4.7)

p ~p, p&~p~, T~ T, H~ —H,
(4.8)

C —C~ t3 3 4 t388~ wAA w

Correspondingly one has to change M ~—M, Q —& Q. In
addition, the two paths p, and p2 have to be inter-
changed.

First, as we did in Sec. III, we have now to determine
for each r those values of K and C or w~„and wz~ for
which the corresponding bulk phase diagrams have the
structure shown in Fig. 1. As in the BEG model the PY
model does not contain the formation of a solid phase.
Therefore, the structure of the bulk phase diagram at low
temperatures (Fig. 2) has to be incorporated by hand [see
Eqs. (2.24), (2.25), and (2.29)]. From the numerical treat-
ment of the PY model we find that Eq. (2.29) is fulfilled
with an accuracy better than 99/o for temperatures T less
than about 0.7T„. Therefore, our treatment of the be-
havior at low temperature should be correct unless
T4/T„happens to be significantly larger than 0.7.

To the best of our knowledge the analog of Fig. 7,

Whereas Eqs. (4.1)—(4.4) are exact Eqs. (4.5)—(4.7) are the
approximate expressions of pressure and chemical poten-
tials of the reference system as obtained from the exact
solution of the generalized Percus-Yevick equation for a
mixture of hard spheres with diameters R ~ and Rz, re-
spectively. "

. [Equations (4.5)—(4.7) correct misprints
in Refs. 66 and 67.]

In this section we proceed along the same lines as in
Sec. III. The only difference is that we replace Eq. (3.1)
by Eq. (4.1). [Again we can omit the second term in Eq.
(4.1), which is identical with the last two terms in Eq.
(3.1) and which is irrelevant for determining phase equili-
bria. ] The corresponding changes are presented explicit-
ly in Appendix D.

Before we turn to these details let us note that we can
restrict our analysis to the case r ~1. Because the free-
energy density is invariant with respect to the inter-
change of the A and B particles the properties of the sys-
tems with r ~ 1 follow from those with r & 1 whose pa-
rameters have been changed according to following rules:
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and

pa

p~ +pg vapor, T= T
)5X10 '

which holds for the BEG model, has not yet been deter-
mined for the PY model, in particular with r as a third
axis. Therefore, we performed for the PY model and for
a range of r values the same kind of calculation as Fur-
man, Dattagupta, and Griffiths did for the BEG model.
However, this analysis of the PY model is significantly
more dificult than of the BEG model, because the BEG
model exhibits several symmetry properties [see Eqs.
(C27)—(C30)] which go beyond that one which is due to
the invariance with respect to interchanging A and 8.
This latter one is the only one which is also present in the
PY model.

The various boundaries in Fig. 7 are mainly due to the
appearance of tricritical points [see the second paragraph
after Eq. (3.15)]. The same is true for the PY model. In
extension of Eq. (C10) these points are characterized by

B"H(M, b„T)IBM"=0, n =1, . . . , 4,
(4.9)

B H(M, h, T) IBM )0 .

As in Eqs. (C14)—(C17) these derivatives must be obtained
from the functions H(M, Q, T) and A.(M, Q, T) given ex-
plicitly in Eqs. (D5) and (D6). Due to the complicated
form of these functions the analytical calculations be-
come readily prohibitive, in particular for n =3,4. [For
comparison, in the case n =2 see Eq. (C17) following
from Eqs. (C2) and (C3), which is still simple compared
with Eqs. (D5) and (D6).] Thus, we had to resort to alge-
braic computer calculations in order to keep track of the
numerous terms. For selected examples we checked these
results numerically and by plotting the variational func-
tional from Eqs. (24) and (4.1) and by directly following
the coalescence of its minima.

Once the above system of equations [Eq. (4.9)] is ob-
tained explicitly it must be solved numerically. (This is
also in contrast to the BEG model where the solutions
can be obtained analytically. ) Due to the numerical prob-
lem of small di6'erences between large numbers it be-
comes increasingly dificult to find these solutions for
large values of K and for the upper boundary in the
(K, C) diagram in the case of r ~ 1, which corresponds to
the line A, Db in Fig. 7. (There are no numerical prob-
lems along the lower boundary. ) In order to overcome
these difhculties we augmented the requirements for a
system to exhibit a simple bulk phase diagram by the fol-
lowing conditions:

decrease of T„so that we have already reached the lim-
its of applicability of the PY model where solidification
sets in. In addition to Eqs. (4.10) and (4.11) we do not
consider systems with K & 100. According to these rules
we scan the (K,C) plane with a mesh (5K =0.02,
5C=0.02). [We use the same mesh to check the wetting
conditions in Eqs. (2.17)—(2.22).]

Our results for r =1 are displayed in Fig. 11. As one
can see the allowed region as obtained within the PY
model is considerably smaller than within the BEG mod-
el. The results for r&1 will be displayed later together
with our findings for the various wetting behaviors within
the allowed regions.

At this stage it is very instructive to follow, as a func-
tion of C throughout the allowed regions and for selected
values of r, the behavior of T„and of the concentration
xz of 8 particles in the critical Quid at T„p, x~ ~ =x~ &,

and of the coexisting gas phase, x~&,' here x~=p~/
(p „+pz ). Our results are shown in Fig. 12.
T„(E=const, C, r =1) is symmetric around C=O,
where it takes on its minimum value. The maximum
values are reached at the lower and upper bounds of the
allowed region [compare Fig. 11(a)]. The minimum of
T„~ coincides with that value'of C where Q =Q&', for
r =1 this is C=O, but it remains true for r (1 where the
minimum is shifted to larger values of C. [Recall that

3

5-

(aj

2.

l

I

I

0

(PA +P a )vapor r = T (4.11) WAA

Our rule is that we discard all those systems which along
a path of constant IY =Ko fail to fulfill either Eq. (4.10) or
(4.11) within a distance of 5C=0.02 from that tricritical
point which corresponds to this value Ko. Our condi-
tions in Eqs. (4.10) and (4.11) are motivated by the obser-
vation that such small values of the partial and total den-
sity of the vapor are accompanied by values of the re-
duced pressure p in the order of 10 and by a substantial

FICx. 11. Within the enclosed region in the (E,c) plane (a)
and in the (Sz&,wz& ) plane (b), respectively, the PY model with
r = 1 (solid lines) yields bulk phase diagrams of the type shown
in Fig. 1. For comparison the dash-dotted lines indicate the
corresponding results for the BEG model (see Fig. 7). In (b) the

gap between the lower left solid and dash-dotted lines arises due
to the fact that within the PY model we consider only systems
with K & 100. In any case K must be larger than 6.S5 compared
with 3.80 for the BEG model.
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crease (or decrease on the other side) this latter tricritical
point would split into an upper and lower critical end
point by forming a fourth phase. Due to this preemption
xz and x~ z remain distinct at the boundaries of the al-
lowed C interval. This behavior has to be contrasted
with the BEG model, where this mechanism occurs
beyond the lines D, A4 and Db A3 in Fig. 7; along A, Db
and A 2D„however, T„does manage to reach the criti-
cal line I.

&
and forms a tricritical point between the Auid

and the vapor. This does not occur in the PY model. The
boundary at small values of E in Fig. 11(a) arises due to
the same mechanism as in the corresponding case in the
BEG model: for too small values of K, T„„becomes tri-
critical due to the formation of a fourth phase.

Now that in the first step we have determined those re-
gions in parameter space where the PY model exhibits
simple bulk phase diagrams we can turn to the discussion
of the wetting behavior. In the second step, from Eqs.
(2.30), (2.31), (2.35), and (2.36) we find that the a-y inter-
face is nonwet at low temperatures if

Xe
r =0.5

1.0

0.5-

- 2

and

to& ) —,'(1+r) along p,

1 (1+r)
WQQ +

3 along p 2 ~r'

(4.12)

(4.13)

(c)
0

5, 0
I

5.4

FIG. 12. Reduced critical end-point temperature T„~
.= k& T„~/J and concentration xz =xz( T=T„„)of 8 particles
in the critical Auid a=P and in the coexisting vapor y
[x~ =p~ /(p„+ps )] as function of C for IC = 13.335 and for (a)
r =1.0, (b) r =0.9, and (c) r =0.5. The curves end at the boun-
daries of the corresponding C intervals within which the bulk
phase diagram is simple. A discussion of these results of the PY
model is given in the main text.

sgn(Q —
Q&} is independent from temperature. ] For

r &0.72 sgn(Q —
Q&) cannot change sign as a function

of C so that in Fig. 12(c) T„~ reaches its minimum value
at the upper boundary of the allowed C interval. At fixed
values of C, T„ increases as a function of K. For r =1
the two concentrations xz and xz z are antisymmetric
functions of C around (C =0, x~ =0.5). This symmetry
is gone for r% 1. Close to its turning points both x~ and
x~ z behave as expected: If the strength of the interaction
between the B particles is increased, i.e., if C becomes
smaller, xz increases in the Quid phase and decreases in
the vapor phase. However, close to the boundaries of the
allowed C intervals and for not too small values of r this
behavior is reversed. This is due to the increase of T p,
which towards the boundaries approaches the line I.,
(Fig. 1). But before T„& reaches L

&
where it would form

a tricritical point, at which xz and xz z would merge,
another tricritical point is formed on I.

&
which leads to

the determination of this C interval. Upon a further in-

If the inequalities in Eqs. (4, 12) and (4.13) are reversed,
I = ~ is at low temperatures at least a local minimum of
the effective interface potential.

In the third step we focus on the wetting behavior close
to T„„. As in Sec. III we have to consider Eqs.
(2.17)—(2.22), (2.35), and (2.36) and the last paragraph in
Sec. II. These conditions are determined by the functions
A, &(K, C, r) and A&r(K, C, r) which are plotted in Fig. 13
for E Axed and for two values of r. Note that for r =1
these curves are antisymmetric around C =C, = C2 =0 as
in the BEG model. For r&1, however, X & diverges at
C& and A,

&&
vanishes at C2 with C& and C2 different from

each other and from zero. Therefore, A,
& and A~ are no

longer antisymmetric around a certain value of C. In ad-
dition,

~

A.&r ~
remains strictly less than 1 even at the boun-

daries of the corresponding C intervals. There k
& no

longer joins k& continuously if K is too large. This gap
widens for increasing value of IC. Recall that A, & (and
A,& ) are independent from the fact whether a or P is the
A-rich-liquid phase at T & T„. Since sgn(X &}
=sgn(A, &) [see Eqs. (2.10) and (2.23)] we can conclude
that for those values of C for which A, & is positive, i.e.,
for C, & C & C+, , Q~ )Q~ whereas negative values of
A, &, i.e., for C o & C & Cz, correspond to Qz & Qz. Thus,
Fig. 13 is in accordance with the intuitive argument that,
say, the number density of the 2-rich liquid increases
with the interaction strength of the A particles and de-
creases with their size. If both particles have the same
size the number density is higher for that liquid phase,
which is rich in that particles with the larger interaction
strength. If the 2 particles are larger. than the B parti-
cles, i.e., r (1 as in Fig. 13, the 3-rich-liquid phase
remains the phase with the higher number density only if
the interaction strength between the larger A particles is
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- 0.5
I

5-

+

C

t 3 gg and t 3 g Q are given in terms of E, C, and r by Eqs
(2.35), (2.36), (3.14), and (3.15). For various values of K
and r, the functions E and t are plotted in Fig. 14 as func-
tion of C.

According to our results in Sec. II a particular binary
liquid mixture exhibits for T~T„at l = ~ a minimum
of its effective interface potential along the path p, (see
Fig. 1) if t (E for C (C2 and t & E for C & Cz, respec-
tively, and along the pathp2 if t &Efor C&C2 and t &E
for C& C2, respectively. Otherwise 3 = ~ is a maximum
of the effective interface potential.

For r =1 both E and t are symmetric around C=O and
continuous at C =0=C2. The wetting condition
a ( T„)=0+ is fulfilled along path p i for C & 0 and along

FIG. 13. Typical behavior of A, &(K,C, r) and A,&~(K, C, r) in
the PY model as a function of C for constant K=Kp=7. 81.
The left curves are for r =1 and the right ones for r =0.9.
has a negative slope whereas the slope of A» is positive. For
this particular value of K C varies between Cp = —0.76 and
C p+ =+0.76 in the case of r =1 and between C p =+0.12 and
Cp =+1.78 in the case of r=0.9. In the latter case A, &

diverges at C =C l
——1.11, whereas A,» has a zero at

C=C2-—1.06. But for smaller values of r one finds Cl & C2.
For r = 1 both curves are antisymmetric around C =0; they join
smoothly at a value A,p=0. 95. {In the BEG model this occurred
at A,p= 1, see Fig. 8.) A,p decreases further for larger values of K.
As in the BEG model, gaps open up between A, & and A,» for
even larger values of K and for all values of r at the boundaries
C p and C p, respectively. The difference C p

—C2 decreases
for smaller values of r and vanishes at r=0.72. Thus, for
r & 0.72, the positive branch of A, & is missing. For the interpre-
tation of Fig. 13, in terms of sgn(Q„—Qz ), see the main text.

E,t

15.

1.0-

0.5-

P

-O.a

(a)

C=O=C2 04 C

(b)

E:='
E& for C&C2, (4.14)

t3~~ for C&C2,
t3 ~z for C&C2 . (4.15)

suKciently large, i.e., C & C2. With growing size of the A

particles this is more difFicult to achieve. Indeed, the
difference C o

—C2 decreases for smaller values of r and
vanishes at about r =0.72. Consequently, the positive
branch of A. & is missing for r &0.72. In these cases the
growing size of the A particles cannot be longer compen-
sated by a larger interaction strength between the A par-
ticles in order to keep Q„ larger than Qz. (This case of
Co preempting C2 is not shown explicitly in Fig. 13.)
For the following discussion, we keep in mind that in the
parameter space ( C,K, r ) the two-dimensional manifold
C=C2(K, r) represents the separatrix between Q„&Q~
and Q„(Qii; simultaneously A, & changes its sign there,
too.

Now we are in the position to check the condition
a(T„~)=0+ given by Eqs. (2.17)—(2.20). For that pur-
pose we define the two functions [see Eq. (2.22)]

E„ for C&C', ,

I I

1.0 C C2 1.5

0.10 . (c)

005.
K=13.335

5.0 C 55 C

FIG. 14. The functions E(C) and t(C) [see Eqs. (4.14) and
(4.15)] (a) for r =1, (b) r =0.85, and (c) r =0.5 and for selected
values of K. E corresponds to the solid curves and t to the
dash-dotted curves; they end at the boundaries of the corre-
sponding allowed C intervals. E and t intersect at C=C *. For
0.7 & r & 1 both E and t are discontinuous at C= C2, which is

indicated in (b) by dots. For C&C2, A. &&0 and Q„&Q~, where-
by the 3-rich liquid is rich in the large particles. In (c) C2 is
preempted by the end of the allowed C interval. Along p& the
wetting condition a( T„„)=0+ is fulfilled for C & C* and along
p2 for C&C*. In case of critical wetting t —E is proportional
to 'T„„—T~, which vanishes at C *. C * and Cz coincide only
for r = 1. A more detailed discussion is given in the main text.
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path pz for C &0 [see Fig. 14(a)]. Therefore, in this case,
the separatrix C =C '(K, r) which distinguishes between
the behavior a ( T«lr ) =0+ and a (T„)=0, coincides
with the separatrix Cz(K, r), which distinguishes between

Q~ & Q17 and Q„)Qs. Thus, for r =1 we find in the PY
model the same structure as in the BEG model (compare
Fig. 9).

This is no longer true for r & 1 [see Fig. 14(b)]. Due to
the lack of symmetry both E and t are discontinuous at
C= C2. Along path p, (i.e., one considers the possibility
of wetting by the liquid rich in small particles) the wet-
ting condition is fulfilled for C) C * and along p2 (i.e.,
one considers the possibility of wetting by the liquid rich
in large particles) the wetting condition is fulfilled for
C & C *. According to Figs. 3 and 14(b) we obtain, there-
fore, the following conclusions.

First, consider the possibility of wetting by the liquid
nch in small particles. In this case all liquids of this type
with the lower number density do wet (along p, and
C )C2 ). However, it is also possible that wetting occurs
by a liquid of this type but which has a higher number
density than the wetted liquid (along p, and
C*&C&C,).

Second, consider the possibility of wetting a liquid rich
in small particles by a liquid rich in large particles. In
this case, wetting can occur only if the wetting liquid has
a lower number density than the wetted liquid (along p2
and C & C *). However, not all liquids of this type and
with the lower number density do wet the liquid with the
higher number density (along p2 and C * & C & C2 ).

Finally, if the ratio between the sizes of the particles
becomes too small, the liquid rich in large particles has
always a lower number density than the liquid rich in
small particles [Fig. 14(c)], so that E =E„and t =r3 ss
throughout the allowed C interval. According to Fig.
14(c) the wetting condition is fulfilled along path p, for
all C) C * and along path pz for all C & C *. Therefore,
if in this case wetting occurs by the liquid rich in small
particles (it does so for C )C * along p, ), the wetting
phase has always a higher number density than the wet-
ted phase, which is rich in large particles. On the other
hand, if in this case wetting occurs by the liquid rich in
large particles (it does so for C & C * along pz ), the wet-
ting phase has always a lower number density than the
wetted phase, which is rich in small particles.

If the wetting condition a(T„)=0+ and Eqs. (4.12)
and (4.13) are fulfilled so that critical wetting can occur,
the difference r E is proportion—al to T„~—Tz, [see our
discussion in the second paragraph after Eq. (3.18)].
Since t (C) and E(C) intersect at C =C ", the separatrix
C *(K,r ) is also the locus of those binary liquid mixtures
whose wetting transition temperature in the case of criti-
cal wetting coincides with the critical end-point tempera-
ture. Along the path p, T~ decreases for larger values of
C, whereas along the path p2, it decreases for smaller
values of C.

We have performed this kind of analysis, as described
above and in Fig. 14, throughout those parts of the
(K, C) parameter space, which is accessible according to
our restrictions for the bulk phase diagram, and for 15
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FIG. 15. Allowed parameter space within which the PY
model predicts a simple bulk phase diagram of binary liquid
mixtures for (a) and (b) r =1, (c) and (d) r =0.97, and (e) and (f)
r =0.95. The corresponding wetting behavior along path 1 and
path 2 (see Fig. 1) is indicated by the same hatchings as in Fig.
9. Horizontal hatching indicates the absence of interfacial wet-
ting; diagonal hatching with positive slope stands for systems
which are either wet at all temperatures or which undergo a
first-order wetting transition; vertical hatching indicates candi-
dates for critical wetting. The straight dashed lines are related
to the wetting behavior at low temperatures whereas the dash-
dotted curve represents those systems with T~= T„~. On the
right-hand side of the dotted line lie those systems whose liquid
phase being rich in large particles has nonetheless the higher
number density. The dotted and the dash-dotted curves coin-
cide only for r=1. As it must be, the comparison between
paths 1 and 2 shows that wetting can occur only along one side
of the triple line. Further explanations and a detailed discussion
are given in the main text. The encircled crosses in (a) and (b)
indicate the locus of the calculations performed in Refs. 36—38.
For their discussion see Sec. V.

diFerent values of r. These results are summarized in
Figs. 15—18.

First, these figures show the dependence of the allowed
region in the (K,C) plane as function of r. Only for r =1
this region is symmetric around the diagonal Kzz =urzz.
In this case, as for r&1, the upper-right and lower-left
boundaries are straight lines given by

t0sir = —ur„„+2(K+1)/(K —1)

[see Eq. (3.12)]. For r =1 the upper boundary corre-
sponds to K =6.55 and the lower to E =100. The latter
one is parallel and close to the line corresponding to
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FIG. 16. As in Fig. 15 for (a) r=0.94, (b) r=0.93, (c)
r =0.91, (d) r =0.90, (e) r =0.85, and (f) r =0.80. Here we show
only the wetting behavior along p&. The corresponding behav-
ior along p2 can be inferred from (a)—(P because one has the
same stucture of the hatching as in Figs. 15(b), 15(d), and 15(f).
The mixture Ar/Kr is expected to lie within the dash-double-
dotted rectangle in (b) and the mixture Kr/Xe within the dash-
three-times-dotted rectangle in (c) (see Table I in Sec. V and the
discussion of it).

E= ~ so that by discarding systems with K) 100 we
omit only a small portion of the whole allowed region.
For r =1 the other two constraints [Eqs. (4.10) and
(4.11)] are not yet effective, but they become so for r ( 1.
This is apparent in the comparison between Figs. 15(c)
and (15e) with 15(a). For r (1 only the left part of the
lower boundary remains a straight line corresponding to
the condition K & 100, whereas for larger values of w~z
two crossover regions occur on that boundary which sig-
nal the onset of the condition in Eqs. (4.10) and (4.11), re-
spectively. (For r =0.91 [see Fig. 16(c)] and r =0.92
(which is not shown) the lower boundary develops addi-
tional structures. This exceptional behavior deserves fur-
ther studies. ) The lower-right and the upper-left boun-
daries are curved; they are due to the occurrence of tri-
critical points (compare the discussion of Figs. 7, 11, and
12). The lower-right boundary disappears for r (0.75.
For r ~0.7 the right part of the allowed region is bound
by the upper-right and lower-left boundary alone. Note
the progressive change of scale on the w„~ and wzz axes
for decreasing values of r. For that reason the curves
E =const, i.e., the upper-right and the left part of the
lower boundary, appear to become more and more verti-
cal although their slope remains constant and equal to
—1. The curvature of the upper-left boundary decreases
for smaller values of r.
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FIG. 17. As in Figs. 15 and 16 for (a) and (b) r =0.75, (c) and

(d) r=0.7, and (e) and (fl r=0.65. The dotted line disappears
for r +0.7. For r ~0.75 a fourth category of wetting behavior
comes into existence which we characterize by a diagonal
hatching with negative slope. For those systems at low temper-
atures l = ao is (at least) a local minimum of the effective inter-
face potential whereas it is a maximum at T, p

Within the tri-
angle formed by the two dashed lines and the dash-dotted line
lie candidates for a dewetting transition along p, . Since the
wetting behavior along p2 does not follow as easily as before
from that along p& we show both possibilities. More explana-
tions are given in the main text.

The dotted curves in Figs. 15, 16, 17(a), and 17(b) are
the loci of the points C2 as discussed in Fig. 14. Thus on
its left-hand side, all those binary liquid mixtures lie
whose liquid phase being rich in large particles has, at
least close to T„~, the lower number density. [According
to our findings sgn(Q„—Q~ ) is temperature independent
so that this statement should hold for all temperatures. ]
This separatrix disappears for r &0.72. It means that if
the sizes of the two particles are suf5ciently different, the
liquid phase being rich in small particles always has the
higher number density. This can no longer be compen-
sated by a strong interaction between the large particles.

The second purpose of Figs. 15—18 is to display the
various wetting properties along the path p, and p2, re-
spectively (see Fig. 1). The different hatchings have the
same meaning as in Fig. 9. The horizontal hatching indi-
cates the absence of any wetting transition, independent
from its order. The diagonal hatching with positive slope
means that the corresponding systems are either wet at
all temperatures or that they undergo a first-order wet-
ting transition. The vertical hatching indicates the possi-
bility of critical wetting. For r 0.75 an additional
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FIG. 18. As in Figs. 15—17 for (a) and (b) r=0.60, (c) and (d)
r =0.55, and (e) and (f) r =0.50. For r & 0.6 there is no possibil-
ity for critical wetting along p&, for r somewhat smaller than 0.5
this possibility is expected to also disappear along p2. Again,
for further discussions, see the main text.

fourth wetting category comes into existence, which we
denoted by a diagonal hatching with negative slope.
Those systems have the property that at l = ~ their
effective interface potentials exhibit at least a local
minimum for T = T4 but a maximum at T„. [This effect
occurs because for decreasing values of r the left part of
the dash-dotted line falls below the horizontal dashed line
and the vertical dashed line moves to the right (see
below). ] At T„ these systems exhibit the same behavior
as those which lie within the horizontally hatched re-
gions. However, at low temperatures I = ~ is a
minimum in one case and a maximum in the other. At
first glance, one could surmise that those systems of the
fourth category might undergo a dewetting transition
from wet to nonwet upon an increase of temperature.
However, one has to keep in mind that those systems of
the fourth category, which lie on the left-hand side of the
vertical dashed curve, are characterized by having a (lo-
cal) minimum at I = ~ and T=T4 both along p, and pz
[see, e.g. , Figs. 18(a) and 18(b)]. Since the system cannot
be wet at T = T4 both along p& and pz, one of the two
minima cannot be the global one. (Wetting along p& re-

quires to remain nonwet along pz. This is in agreement
with all the Figs. 15—18.) This does not rule out of the
possibility of dewetting. But it can well be that the sys-

tems belonging to the fourth category have two minima,
one at l = cc and one at l =l0 & ao, which is the global
one. Both minima are then separated by an activation
barrier in the effective interface potential. Our results in-
dicate then that towards T„ this activation barrier
disappears turning l = ~ from a local minimum into a
maximum.

These arguments concern those systems of the fourth
category which are on the left-hand side of the vertical
dashed line [see Figs. 18(a) and 18(b)]. It is interesting to
consider those systems which belong both to the diago-
nally hatched region with negative slope along p &

and to
the vertically hatched region along pz. They lie within
the triangle formed by the two dashed lines and the
dash-dotted line [see, e.g., Figs. 18(a) and 18(b)]. For
these systems the possibility of a dewetting transition
along p, is not doomed by the fact that at T4 l = ~ is
also a minimum along pz. On the contrary, for them
I = ~ is a maximum at T4 along pz. Thus for r ~ 0.7,
these systems of the fourth category are indeed candi-
dates for a dewetting transition along p, . Along pz the
same systems are candidates for critical wetting [see Figs.
18(a) and 18(b)]. These circumstances are no longer given
if p& and pz are interchanged. Those systems which be-
long to the fourth category along pz have again the
aforementioned problem that l = ~ is a minimum at T4
also along p& [see Figs. 17(e) and 17(f)], which impedes-
as discussed before —the possibility of a dewetting transi-
tion along pz.

For r ~0.75 we find three and for 0.60~ r (0.75 we
find four wetting categories both along p& and pz. A fur-
ther decrease of r leads' to a loss of wetting possibilities.
For r 0.55 critical wetting is no longer possible along p,
and for r 0.50 there is no possibility any more to avoid
that l = ~ is a minimum of the effective interface poten-
tial at low temperatures along p&. For even smaller
values of r the vertical dashed line will also disappear [ex-
trapolate Figs. 18(e) and 18(f)]. Consequently, for such
small values of r there will be only the possibility of first-
order wetting transitions.

These dashed lines are given by w„„=—,'(1+r ') and

Ezz =
—,'(1+r), respectively [see Eqs. (2.30), (2.31), (2.35),

and (2.36)]. They govern the wetting behavior at low
temperatures. For decreasing values of r the vertical
dashed line moves to the right, whereas the horizontal
dashed line moves downwards. Since the upper-left
boundary moves downwards even more rapidly the hor-
izontal dashed line leaves the allowed region for r (0.55
[see Figs. 18(c)—18(f)]. The vertical dashed line probably
also leaves the allowed region for even smaller values of r.

Finally the dash-dotted line, whose curvature becomes
visible on our scale only for r ~ 0.6, represents the loci of
the points C* which we discussed in Fig. 14. Only for
r = 1 the dotted and the dash-dotted curve coincide [see
Figs. 15(a) and 15(b)]. In the case of critical wetting, this
line represents those binary liquid mixtures whose wet-
ting transition temperatures coincide with T„. Along

p, T~ increases from T~=T4 at the horizontal dashed
line towards Tz = T„~ at the dash-dotted curve. Along

pz this increase occurs from T~=T4 at the vertical
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dashed line.
Before we draw additional conclusions from our data

in the discussion following in Sec. V, let us summarize
our main findings for the PY model (compare the corre-
sponding summary for the BEG model at the end of the
previous section).

(1) As a function of r we have determined which binary
liquid mixtures exhibit a simple bulk phase diagram
within the PY model.

(2) For r =1 we obtain the same qualitative results as
for the BEG model (see the end of Sec. III). There are
only quantitative differences.

(3) As in the BEG model wetting does occur only along
one or the other side of the triple line. However, there
are systems whose wetting transition temperatures coin-
cide with T„; in general, these systems are not those
whose number densities of the two liquid phases are
equal.

(4) The only remaining symmetry is the one which re-
sults from the interchange of the A and B particles.

(5) For equal sizes of the two particles critical wetting
is found for those systems whose interactions between-
like particles are similar. For different sizes of the parti-
cles the interaction between the smaller particles must be
decreased and between larger particles it must be in-
creased in order to obtain critical wetting.

(6) It is possible that the liquid phase with the higher
number density wets the liquid-vapor interface. , (This
disproves an opposite statement by Lipowsky and con-
sequently some of his conclusions. ) This requires the wet-
ting phase to be rich in small particles. In this case and
for r &0.75 wetting occurs only by the liquid phase with
the higher number density.

(7) If the wetting phase is rich in large particles it al-
ways has the lower number density.

(8) For r ~ 0.7, and if the wetting layer is rich in small
particles, there is a possibility for a dewetting transition.

(9) For r 0.55 critical wetting is no longer possible by
the liquid phase being rich in small particles.

(10) If the sizes of the particles are very different only
first-order wetting transitions can occur.

V. DISCUSSION AND CONCLUSION

First let us recall that, as stated in the Introduction, to
the best of our knowledge there are only three theoretical
studies of interfacial wetting phenomena in binary liquid
mixtures, which fully take into account the long-range
character of all three interaction potentials. These
authors explicitly solved the full mean-field equations
which result from minimizing the density functional in
Eq. (2.1). Since they used the PY model for the reference
free energy their results can be compared directly with
ours obtained in Sec. IV. They monitored the interfacial
profiles of the a-P, a-y, and P-y interface (see Fig. 3)
along the triple line for the special case r = 1 and detected
interfacial wetting transitions. These authors followed the
order of this wetting transition by changing the detailed
form of the interaction potentials w; (r ) but without
changing their integrated strengths w,j. Therefore,
within mean-field theory, all these calculations corre-

spond to a single bulk phase diagram, which is complete-
ly fixed by Kz~ and N~~. The locus of these calculations
is indicated in Figs. 15(a) and 15(b) which correspond to
r =1. According to this location, we conclude that wet-
ting can occur only by that liquid phase, which is rich in
the less attractive particles. (This corresponds to path p,
according to our arbitrary choice of denoting those parti-
cles with the larger interaction potentia1s as A particles.
The opposite choice would bring the locus on the other
side of the diagonal and the role ofp, and p2 would be in-
terchanged. ) This conclusion is in full agreement with
the numerical results in Refs. 36—38. Furthermore, we
conclude from Fig. 15(a) that the wetting transition is
second order, provided that the next-to-leading-order
term in the effective interface potential, i.e., b in Eq. (2.8),
is positive. Indeed the authors of Ref. 36 found critical
wetting transitions for those interaction potentials which
lead to b(Tii, ) )0. [If b(Tii, ) happens to be negative due
to a different choice of the form of the interaction poten-
tials, the wetting transition becomes first order. This has
been analyzed in detail in Appendix A of Ref. 9.j Thus,
we can conclude that our results are in full agreement
with all numerical data of realistic model calculations
available at present. Nonetheless Figs. 15-18 demon-
strate that such detailed calculations can cover only a
vanishing small subset of the possible binary liquid mix-
tures. Thus, our results relieve one from this dearth.

The comparison between our results and the present
available relevant body of experimental data is less
straightforward. Until recently there have been only two
binary liquid mixtures for which interfacial wetting tran-
sitions have been found and which were first order:
methanol-cyclohexane ( CH3OH-C6H, 2 ) (Refs. 23—25,
and 29) and isopropanol-perfiuoromethylcyclohexane
(C3H7OH-C7F, ~) (Refs. 26, 28, and 31). For the first mix-
ture, the wetting transition has been observed only in the
presence of small amounts of water, so that one has
effectively a ternary mixture (see Ref. 35). Such systems
are not covered by our present study. Recently, the data
for the second mixture have been augmented by deter-
mining the wetting transitions of a series of five other
normal alcohols (C„H2„+,OH, n =0, 1,2, 4, 6; n =3, see
above; n =0 corresponds to water) mixed with C7F,~.
In all these mixtures first-order wetting transitions have
been found. This study by Schmidt is particularly valu-
able because it describes for the first time the dependence
of interfacial wetting on systematically changing the
molecular properties of one of the particles making up
the mixture. This allows one, for example, to follow the
ratio of (T„—Tii, )ITii, as function of these systematic
changes. Nonetheless, for following reasons, we refrain
from comparing our theoretical results with these experi-
mental findings. Besides the problems of (i) purity (see
above), as well as of (ii) gravity, and of (iii) the finite num-
ber of particles (see the detailed discussion thereof in the
Introduction), the following issues play an important
role: (iv) The experiments are perforined with air as the
vapor phase. This raises not only the question of purity
but it means in particular that the systems are ofF' the tri-
ple line, where our study applies. (v) Furthermore, even
if the systems would fulfill these requirements one must
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be especially careful to obtain wetting films which are in
the thermodynamic equilibrium. If during the experi-
ment a thick wetting layer has been formed, but which is
not the equilibrium configuration, it may take very long
times until it thins to its equilibrium (see Sec. XII in
Ref. 1). However, these problems can be overcome by
taking care that during the experiment no wetting films
are formed whose thickness is larger than its equilibrium
value: the thickening of a thin film is much faster than
the thinning of a macroscopicly thick film. Thus, the
three-phase coexistence regions must be avoided and the
experimental paths should be as indicated in Fig. 1, i.e.,
slightly of the triple line (see Sec. XII in Ref. 1). (vi) Fi-
nally, our theoretical results apply to structureless, spher-
ical particles which interact only via van der Waals
forces. Therefore, our model is supposed to work best for
mixtures of rare gases. However, such experiments are
not yet performed. Obviously, there is a considerable
demand of such investigations. But the mixtures used at
present consist of particles with a pronounced molecular
structure and they are polar. Given the delicate depen-
dence of interfactual properties on microscopic details'
we therefore adopt the conservative point of view that
due to (i)—(vi) the present theory would be stretched too
far if we would try a quantitative comparison with these
experimental data.

What our results allow us, however, is to draw impor-
tant conclusions about the trends of the wetting behavior
as function of r, which is the ratio of the sizes of the par-
ticles 8 and A. For that purpose we adopt the hy-
pothesis that the ratio between the areas of the various
hatched regions in Figs. 15—18 and the area A„, of the
whole allowed region gives us the probability p(r ) to find
the corresponding interfacial wetting behavior in all
those binary liquid mixtures which are characterized by
that given value of r. These probabilities are displayed in
Fig. 19 and give rise to following conclusions.

(1) The chances to find critical wetting are best for
r =0.93 where they are 64%%uo. It is more likely to find it
at the interface between the liquid rich in small particles
and the. vapor; there the chances are best for r =0.80,
where they are 40%%uo. For small values of r critical wet-
ting becomes very unlikely [see Fig. 19(c)].

(2) The overall chances to find a first-order wetting
transition are complementary to those for critical wet-
ting, because every binary liquid mixture can undergo a
wetting transition along one of the two sides of the triple
line. Only for small values of r it is more likely to find a
first-order wetting transition at the interface between the
liquid rich in large particles and the vapor than at the in-
terface with the liquid rich in small particles [see Fig.
19(d)].

(3) For r ~0.6 it is more likely that the interface be-
tween the vapor and the liquid rich in large particles ex-
hibits no wetting transition than the interface involving
the liquid rich in small particles. For r (0.6 the situa-
tion is reversed. Here the absence of a wetting transition
means that the efFective interface potential co(l) has a
maximum at I = oo for all temperatures [see Fig. 19(e)].

(4) Along both sides of the triple line for r ~ 0.75 there

is an increasing probability for the situation that l = ~ is
a minimum of co(l ) at low temperatures but a maximum
close to T„. This is a particular case of nonwetting,
which is more hkely to occur at the interface between the
vapor and the liquid rich in large particles [see Fig. 19(f)].

(5) For r 0.7 there is an increasing possibility for a
dewetting transition. But this behavior occurs only at the
interface between the vapor and the liquid rich in large
particles [see Fig. 19(b)].
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FIG. 19. (a) The total area 3, , of the allowed regions shown
in Figs. 1S—18 shrinks for small values of r. p = 3 /A, , where
A is the area of the various hatched regions in Figs. 15—18. (b)

p„„ is the probability for dewetting. In this case, 3 is vertically
hatched along path 2 and diagonally with negative slope along
path 1 [see Figs. 17(c)—17(f) and 18]. (c) p,„denotes the proba-
bility for critical wetting which is indicated by the vertical
hatching. (d) First-order wetting with diagonal hatching with
positive slope belongs to pf„. (e) The horizontal hatching means
nonwetting and its probability is denoted as p„„. (f) Those sys-
tems whose efFective interface potential has a minimum at low
temperatures but a maximum close to T„~ exhibit a particular
kind of nonwetting. The probability of their occurrence is
denoted as p„—„.The dots correspond to path 1 which describes
the interface between the vapor and the liquid phase rich in
large particles. The crosses belong to path 2 which corresponds
to the interface between the vapor and the liquid phase rich in
small particles. The circles give the sum of these two probabili-
ties. Therefore, they indicate the probability that the corre-
sponding wetting behavior (dw, cw, fw, nw, nw) occurs along ei-
ther side of the triple line.

On the basis of the same hypothesis, Figs. 15—18 also
give us some information about the number density of
that liquid phase which wets the interface under con-
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sideration. Using the probabilities shown in Fig. 20 we
obtain the following additional conclusions.

(6) For all values of r the probability is largest that
wetting occurs only by the liquid with the lower number
density, which is rich in large particles (see p + in Fig.
20).

(7) For smaller values of r there is an increasing proba-
bility that wetting occurs only by the liquid phase with
the higher number density, which is rich in small parti-
cles (see p+ in Fig. 20).

(8) For r close to 1 there is the possibility that wetting
occurs only by the liquid phase with the lower number
density, but which is rich in small particles. This proba-
bility vanishes for r 0.7 (seep in Fig. 20).

Our hypothesis for defining the above probabilities is
based on the assumption that for a given value of r the
possible binary liquid mixtures are homogeneously distri-
buted over the whole allowed region. This requires that
S~~ and Rz~ are independent from each other. Howev-
er, in the literature one finds several so-called combining
rules. These rules express the interaction parameters be-
tween unlike particles, i.e., eAB and o. „B [see Eq. (2.34)j,
in terms of the corresponding ones between like particles,
i.e., E'gg, ~gg, E'gg and o.zz. Besides the very common
Lorentz rule for o „B=(oAA+oBB )/2, various rules' for
e~z have been suggested:

1
~AB 6 (eAA~AA BB+BB)

6 6 1/2

0 gg

(III) eAB =2eAA&BB /(NCAA+ EBB ) .

(5.1a)

(5.1b)

(5.1c)

0.6- ~P
A

g kg

0.4—

0.2-

0. 6 ).0 r

FICz. 20. The probabilities p are defined as ratios of areas:

p + = A + /A «, (triangles), p = A /A „, (squares),

p+ = A+ /A„, (stars) [see Fig. 19(a)]. A + is the area of the
region on the left of or above the dash-dotted curve in Figs.
15—18. A is the area of the region on the right of the dotted
curve in Figs. 15—17(b). A+ is the area of the region on the
right of or below the dash-dotted curve minus the area A in
Figs. 15—18.
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For g= 1 Eq. (5.la) is known as the Berthelot rule. But in
most cases g & l. Equation (5.1c) is called the Fender and
Halsey rule. Equation (5.1) implies the following possi-
ble relationship between w» and S» ..

(
64 r 1

(I+r) (5.2a)

(I+r) 1II w~~ =
WAA

(5.2b)

47" t8 gg
( III ) w~~ = (5.2c)

(1+r) w„„—4

Thus, the probability for finding binary liquid mixtures
within the allowed region should be enhanced in the vi-
cinity of a hyperbolia wz~(w~„), which may be described
by one of the formulas in Eq. (5.2). Thus, in principle,
the probabilities should be given not as the ratio of areas
but as the ratio of the various line segments along which
this hyperbolia intersects the various regions. However,
the numerical values of the various formulas in Eq. (5.2)
differ from each other considerably and the various calcu-
lated and fitted values for e~~ scatter significantly around
their predicted values in Eq. (5.1). These uncertainties
are inter alia due to the attempt to parameterize each in-
teraction potential by only two numbers, i.e., e and o..
But the interaction potentials have a more complex struc-
ture and therefore require a more detailed description.
We refrain to embark into this complicated subject and
refer to the ample corresponding literature (see, for exam-
ple, Refs. 73—76 and references therein). We interpret
this scattering of the values of e~& as an indication that
the possibilities are not narrowly peaked around such a
hyperbolia. Therefore, because the hyperbolia
intersects —if it does so at all —the allowed region in a
more or less diagonal way from the upper left to the
lower right, the ratios between areas and the rations be-
tween segments should not differ too much. Thus, the
numerical values of the probabilities shown in Figs.
19(b)—19(f) and 20 should not be taken too serious, but
their qualitative behavior as function of r is expected to
be more reliable.

As already pointed out, our calculations should be
most reliable for simple particles like, e.g. , the rare gases.
On the basis of our estimates for their interaction param-
eters (see Refs. 70, 71, 73, and 77—85) as given in Table I
and according to Figs. 15—18, we conclude that the
Ar/Kr and the Kr/Xe mixture might be candidates for
interfacial wetting [see Figs. 16(b) and 16(c)] provided
that their bulk phase diagram looks like the one in Fig.
2(a) and not as in Fig. 2(c)—which cannot be decided on
the basis of the PY model. These mixtures should lie on
the left-hand side of the dotted line in Figs. 16(b) and (c),
because pz','&p~,'&p~,'. According to Figs. 16(b) and
16(c) we would expect that in the Ar/Kr mixture the Ar-
rich-liquid —vapor interface is not wetted by the Kr-rich-
liquid phase, and that in the Kr/Xe mixture the Xe-rich-
liquid phase does not wet the Kr-rich-liquid —vapor inter-
face. However, wetting should occur by the Ar-rich
liquid in the Ar/Kr mixture and by the Kr-rich liquid in
the Kr/Xe mixture. Thus, in both cases, the wetting

phase has the higher number density and is rich in the
smaller particles. Consequently, the wetting film has the
lower mass density and its observation would require a
setup as described in Fig. 6. [Note that in the model cal-
culation by Tarazona et al. (see also Figs. 15(a) and
15(b)], which was confined to r = 1, the authors were able
to produce gravity-thinned wetting layers having a lower
number density but a higher mass density only by assum-
ing that the particles with the stronger mutual attraction
have the smaller mass. But this is not possible for rare
gases for which both the size and the interaction strength
scale with the mass. For that reason mixtures of rare
gases have the property w„~) w~~ (see Table I).] The
Kr/Xe mixture might be a candidate for critical wetting,
whereas in the Ar/Kr mixture the wetting transition
would probably be first order. But since the horizontal
dashed line in Fig. 16, which describes the separatrix be-
tween first-order and critical wetting, is only obtained by
a crude approximation of the behavior of the system at
low temperatures [see Eq. (2.30)], its own error bars may
well overlap with the rectangle in Fig. 16(b) so that the
possibility of a critical wetting transition would not be
ruled out completely even for the Ar/Kr mixture.

The experimental data check with our theoretical pre-
dictions for the bulk properties. First, the bulk phase di-
agram of the Ar/Kr mixture turns out to be of the type
shown in Fig. 2(c), ' which has been called type I in the
nomenclature of Scott and Konynenburg (see Fig.
21). According to Fig. 16(b) the Ar/Kr mixture lies ei-
ther within the allowed region —these corresponding
phase diagrams have been called type II (Refs. 88, 89, and
86) (see Fig. 21)—or below. In the latter case one expects
indeed type I phase diagrams according to Fig. 22. (Al-
though Fig. 22 holds only for r=1 we expect this to
remain true also for r =0.93. ) But we cannot expect that
a theory, which does not contain the melting
transition —like the PY or the van der Waals equation of
state —predicts correctly the separatrix between type-I
and type-II phase diagrams. Within these limitations we
are therefore pleased to see that the PY model predicts
correctly that the bulk phase diagram of the Ar/Kr mix-
ture is either of type I or II. The experimental fact that it
is of type I means that due to the missing triple line no in-
terfacial wetting with all phases being Quid can occur for
this mixture.

Second, the mixtures He/Xe (Refs. 90 and 86), Ne/Ar
(Refs. 91, 92, and 86), Ne/Kr (Refs. 93 and 86), and
Ne/Xe (Refs. 94—97) have been found to exhibit type-III
bulk phase diagrams (see Fig. 21). According to the en-
tries in Table I all these systems lie far to the right of the
allowed region of type-II mixtures in Figs. 16 and 17,
where, on the basis of Fig. 22, indeed type-III systems are
expected to lie. These systems do have a triple line where
fIuid phases meet and where interfacial wetting phenome-
na can occur. But in these systems at T„„the difference
between the vapor and one liquid phase vanishes, whereas
we have focused in this paper on the situation in which at
T„ the difference between the two liquid phases van-
ishes. The study of interfacial wetting phenomena of
type-III mixtures would be a natural extension of our
present work.
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Figure 21 gives us the opportunity to make contact
with the work by Scott and van Konynenburg ' - and
Furman and Griffiths who explored the possible phase
diagrams of binary liquid mixtures for the special case
r = I by applying the van der Waals (vdW) equation of
state. Figure 22 compares our results, which were ob-
tained by using the PY model, with their vdW findings
for the case r = 1 where comparison is possible. Scott and
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FIG. 21. According to Refs. 88, 89, 50, and 86, there are six
main types of bulk phase diagrams for binary liquid mixtures
which are denoted as I—IV. (Additional types are mentioned in
Fig. 22.) (a) represents I and II ~ In type I the phase separation
between the two liquid phases is missing. Here we have focused
on type II (see Fig. 2). If the critical end point T„p in the dia-
gram of type III, (b), is approached along the triple line TL, the
interface between the vapor and the 8-rich liquid vanishes with
the A-rich liquid acting as the spectator phase. (Correspond-
ingly, in type II the vapor acts as a spectator phase. ) In the
phase diagram of type IV, (c), the critical line of the coexistence
sheet between the vapor phase and the A-rich liquid does not
extend to arbitrary large values of p „+pz [as it does in (b)] but
bends back to form a lower critical end point T]„p at the triple
line TL which in turn ends at an upper critical end point T p.
In addition, at lower temperatures there is a coexistence sheet
between the A-rich and B-rich liquid [as in (a)] leading to a
second triple line TL' and a second upper critical end point
T„'„„.In phase diagrams of type V this latter coexistence sheet
is missing. In binary liquid mixtures of type VI, (d), the two
liquid phases are immiscible only for T] p

& T& T p and for
finite values of p „+p&. Such systems are characterized by hy-
drogen bonds and cannot be described by van der Waals type of
theories. If the critical line between the vapor phase and the
A-rich liquid has a global maximum as a function of tempera-
ture for finite values of p& and p& (i.e., above the critical points
of both the pure A and 8 liquid), it is said that these systems ex-
hibit gas-gas immiscibility of the first or second kind for (b) and
of the third kind for (a). The distinction between types I and II
and between types IV and V, respectively, is obtained by extend-
ing the van der Waals equation of state down to T=O without
taking into account the possibility of solidification. However,
on the basis of Fig. 2 one has to expect that many binary liquid
mixtures termed as type II or type IV, respectively, are in fact of
type I or type V, respectively, because T„p or T„'„„can be
preempted by the formation of a solid phase. Since we are in-
terested in the interfacial wetting behavior along the triple line
of a simple binary liquid mixture we confined our analysis to
type II.

0-

1-, (b3

FIG. 22. Regions in parameter space (w», w»), (a), and
(g, A), (b), which, in the case of equal core radii r= 1, corre-
spond to the type of phase diagrams I—V shown in Figs. 1, 2,
and 21. Types I and II correspond to those shown in Figs. 2(a)
and 2(c), respectively. In the shield region S the change from
type II to type III occurs via a series of minor variants of types
II and III interpolated between the two main types (Ref. 98).
The type IV* is omitted, which occurs in negligible small re-
gions close to the points where II, III, and IV meet (Refs. 86
and 98). Type VI is not found for van der Waals systems. Such
phase diagrams require highly nonspherical molecules involving
hydrogen bonds. The solid lines are obtained from the solution
of the generalized van der Waals equation of state (Refs. 88, 89,
98, and 86). The dashed lines give the boundaries of the region
corresponding to the type II which we obtained by using the PY
theory [see Fig. 15(a)]. We focused on type II and followed the
dashed lines as a function of r (see Figs. 15—18). The upper
dash-dotted line indicates the implementation of our rule to
avoid the shield region S, here applied to the van der Waals
equation of state. Between the lower dash-dotted line and the
boundary between I and II systems lie with K & 100, which we
discarded for numerical reasons. The PY theory predicts a con-
siderably smaller region of type-II phase diagrams than the van
der Waals (vdW) theory and, a fortiori, than the BEG model
[see Fig. 11(b)] does.
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van Koynenburg used the parameters

and

A (N»+EBB 2)/(N»+EBB ) i

which vary between —1 and +1 and —~ and +1, re-
spectively. In terms of our variables

uzi =(1+g) /( 1 —A )

we have g= 2C/(—IF+1), A=2/(X+1), C= —g/A,
and K= —1+2/A. Our analysis is restricted to J )0,
which means A) 0. Figure 22 shows that the PY model
predicts a significantly smaller region for type-II mixtures
than the vdW model does. Figures 15—18 show how this
region evolves as a function of r.

At the end of this section we want to make some re-
marks about the role of the capillary waves which occur
at the a-P and at the P-y interface. As already stated in
the Introduction, their entropic contribution to the
efFective interface potential is, as function of I, exponen-
tially small and can be neglected in systems with long-
range forces. However, due to the hydrodynamic motion
the dispersion relation of the capillary waves depends on
the thickness of the wetting layer. If one calculates the
free energy of these capillary waves of a thin film by
treating them as a noninteracting Bose gas ' one ob-
tains, in the case of a wetting film on a wall, a negative
contribution of the capillary waves to the Harnaker con-
stant, which tends to thin the wetting film. ' ' At low
temperatures this contribution is negligible small com-
pared with the Hamaker constant and one can ignore it.
However, in contrast to the Hamaker constant, this addi-
tional term has been claimed not to vanish at the critical
point and thus to become dominant close to T, . ' ' By
using the dispersion relations for a wetting film with two
Quid interfaces' one could extend this analysis in Refs.
100 and 101 to the case of interfacial wetting as con-
sidered here. But from a quantitative analysis, ' it turns
out that this predicted contribution of the capillary waves
to the efFective interface potential close to the critical
point is already in direct conQict with the experimental
results for the wetting of a wall. Thus, we note that this
aspect of the capillary waves deserves further investiga-
tions. In particular, one has to study to which extent the
capillary waves can still be treated as a noninteracting
Bose gas even close to the critical point where the damp-
ing diverges due to divergence of the viscosity. Another
open question is to what extent one is allowed to simply
add these contributions of the capillary waves to the
efFective interface potential as calculated here (see below).
In any case we note that, apart from these subtleties close
to the critical point, the numerical contributions due to
the capillary waves would be negligible small.

At this point we take the opportunity to state some
general remarks concerning the e6'ective interface poten-
tial co(l ) [see Eq. (2.7)]. The usual approach is to calcu-

late it within MFT in a first step. In the case of long-
range forces this is a rather demanding task. In a subse-
quent second step one tries to incorporate at least some of
those fluctuations ignored by the MFT used in the first
step. This includes basically two types of fluctuations: (i)
those which are typical for bulk systems and which cause
the bulk properties to deviate from their MFT approxi-
mates; (ii) fluctuations of the interface around its planar
form assumed within MFT. The influence of (i) on co(l )

has not been studied thoroughly. One reason is that
these Auctuations are important only in a relatively small
neighborhood of T„where the drumhead model for the
interface is starting to break down anyway due to the for-
mation of bubbles and overhangs. As long as the wetting
phenomena do not interfere strongly with these bulk crit-
ical phenomena one can surmise that the main e6ects of
the bulk fluctuations may be taken into account by re-
placing the MFT values of the bulk densities entering
ca(1) by their actual values. Since, in three spatial dimen-
sions and in the absence of gravity, Quid interfaces are al-
ways rough, the fluctuations of type (ii) must be taken
into account seriously even away from T, . There are ba-
sically two lines of attack which can be followed to ac-
cornplish this.

The first one is that one devises a solid-on-solid model
such that the interface fluctuates under the action of the
efFective interface potential as obtained from MFT. By
applying renorrnalization-group techniques the solution
of this statistical model yields a renormalized e6'ective in-
terface potential co+(l) which now includes the fluctua-
tions of the interface known as capillary waves. In the
presence of long-range forces and in three bulk spatial di-
mensions it turns out that co(l) —co&(l) —exp( —1/g&),
where g& is the bulk correlation length, thus leaving the
power-law terms in co(l) unchanged by the capillary
waves. ' ' " Therefore, within this approach, ' which
is based solely on statistical mechanics and which is com-
pletely independent from the dynamic laws of motion
behind it, the expression of the coe%cient a we used here
appears to be exact.

The second line of attack to include the interface Quc-
tuations is to use explicitly the laws of motion, here hy-
drodynamics, in order to obtain the dynamic Green's
function for those collective modes which are considered
to be the relevant ones, here the capillary waves. The
general rule to calculate, including damping, the free en-
ergy from the dynamic Green's function can be found in
Ref. 107 and in the references therein. It is this approach
which has been taken by Mikheev' and Chatterjee et
aI., ' although they did not apply the formula given in
Ref. 107, which guarantees certain consistency properties
which are not fulfilled otherwise. If one denotes co+ (1) as
the effective interface potential as obtained along this dy-
namic route (and disregarding the ignorance of the damp-
ing by these authors), one finds co(l) —co+(l) —1 in
sharp contrast to the results quoted above.

One has to say that, in general, the improvements of
MFT along these two lines of attack, i.e., co„(1) and
co+(l), cannot be expected to be consistent and that a
priori it is not clear which of the two is the better one.
However, it is known that the predictions of the dynamic
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approach are poor for the free energy unless there is a
particular pronounced peak structure in the frequency
spectrum of the Green's function. Another worrisome
feature of the dynamic approach in its simplest version,
as applied in Refs. 100 and 101, is that it predicts power-
law contributions to p~z(l) irrespective of whether the
liquid obeying the hydrodynamic equations is formed by
rnolecules interacting via short-range or via long-range
forces. Within the static approach it is known that this
di6'erence is of crucial importance for the wetting behav-
ior.

Let us close by recalling that our main findings and
conclusions are summarized at the end of Secs. III and
IV and by the remarks (1)—(8) in this section.

Note added in proof. It is a pleasure for us to quote the
paper by E. J. Ding and E. H. Hauge, Physica A155, 189
(1989), whose manuscript we received after submission of
our present paper. In their paper Ding and Hauge strive
for a systematic and analytic study of interfacial wetting
properties in binary liquid mixtures governed by short-
range forces.
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N,.

p, (r)= g 5(r —r, „),
k=1

and where Tr is the classical grand canonical trace

(A5)

N~ =0 N~ =0

x f g d", „d'p, „
N~

x I ~ d'r„d'p„. (A7)
1=1

fp is the equilibrium probability density for N~ A parti-
cles and Xz B particles in a system of volume V at tem-
perature T exposed to the chemical potential p~ and pz,
respectively [/3 = ( k~ T )
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APPENDIX A: DENSITY FUNCTIONAL

fp=Z 'exp f3 &——g p;N,

Z is the grand canonical partition function,

Z=Trexp —P &—gp, N,

so that Trfp= 1 and

Ap= kii T lnZ =—Qp(T, V,p„,p~ )

(A8)

(A9)

(A10)

The binary mixture is described by the position vari-
ables [r„ i, . . . , r „~ ', r~ „.. . , rii ~ I and the momenta

[p „„.. . , p ~ ~;p~ „.. . , p Ji ~ }. The corresponding

Hamiltonian & is given by

(Al)

A[f ]:=Tr f &—g p;N;+P 'lnf (A 1 1)

where f is any probability density with Trf =1. One
has4'

is the grand canonical potential. Following Evans one
now considers the functional

With i = A, B the kinetic energy is
Qp=minQ[f ] .f (A12)

g p,2k/(2m, ) . (A2)

~= g g V,'"'(r, „),
i k=1

(A4)

We assume that the potential energy S' is the sum

of pair potentials w„„(r„—r'~ ), wii~ (rii —r~ ), and

w „ii( r ~
—r~ ) with w,, (r,. —r ) =w ( r, —r, ):

N

g'w~(r;i —~i) . (A3)
i j k=1 1=1

The sum in (A3) is restricted so that kXl if i =j.
should be noted that for certain aspects three-body con-
tributions must be taken into account (see, e.g., Refs. 75
and 108—110); here we disregard them. The last term in

Eq. (Al) represents an external potential acting on the
Auid. It may stern from the container walls of the Auid,

N,-

fp[V "'(r)] is a unique functional of V "'(r) [see Eqs.
(Al), (A4), (A8), and (A9)]. To each pair of external po-
tentials V~'"'(r) corresponds one and only one pair of den-
sity profiles pp;(r, [V "'(r)]) [see Eq. (A5)], so that this
relationship can be inverted: V "' can be expressed in
terms of p0; which we denote as

V "'(r)= 8';(r, [pp,.(r)]) .

Thus,

fp[ V "'(r))=f [IV;(r, [p, , (r)])]
can be expressed as functional of the equilibrium density
profiles: fp =fp[pp, (r)]. This enables us to define a new
quantity

V[p, ]:=Tr[fp[p, )(T+Vj+P 'lnfp[p. , ])}, (A13)

where arbitrary densities p; have replaced p0 i as the ar-
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Q[p, ]:=P[p,]+g fd r p;(r)( V "'(r) —p;), (A14)

which, in analogy to Eq. (A12), has the property that

Qo =minQ[p; ],
Pt.

(A15)

gument of fo. With Eq. (A13) one can now define anoth-
er variational function

equality in Eq. (A17) defines the equilibrium two-particle
distribution function go,'.(r„rz), which reduces to the ra-
dial distribution function in the isotropic case. The two-
particle density p' ' is related to the density-density corre-
lation function

Go;, (ri, rz) = &(P;(ri) Po;(ri))(pj(rz) Po j(rz)) &

(A18)

and that those density profiles, which minimize
Q [p; ], represent the equilibrium configurations

Po, (r T j ~ E s).
In the next step one tries to find an explicit expression

for P[p; ]. For that purpose one starts from

via

Go„,(ri rz)=po', ,', (ri r»

Po, (ri)poj(rz)+5 j5(ri rz)Po, (ri) .

(A19)
59'[p; ]

5w, (r, , rz)

5Q[p, ]
5w,j(r„rz)

500
5w; (r„rz)

G contains a 5 function, p' ' does not. Finally, let us
define the pair correlation function

(2)
po, ;,(r„rz) . (A16) ~0, 'j(rl rz) gij (rl rz) (A20)

N,. N.

po I))r„r2)= x x '5(r, —r; ~)5(rz —r, ))4=1 1=1

= &p;(ri) &&pj(rz) &go",J(ri, rz) . (A17)

The double sum is restricted to k&l for i =j. The second
I

The first equality is due to Eq. (A14), the second one is
based on Eq. (A15), and the third one follows from Eq.
(A10). Po,'~(r„rz) is the equilibrium two-particle density
(or the pairwise distribution function):

which vanishes for ~r, —rz~~ 0(), and the direct correla-
tion function

co,' (r„rz)=[po (ri)] 5;j5(ri lz)+Go, 'j(r„rz),
(A21)

which is given by the (matrix) inverse of the density-
density correlation function.

Equation (A16) can now be functionally integrated
with respect to the pair potentials along a certain path in
function space:

1

~[po)'] ~i[po)1+ —, g da;, fd'r, fd'r, p(i j(w ri rz)(wjj(ri&rz) w j(ri lz)),
E7J

(A22)

w:=w„; (r„rz)+a;j(wj(r„rz) —w„;j(r„rz)) . (A23)

V„[po; ] corresponds to a reference system in which the particles interact with pair potentials w„;j and in which the
equilibrium densities would be p„;, here, however, p„; are replaced by po; which correspond to the pair potentials w,- .

Putting aside the possibility of three-body interactions the above approach is exact. The whole problem has now
been shifted to evaluating po,'.(w; r„rz) for all interaction potentials in Eq. (A23) with 0 ~ (z;. ~ 1. Here we make now

V

the following approximation:

Po j(w " i 2) P'o, (1)PO j( 2)' (A24)

Thus, we replace p' ' by its asymptotic value for ~r, —rz~ = ~. Inter alia, this implies that the critical properties of the
quid are only captured within mean-field theory. Whether the possibility of solidification of the Quid is still captured
depends in the ability to evaluate properly V„[po;] for the inhomogeneous reference system (see below and Appendix
B). Thus, we obtain

&[po,(]=&&[po,;]+—,
' y f d ri f d rzpo, {ri)poj(rz)w~j(ri, rz),

E7J
(A25)

where
&,[po, ;]=fd' f~(po„(»» . (A27)

w;~(r„rz)=w; (r„rz)—w„; (r„rz) . (A26)

Combining Eqs. (A14), (A25), and (A26) and replacing
po; by arbitrary densities p,. gives Eq. (2.1), provided one
has

For studies of interfacial wetting V "' is omitted and re-
placed by appropriate boundary conditions.

Equation (A27) states that the Helmholtz free energy
of the inhomogeneous reference system [see Eq. (A14)] is
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obtained by integrating an appropriate Helmholtz free-
energy density of a homogeneous system whose constant
densities have been replaced by the actual inhomogene-
ous densities. This local-density approximation is known
to fail in reproducing correctly sharp density variations
as they occur in a solid or close to a hard wall. In this
paper, however, we deal only with smooth Quid interfaces
without density oscillations (see Sec. III 8 in Ref. 1}, so
that the local-density approximation is appropriate for
the present study.

APPENDIX B: REFERENCE SYSTEM

According to Eq. (A22) we have to determine the refer-
ence free energy V, [p„;] for an inhomogeneous Auid,

I

V„[p„,]=J&'rf„(p„,(r)), (81)

where f„(p„;) is the bulk free-energy density for a homo-
geneous Quid whose particles interact with w, ;.. Up to
here w„; are not yet specified. For Lennard-Jones Auids
as considered here it has turned out that the following
choice for w„; due to Weeks et al."'" yields a satisfac-
tory, description:"

whose particles interact via the pair potentials w„;.. In
Eq. (A22) V„[p, ;] enters by replacing the arguments
p„;(r}by po,.(r). In order to obtain the reference free en-

ergy of the inhomogeneous Quid, we apply the local-
density approximation:

w„,,(r)= '
4e;J[(o;~/r)' (o, —/r) ]"+e; for r/o, (2'~,
0 for r/o; &2'~ (82)

f.(p; }=A(p~, =p„;» (83)

With this choice Eq. (2.34) follows from Eqs. (A26) and
(81).

Thus, the reference system is characterized by purely
repulsive but smoothly varying interaction potentials.
This system is still too difficult to solve analytically. In-
stead, as a further approximation, f„(p„,}is expressed .in
terms of free-energy density fz(pz; ) of a mixture of hard
speres with diameters R ~ and R~, respectively,

It is useful to introduce the smoothly varying and shifted
Boltzmann factor [P=(k~T) '],

f„;J(r„rz)=exp( —Pw„;J.(r„r2))—1,
which vanishes for lr( —r2l &2'~ o;J', otherwise it is close
to —1. With

5V„[p;] , , 5V„[p;]
d r3 d rq5f„; (r„r2) „, 5w„«(r3, r4)

where the densities p&; correspond to a Quid whose parti-
cles interact with pair potentials

for r ~R,", and

5w„«(r3, r4)
X

5f„,"(r, , r2)
(Bj)

wz; (r)= '

0 for r)R, (84)

5w "(r r)
—i~(2) (r r )

r ij 1& 2
(85)

Equation (83) requires that the parameters R,.J. are known
functionals of w„; (r). Since Eq. (83) is valid only ap-
proximately there are several ways to implement this re-
lation, which have repercussions on the accuracy of the
approximation in Eq. (83). In order to establish this rela-
tion we follow the same procedure as in Appendix A but
now for the reference free energy [see Eq. (A16)]:

fr .=fg;, (r(, r2)+y;)(f„,)(r(, r2) fp„;,( (,r)r)2, —

where

fz; (r„r2)=exp( Pwz; —(r„r2)) 1—
= —1 for Ir, —r21(&;,
=0 for Ir, —r21&&,J,

(88)

(89)

the integration of the expression in Eq. (87) taken for ar-
bitrary fJ(r(, rz) between fz;~ and f„;J along the path
given by Eq. (88) yields due to Eq. (85)

1
V„[p;]=Vq[p;]— g dy; d'r, 1 rzp;''(f;r„r2)(f (r„r2)+1) '(f„; (r„r2)—f„;-(r„r2)) .

j&J
(810)

In the next step, we expand the pairwise distribution function p' '(f ) in terms of the blip functions
jj

bf ~
=f„;J fz,"." Keeping only th—e lowest-order term and by using the analog of Eq. (A17), we obtain (see also Ref.

114)

1
V, [p;]=V~[p;]— ~"(f~"2g p;(r(}p, (r2b~, ;,(r( r2}~f;,(r( r»+

l~ J
(811)
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where R;j = f dr [1—exp[ —/3w„;j(r)] j (B16)
pw&, (r&, r2)

yh, j(rl r2) gh, 'j(rl 2)

In the homogeneous case this reduces to

(B12)

&f, =&fh —«p~ +pa )'/2)

X gx;xj f d r yh, (r)b"f; (v)+, (B13)

with x; =p;l(p~+p2l). Following Weeks et al."'" one
chooses R, such that the term linear in hf; in Eq. (B13)
vanishes:"

f d v yh, (r")b,f;J(r)=0 .

Lee and Levesque" solved Eq. (B14) numerically for R, .

by using an improved version of the two-particle distribu-
tion function gh, ~

for a binary mixture of hard spheres
derived by Lebowitz, whose solution is the basis of the
Percus-Yevick theory in Sec. IV. [For the BEG model
(Sec. III) all R,j. are equal so that in this case this effective
diameter only enters into the absolute values of the num-
ber densities, which are unimportant for those wetting
phenomena we are studyiing here (see Sec. II).] With
negligible error they could represent their data as

is the Barker-Henderson (BH) expression for the effective
diameter. " R, - is a decreasing function of temperature
which has been tabulated by Verlet and Weis" for
w„;j(r) given in Eq. (B2). In the temperature interval
0.65 k~T/e; 5.00 R; decreases from 1 0310&'j to
0.947o.;.. 5," is, in addition, a function of the densities p,-.
Since ~5;j~ is less than about 0.015 (Ref. 117) we shall ig-
nore it. Furthermore, Eqs. (B15) and (B16) yield
R;j =(R;; +Rjj.)/2 within an accuracy of 0.3%."

Thus, for the reference system we use a mixture of
hard spheres with diameters [Eq. (B16)],

R„=R„„,R2l=R2l2l, R~jl=(R„+Rs)/2, (B17)

which d~p~~d on R~ '=o-», k~ T/~», and R~ '

=o2l2l, k&T/e~s, respectively. Due to Eq. (B16) the ra-
tio of the diameters is given as

r =R2l /R z = rpg( ktl T /egg' ktl T /esp ) (B18)

with rp=a2l2l/cr„~ and y given by the ratio of the in-
tegrals in Eq. (B16) in reduced spatial units. [See also the
second paragraph after Eq. (D6).]

APPENDIX C: BULK BEG MODEL

R; =R" (I+6;j),

where

(B15) Equation (3.8) represents the variational grand canoni-
cal free-energy density. At the minimum with respect to
Q and M it gives the grand canonical free energy:

+M +M —M —MG(H, h, T)= T ln + ln +(1—Q)ln(1 —Q) —,'(M +IRAQ +—2CQM) HM+EQ—

(C 1)

H= ,' T ln((Q+M)I(Q —M)—)—M —CQ, (C2)

with 6 =min — (f2 ' R „).—According to the main
Q, M

text, all quantities in Eq. (Cl) should carry a bar; in this
appendix we omit this additional notation for reasons of
clarity, but it should be kept in mind for translating the
results of this appendix into unreduced quantities. In Eq.
(Cl) Q and M are function of H, b„and T which are
given implicitly by the simultaneous solutions of the fol-
lowing two equations:

where H(M, b, , T) is given implicitly by

BG (H, b, , T ) IdH = M(H, b. , T)~H—(M, b„T) . (C7)

Eqs. (C2) and (C3). Critical points are determined most
easily from a thermodynamic potential, which involves at
least one density variable. " Following Ref. 49 we per-
form therefore a Legendre transform with respect to H:

P(M, A, T)=G(H =H(M, b„T),b, , T)+MH(M, b„T),
(C6)

5= T ln(2(1 —Q)) —(T/2)ln(Q —M )+CM+ICQ .
Note that

(C3)

If Equations (C2) and (C3) are inserted into Eq. (Cl) one
obtains the function

8G (H, b„T) Idb. =Q (H, h„T),
dg(M, b, T)IdM=H(M, b„T),

(C8)

(C9)

Z(M, Q, T)=T ln(1 —Q)+ —,'M + —,'KQ +CMQ,

so that

(C4) and

BP(M, 2, , T)/db, =Q(H =H(M, b, , T), b, , T) . (C10)
G (H, b, , T)=Z(M =M(H, b, , T), Q =Q(H, E, T), T),

(C5)

where M(H, b, , T) and Q(H, b., T) are the solutions of

Within the potential P the critical points are given by the
vanishing of its second and third derivative with respect
to M, i.e.,
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aa(M, ~, T)/aM =a'H(M, ~, T)laM'=o,
a'a(M, s, T)/aM') o .

(Cl 1)
If one now takes the explicit function b,(M, Q, T) in Eq.
(C3) one has the identity

Equation (Cl 1) describes the critical points of two phases
correctly as long as neither the difFerence between the
densities M in the two phases nor the di6'erence between
the densities Q in the two phases, which become critical,
happen to vanish by reasons of symmetry. In our model
this happens only in the exceptional case C=0 for which
the values of Q in the two coalescing cases are the same.
In this case one has to consider that potential which, in
addition, is the I.egendre transform with respect to h. "
Since we consider the general case CAO, Eq. (Cl 1)
remains valid. Equation (Cl 1) involves derivatives of
H(M, b, , T). These derivatives can be expressed explicit-
ly in terms of the functions H(M, Q, T) and b, (M, Q, T)
given explicitly in Eqs. (C2) and (C3), respectively. Equa-
tion (C3) defines Q(M, b„T) implicitly so that

b, =h(M, Q =Q(M, b„T),T) .

If this equation is differentiated with respect to M by
keeping 5 fixed one obtains

ab(M, Q, T)

T, Q = Q(M, A, T)

M.(M, Q, T) aQ(M, b„T)
T, Q(M, a, T) aM

T,s

(C14)

which is an equation for ag(M, b, T)laM. The com-
bination of Eqs. (C13) and (C14) finally leads to

H(M, K, T)=H(M, Q =Q(M, b„T),T), aa(M, b„T) /aM =X(M, Q =Q(M, 4, T ), T ) (C15)

and

aa(M, &, T) aa(M, g, T)
b„T T, Q =Q(M, B, T)

aa(M, g, T)

T, Q = Q(M, E, T)

with Q(M, b„T) given implicitly by Eq. (C3) and with

aa aa aa aa
aM ag aM aQ

(C16)

where H:H(M, Q—, T) and b, =h(M, Q, T ) are given ex
plicitly by Eqs. (C2) and (C3). Along the same lines one
finds

ag (M, 6, T) (C13)
BM

a H(M, E, T)/aM =Y(M, Q =g(M, &, T), T)

with

(C17)

aH ah ab
ag aM' ag

a'H a'H
aMag aM ag

a2H ag ab, aH ab, ah ab,
ag~ aM ag

+
ag aM aMag ag

—21 aa aa a'a aa+
ag aM agaM ag

aa a'z aa
'

aa
ag ag2 aM ag

a'a a~ a~
aMaQ aM ag

' —3

X(M, Q, T„p)=0,
Y(M, Q, T„)=0,
Z(M, Q, T„)=Z(MT, Qr, T„p),
H(M Q T p) H(Mr gr T p)

b,(M, Q, T )=«h(M g rT„Tp) .

(C19)

Now it is straightforward, but tedious, to obtain the func-
tions X(M, Q, T) and Y(M, Q, T), whose lengthy expres-
sions we refrain to write down explicitly.

As explained in the main text, we need the densities
M~(T„p)=Mp(T«), Q (T«p)=gp(T«p), Mr(T„),
and Qz(T«~) at the critical end point T„„.At T«z Eq.
(Cll) must be fulfilled, since it is a critical point, and
H, b, as well as the pressure p = G(H, 5, T) mus—t be the
same in both the critical phase a=P and the vapor phase
y. Thus, we end up with a system of five coupled non-
linear equations for M, Q, Mz, Qz, and T«~..

M —Mp=&Mr (1+5M(r)), (C20)

The functions X, F, Z, H, and 6 are given explicitly by
Eqs. (C16), (C18), and (C2)—(C4). We solved Eq. (C19)
numerically by iterating suitable initial guesses. Equation
(C19) depends on the two dimensionless parameters K
and C (recall that they are identical to K=X/J and
C =C /J, respectively, in the main text). We scanned the
solutions of Eq. (C19) within that two-dimensional region
in (K, C ) space in which the BEG model leads to a simple
bulk phase diagram by using a grid with 5IC=0. 1 and
5C =0.1.

The solutions of Eq. (C19) deterinine A&z [see Eqs.
(2.11) and (2.23)]. In order to evaluate E„and Ez [see
Eqs. (2.21) and (2.22)] we also need A, & [see Eqs. (2.10)
and (2.23)]. Since along the triple line both M —

Mf3 and
Q —

Q& vanish for r=(T«~ —T)/T„~~o, one has
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Q
—

Qp =~grP(1+5'(~)), (C21)

where f3 is the critical exponent of the order parameter
and 5M(0) =5&(0)=0. Therefore, A, p is given by the am-
plitude ratio

A,~p
—KM /ICg (C22)

In a straightforward calculation one would have to follow
both M —Mp and Q —

Qp along the triple line for each
value of K and C in order to determine A. & by taking the
limit X p(r —+0). This would require us to determine a
whole piece of the triple line for each of the parameters.
In practice this would amount to an enormous numerical
e6'ort. Therefore, it is very convenient that X & can be ex-
pressed explicitly in terms of M (T„), Q (T„„),and

T '

p
which are already known from the solution of Eq.

(C19).
In order to derive this relationship let us consider one

fixed critical point T, on I.2 i.n Fig. l, which we approach
along an arbitrary path on S2 (see Fig. 1). The thermo-
dynamic states along this path are characterized uniquely
by (M, g, T) on the a-phase side of this path and by
(Mp, gp, T) on the opposite side whereby M ~M„
Q, ~g„and T~T, for ~=a,g. Since we are at two-
phase coexistence we have, along this path [see Eq. (C2)],

H(M, Q, T)=H(Mp, Qp, T) .

We can now expand the function H (M, Q, T) around
(M„Q„T,):

H (M, Q, T)=H (M„Q„T,)+
M, Q, T

X(M, —M, )

aH(M, Q, T) aH(M, g, T)

c' c' c M, Q, T

X(T T, )+— (C24)

Combining Eqs. (C23) and (C24) we arrive at also against interchanging B particles with the vacuum.
This means that under the transformation

M, Q, T

aH(M, Q, T)
()M

T,M, +C(Q,2 —M,2)

T,Q, —(Q,' —M,')

M, Q, T

aH(M, g, T)
ap ag

(C25)

J=(J'+K'+2C')/4,
K = (9J'+K' —6C')/4,

C =(3J'—K'+2C')/4,

H = ( —J'+K'+H' —b, ') /2,
6= ( 3J'+K' —4C' —3H' —b, ') /2,

(C28)

Equation (C25) shows that A, p is independent from the
choice for the path approaching the critical point. Thus,
we can choose the triple line as a particular path for ap-
proaching the particular critical point T, =T„. For a
few values of K and C we also tested Eq. (C25) numerical-
ly.

Thus, the numerical solutions of Eq. (C19) determine
Ez and E& which in turn determine sgn[a ( T~T„z) ]
[see Eqs. (2.17)—(2.22)]. Therefore, we are in the position
to check the condition a( T„~)=0+ throughout the pa-
rameter space (K,C). It is sufficient to look at C) 0 be-
cause the grand canonical free energy is invariant under
the transformation C~ —C, K~K, M~ —M, Q —+Q,
H~ H, and A~b, [s—ee Eqs. (C2)—(C5)]. Therefore, we
have [Eqs. (2.10), (2.11), and (2.23)]

the densities are transformed- according to

Q =1—(Q' —M')/2, M= —1+(3Q'+M')/2 . (C29)

[The inverse transformation is just given by interchang-
ing the primed and unprimed quantities in Eq. (C28).]
Equation (C29) means that p„=p'„and p~= 1 —(p'„
+pz). [The transformation pz =pz and p„= 1 —(p'~

+p~) gives rise to still another transformation which
leaves the free-energy invariant, but which we do not
consider here. ] It is straightforward to check that under
the transformation given in Eq. (C28) the line
C=(K —3)/2 is mapped onto the line C '=0. (Here we
used C=C/J, etc. ) On the other hand, we have under
this transformation

and

A. p(K, —C)= —k p(K, C), (C26)
M —Mp

Q —Q

3(Q' —Qp)+M' —Mp

Qp
—Q' +M' —Mp

(C30)

Apr(K, —C)= —
A,p~(K, C) . (C27)

As a consequence iA, (K, C=O)i is either zero or
infinite.

The grand canonical free energy of the BEG model is
not only invariant against interchanging A with B, but X p= 1 for C=(K —3)/2 . (C31)

where the transformed densities correspond to a system
with J', K', O', H', and 6'. If this system is given by
C'=0 one has by symmetry g' =Qp. In this case the
last term in Eq. (C30) reduces to 1. This means that
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A &Db in Fig. 7 is a segment of the line C =(K —3)/2, so
that there k &= 1 and, by symmetry, k &= —1 on 32D, .
This provides a useful check for the numerical calcula-
tion of A, &.

APPENDIX D: BULK PY MODEL

with

—(akg+y„M)
6 2

(D3)

According to Appendix C all quantities of interest
to us in the present context [Eq. (C19) and the first
equation in (C25)] are obtained from three func-
tions: H(M, Q, T), b(M, Q, T), and Z(M, Q, T)= —p(M, Q, T) [see Eqs. (C2)—(C5), (C16), and (C18)].
Using Eqs. (2.4), (2.5), (3.2), (3.3), (3.9)—(3.11), and (4.5),
we find

and (r =R~/R„),

ak =1+r, yk =1—r, k =1,2, 3 . (D4)

Z ( M, Q, T ) = —Tpq ( M, Q ) + —,
' M + —,

' KQ +CMQ,
(Dl)

where

pj, (M, Q)= Q(1+d3+d3)

4 2
—y, (Q —M )(a, +d2r) (1—d3)

(D2)
I

Equations (Dl)—(D3) are written in reduced units so that
all quantities therein should carry a bar. For reasons of
clarity we omit all bars throughout Appendix D as we
did in most of the parts of Appendix C. The correspond-
ing equation for the unreduced quantities can be
retrieved from Eqs. (Dl)—(D3) by performing the
following replacements there: —Z =p —+2 '~ R ~p /J,
T~k~T/J, K~K/J, C~C'/J, M~2 '~ R„M,
Q~2 ' R„g. Similarly, in the following equations for
H and b, one would have to replace H by H/J and b, by
6/J.

2 "((Q™(g™))3yiy2/y3+3 y]y2/y3+ —g(y, —a,y, y, /y, ) (1—d, )
6&&

+—,
' y,d', (1 —d3 ) '+ y3p„(M, g ) —M —CQ (D5)

—, n(g M )+ln(1 —d3)+3 —3 1+ g(a, a —a ) (1—d )—

- a~„(M,Q) +CM+Kg .
6 2 (D6)

Here we used the relation a,yz+ azy, =2y3.
The comparison between Eqs. (C2)—(C4) and Eqs.

(Dl)—(D6) shows that, as it should be, in the low-density
limit Q, M~O the reference contributions of the func-
tions Zp~, Hp~, and Ap~ reduce in leading order to their
counterparts in ZBzz, HBFz, and ABF&,

' the contribu-
tions from the attractive interactions are identical. This
also shows that, as expected, the effect of different sizes of
the particles vanishes in the low-density limit. Therefore,
our results derived for the BEG model remain reliable as
long as the involved densities are not too high. Note that
for r = 1 we have HB&G =HPY so that in this case the two
models differ only with respect to 6 and p.

The ratio r of the diameters, which enters into Eqs.
(Dl), (D5), and (D6) is given by Eq. (B18). It depends on
ro, k&T/J, K/J, and at T„~ on ro, K/J, and C'/J.
Since both R „and Rz are increasing functions of tem-
perature their ratio r exhibits a weaker dependence on
temperature than Rz and Rz themselves. We exploit
this fact by approximating r by ro but keeping the tem-
perature dependence of R~. This good approximation

eases the scan through the whole parameter space K/J
and C/J considerably. Thus, in our numerical results
presented in Sec. IV, we have identified r with ro.

Finally, let us note that the solution of the generalized
Percus- Yevick equations gives the direct correlation
function c '(r, —r2) [see Eq. (A21)] or the pair correla-
tion function h; (r, —r2) of the reference system. The
pressure can be obtained from these functions either by
the virial theorem or by the compressibility relation.
If these functions would be known exactly, the two rela-
tions would yield the same result; however, within the
Percus-Yevick approximation they do not. The formulas
we use in our paper are based on the compressibility rela-
10 64 67

(2) ~$ h
1 —g p;c '(q=O) = /(k~T),

1
Bp.

p;c '(q=O) =5;.—p;
' /(k~ T),

Bp~
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where c '(q) is the Fourier transform of c '(r, —r2).
The reference free energy follows from pz and p» ac-
cording to Eq. (4.2). After the elimination of c~I '(q=0)
Eq. (D7) provides the following relations between the
basic functions Z, H, and 5 [see Eqs. (Dl), (D5), and
(D6)]:

az aa aH
ag ag ™ag'
az aa aa (D8)

BM ™aM
Equation (D8) provides a useful test for the correctness of
the numerical analysis.
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