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Extension of Nagaoka's theorem on the large-U Hubbard model
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An extension is given of Nagaoka s theorem on the existence of ferromagnetism in the large-U
Hubbard model with precisely one hole. The present extension covers a large class of models with
arbitrary non-negative hopping matrix elements and arbitrary spin-independent interactions.

I. INTRQDUCTIQN AND MAIN RESULTS S'=
—,
' g(n;t+ n;& ),

In 1965 Nagaoka proved a theorem' on the almost-
half-filled Hubbard model with infinitely large Coulomb
repulsion U. In certain models he proved that the fer-
romagnetic state becomes the ground state when there
exists precisely one hole. Although Nagaoka proved the
theorem only in regular systems where the ground-state
energy can be explicitly calculated, we found that only
the following four conditions are necessary to state the
theorem: (i) Each hopping matrix element t; is no. n-

negative; (ii) there exists precisely one hole; (iii) Coulomb
repulsion is infinitely large; (iv) the configuration space is
connected. Therefore we can treat the models with arbi-
trary hopping matrix elements and arbitrary spin-
independent interactions, where both can be irregular
and long range.

Let A be a set of N sites. For convenience we order the
elements in A to identify each site with an integer
i E I 1,2, . . . , NI. We study the Hubbard model defined
by the following Hamiltonian:

H=gt, , (c, tc, t+c, tc, ~)+ V( In, t+n, i I )+ Ugn, in, t .

Here c,~ and c; are the standard fermion operators
which create and annihilate, respectively, the electron at
site i with spin o., and n; =c; c, is the number operator.
We consider the subspace where there are N, =N —1

electrons on the lattice. The hopping matrix elements are
arbitrary except for the condition that t; ~0. The in-
teraction Vis an arbitrary real valued function of the oc-
cupation number In;t+n; iI. A typical choice is to con-
sider an on-site potential and nonlocal two-body interac-
tions

V(In, tn;iI )=+V (n, t+n;i)

++8; (n;t+n;t)(n t+n, &),

where V;, 8'. are arbitrary real coefficients. We assume
that the Coulomb repulsion U is infinitely large, thus re-
quiring each site to be occupied by at most one electron.
Finally we introduce the spin operators by

S+=(S ) =pc;&c,.i,

s'=(s')'+-'(s+s-+s-s+),
where the eigenvalues of S are denoted as S(S+ 1).

Here we prove two versions of extended Nagaoka's
theorem. The first one is weaker but does not require the
condition (iv) about the lattice structure. The second one
is a strict extension of the original Nagaoka's theorem.

Theorem I: Consider the Hubbard model (1) with
t, ~0, Varbitrary, U= ~, and N, =N —1. We make no
assumptions on the lattice structure. Then among the
ground states there exist at least N states with
S =S,„:(N —1)/—2.

Theorem 2: Consider the Hubbard model (1) with
t, - ~0, V arbitrary, U = ~, and N„=N —1. We further
assume that the lattice A satisfies the connectivity condi-
tion stated in the following. Then the ground state has
S =S,„=(N—1)/2 and is unique up to the trivial N
fold degeneracy.

To state the connectivity condition (and to prepare for
the proof) we specify the basis we work with. We define
the basis state as

~t, cr &
—( —1)'ct c, . . . c,t,

(2)

where i denotes the position of the unique hole, and
o = Io I

.&; is a multi-index describing the spin of each
electron. The vacuum ~o) is the state which satisfies
c; ~o) =0 for any i, o Two s. tates ~i, o)and .

~j, r) are
said to be directly connected to each other if

&j, r~t,, (c, ,c, , +c~,c, , )~i, o &&0,

and we express this fact by writing (i, a)+-+(j,r). . The re-
lation (i, o )+-+(j,r) naturally introduces a notion of con-
nectivity into our basis space. Also note that whenever
(i, a)~(j, r) holds we have

(j,r/t, , (c,„c,, +c, ic, i)/i, cr ) = t, —

because of the sign convention in (2).
Definition: A finite lattice A is said to satisfy the con-

nectivity condition if all the states ~i, cr ) with the same
value of 5' are connected to each other in the foregoing
sense.

Remarks: (1) Nagaoka has demonstrated that, when t,
is nonvanishing only for the nearest neighbor (i,j ), the
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connectivity condition is satisfied in the square lattice
and in some regular three-dimensional lattices (such as
the simple-cubic, the body-centered-cubic, and the face-
centered-cubic lattices), but not in the one-dimensional
chain. By examining his proof one finds that a sufficient
condition for the connectivity condition is that each site i
in A is contained in a loop (formed by nonvanishing t;1 )

of length three or four and at least one of the sites (except
for i) in the loop is connected (via nonvanishing t; ) to all
the other sites in A without passing through i. For exam-
ple, the triangular lattice and the d-dimensional hypercu-
bic lattice (d 2) satisfy this criterion when t; is nonzero
for nearest neighbor (i,j).

(2) It is obvious (and can be stated rigorously) that,
when the conditions of theorem 2 (except that U = ae) are
satisfied, the statement of the theorem is true for finite
but sufficiently large U. However, a crude estimate does
not provide any information about how large U should be

I

for a given X.
(3) Although it is very interesting to extend the

theorem to the cases where there are more than one hole,
our proof can hardly be generalized. An artificial way to
make the present proof applicable to such models is to
impose a constraint which makes the holes distinguish-
able from each other. (For example, one declares that
when holes hop, they must preserve their relative order-
ing induced by the ordering of the lattice sites. )

II. PROOF

Proof of theorem 1: Let ~%') =g~; ~g; ~i, tr ) be an
arbitrary normalized state. Let us define a state
~4) with S =S,„as ~@)=g;P; ~i, I & I ) where
p; = ( g ~ 1(; ~ )

' and the multi-index ( g I represents
that all the electrons have upward spin. Then it is easy to
see that

&+[V(I;,+;,I)Iq'&= y I@;,.I'&, II'I, &=&IA;I'&, t 1'III'I, III &=&@I«I; +; J)l@&,
(i, o. )

&+It;, (c tc, t+c tc, t)le&= y (
—t;, )q,„@;,.~( —t;, )4,4, =&@It;,(c tc, t+c tc, t)lc'&,

where the sum in the second equation is over o. , v. such
that (i, o )~(j,r). We have used the Schwarz inequality
to get the second inequality. These relations imply that
the expectation value of the energy of the state

~
@) is al-

ways not larger than that of the original state ~%). Then
the statement of the theorem follows by taking ~'P) as
one of the ground states and using the global SO(3) sym-
metry of the system.

Proof of theorem 2: One way to prove the theorem is to
investigate when the foregoing Schwarz inequality is sa-
turated. But there is a shorter (and almost trivial) proof
which makes use of the Perron-Frobenius theorem. Let
us examine the matrix elements of H in our basis. As we
have noted before the off-diagonal element (j,&~H ei, cr)
is nonvanishing only when (i, o )~(j,r), and is equal to

—t, Moreover, the connectivity condition ensures that,
in a sector with fixed S, the matrix I (j,r~H ~i, o ) I is in-
decomposable. Then, by taking M= —H, the Perron-
Frobenius theorem implies that, in each sector with fixed
S, there is a unique state with minimum energy, and the
state is a linear combination of all ~i, cr ) (with the given
S') with positive coefficients. Since such a state has
S =S,„and the system has a global SO(3 ) symmetry we
have proved the desired theorem.
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4Let M = IM,, I be an XXN matrix with M,, ~0 for iAj. We
assume that M is indecomposable in the sense that, for any
i,j, there is a sequence (i~, i2, . . . , ix I with i =i, , j=i', and

M;; %0 for all k & K. Then the Perron-Frobeniusk'k+1
theorem states (among other things) that the eigenstate of M
with maximum eigenvalue is unique (up to normalization),
and can be written as a linear combination of all the basis
vectors with strictly positive coe%cients.


