
PHYSICAL REVIEW B VOLUME 40, NUMBER 13 1 NOVEMBER 1989

Resonances in recombination of atomic hydrogen due to long-range H3 molecular states
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We present a calculation of the effective rate constant for three-body recombination, taking rear-
rangement into account. We find a pronounced resonance structure as a function of magnetic field

due to long-range rovibrational states of H3 in an almost equilateral configuration. This structure is

superposed on a rather fiat background with a slow decrease below 10 T. The results are compared
with experiment.

I. INTRODUCTION

A vital and still unanswered question in the field of
spin-polarized atomic hydrogen is the following: Will the
finite lifetime due to collisional processes be longer than
the time required for the establishment of the Bose con-
densed state? Theoretically this problem is far from set-
tled and experimentally one has still not been able to
reach a definitive conclusion, the present situation being
that both the low- and high-density schemes, using
traps' or compression of hydrogen bubbles, respective-
ly, are plagued by large decay rates.

However, to arrive at the Bose condensation regime,
the density and hence the number of collisions per unit
time may be kept at an acceptable minimum if one is able
to cool the trapped atoms sufficiently or to affect directly
the decay constants, which govern the time evolution of
the system. The former goal may be achieved by using,
for instance, evaporative' or laser (Lyman-a) cooling,
whereas the rate constants can be manipulated by a varia-
tion of external parameters such as the detuning of a mi-
crowave trap or the applied magnetic field.

The last possibility is especially suited for the high-
density scheme and has stimulated the study of the
three-body (dipolar) recombination process at very high
field strengths both experimentally as well as theoretical-
ly. The first theoretical study of the dipolar mechanism
was a breakthrough in-=the understanding of the proper-
ties of doubly polarized atomic hydrogen gas at high den-
sities. However, the analytic treatment showed a strong
discrepancy with the experimental field dependence
below 10 T. In view of the fact that the interest concen-
trates on values of the magnetic field for which the
recombination rate is small, it is of importance to develop
a more detailed picture of the recombination process.
From the start, the role of spin-exchange taki. ng place
after the dipole transition was recognized as an important
effect: the dipole-exchange mechanism. This mecha-
nism is contained in the f 2 amplitude of Ref. 8, which
was considered negligible in that investigation. An exact
evaluation' of the f", amplitude confirmed that this part

alone does not explain the recombination rate below 10
T. Also, a model which takes into account (in)elastic
atom-molecule scattering with a fixed bound pair and
symmetrizes afterwards was unsuccessful, ' in agree-
ment with the fact that dipole exchange can only be in-
cluded by allowing all pairs to be bound. The most re-
cent indication that such a model is indeed unsuccessful
comes from a comparison of the above-mentioned experi-
mental and theoretical work in Refs. 6 and 7.

In the present paper we present a calculation which in-
cludes dipole exchange in an approximate way. As we
will show, this approach provides for a qualitative ex-
planation of the slowly decreasing field dependence below
10 T and in addition suggests that the high rates found in
recent high-Geld measurements may be due to a reso-
nance effect caused by quasibound S =

—,
' states of the H3

molecule, In the picture we propose, the resonance effect
enhances the dipole-exchange mechanism at certain
values of the final atomic kinetic energy, i.e., at certain B
values.

The paper is organized as follows. In Sec. II we indi-
cate how the rearrangement channels can be included, ex-
tending our previous calculations' of (in)elastic atom-
molecule scattering in such a way that all particle pairs
are treated symmetrically from the beginning. In Sec.
III A we give the results of the numerical evaluation of
the model: We present the recombination rate constant
in the magnetic field range 0—40 T and extract some in-
formation on the rovibrational relaxation of highly excit-
ed H2 molecules, which is of interest in its own right be-
cause it is to a large extent responsible for the undesirable
heatup of the gas sample. The pronounced resonance
structure which shows up in the decay rate is explained in
Sec. III 8 in terms of quasibound rovibrational states of
H3 We end with some conclusions and suggestions for a
better description of these states.

II. RESONATING-GROUP THEORY

To make the paper self-contained and to set up a con-
venient notation, we brie Ay summarize some well-
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where we assume an additional recombination event on
the helium surface after a double spin-Hip process, be-
cause the outgoing atom will be in a ~c ) state.

Both initial and final states are eigenstates of the Ham-
iltonian

H=HO+ V, (2)

which includes the central (singlet or triplet) interactions
between the hydrogen atoms. Using the spectator-index
notation we write

V= g V~—= V~+ V

and define the channel Hamiltonian

H~ =HO+ V (4)

The operator Ho is the sum of the kinetic energies in the
center-of-mass system and the Zeeman energies of the
three atoms. Note that we neglect the possibility of a
three-body force, which appears justified since in the ini-
tial state all particle pairs experience a strongly repulsive
triplet interaction, while in the final state the molecular
states involved turn out to be highly excited. In both
cases at least one pair has a large separation. Further-
more, the influence of the hyperfine interaction is neglect-
ed in the final state, being a small higher-order effect.

In Refs. 9 and 10 we obtained the exact initial state
~
/%I+ ' ) of three incoming spin-polarized hydrogen

atoms, using the Faddeev formalism. Although this for-
malism is also applicable to the final atom-molecule state
~4%I '), it is beyond the computational power of present
supercomputers and we have to resort to an approxirna-
tion. As a first step to a better understanding of the un-
derlying reaction mechanism we formulated' ' a model
in which (in)elastic scattering was taken into account but
rearrangement was excluded, selecting one pair to be
bound throughout the scattering process and symmetriz-

known" facts about the bulk three-body recombination
constant I. . Two-body relaxation calculations' have
shown that it is sufficiently accurate to treat the magnetic
dipole interaction as a first-order perturbation. In addi-
tion, without the typical logarithmic energy dependence
which prevails in two dimensions, and because the
highest excited states of H2 have at least a binding energy
of 70 K, the rate constant is expected to vary very slowly
in the experimentally accessible temperature range of
T & 1 K. Hence it is permitted to take the -zero-
temperature limit.

Within the framework of these approximations I.g
reduces essentially to a squared matrix element of the
(electron-electron) magnetic dipole interaction between
symmetrized initial and final states, denoted by ~X%I+')
and ~4'4I '), respectively, summed over all possible final .

states. To aid physical insight we point out that the com-
plex conjugated (i.e., time-reversed) configuration space
wave function S%& " describes an atom-molecule col-
lision. In terms of single and double spin-flip (SF) pro-
cesses the effective rate constant becomes

Le (B)=LisF(B)+2L2sF(B)

a

IW. &
= g f dp p' f dq q'q. l(p) l IA(q)

lk

X ~pq (lA. )LM ) ~(s—')SM, ). (6)

using the usual Jacobi coordinates and angular momen-
tum basis in momentum space. ' In addition, g,&(p) is

the known singlet (s =0) bound state of pair a having the
quantum numbers (U, l) and g„&&(q) are unknown func-
tions used in the variational principle (5) which describe
the relative motion of atom cz compared to the center of
mass of the bound pair. We recall that in the zero-
temperature limit the final state ~S%& ') has the quan-
tum numbers L =2 and S =

—,', while MI = —1 (
—2) and

Ms = —
—,
'

(—,') in the case of a single (double) spin-flip pro-
cess. Furthermore, parity conservation requires l +A, to
be even. Because the total wave function is symmetric
under permutations of the hydrogen atoms, only odd l
values are allowed, g„I& does not depend on o., and the
vectors ~g~) are related to each other by a cyclic permu-
tation. It is important to point out that if we added to
the bound states y„&(p) the continuum of singlet scatter-
ing states pz&(p) the complete Hilbert space would be
spanned by Eq. (6) and the variational principle would
give an exact solution of the three-body Schrodinger
equation.

Performing the variation within the subspace defined
earlier, we easily find the one-dimensional coupled in-
tegral equations for the functions g„&i(q):

5(q —
qg )1

rl„ii„(q)= [1—
(
—1) ~ j5,„5„5i

qq&

+ 1

E —E„—3q'/4m„

X g fdq'q'V. D , 'I'i'(q q')n. ii.. (q'.»

where we made use of the linearity of the equations to
simplify the inhornogeneous term. ' This term corre-
sponds to the physical requirement that ~S%& '} con-
tains asymptotically the plane waves

ing afterwards. Here we present a formulation which is
symmetrical in all pairs from the start and hence leads
automatically to the inclusion of rearrangement (the
dipole-exchange mechanism). The subtle difFerences be-
tween these two approaches will be made more explicit.

Resonating-group theory' is based on the variational
principle

(5eiZ —air & =0,
where ~5% ) and

~
4 ) are confined to a subspace of the to-

tal Hilbert space. The subspace to be used includes all
possible open channels of atom-molecule scattering below
the breakup threshold, with definite quantum numbers of
total orbital angular momentum L and total electron-spin
angular momentum S to be specified shortly. This sub-
space is spanned by
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with the total energy

E =E„ i +3q~/4mH .f f

Moreover, E,i is the energy of the bound state (v, l), mH

lfthe hydrogen mass, and the factor [1—( —1) ~] is a conse-
quence of the statement made previously: Only odd
values of the H2 molecular angular momentum are al-
lowed.

Introducing the operator P =P,2P23+P, 3PQ3 i.e., the
sum of the two cyclic permutation operators, we find for
the "interaction" matrix of Eq. (7)

V lk. , 'i'i. '(q q')= f dp ~'q. i(S)fdp'P' q, i (p') &pq (I~)L~L l.& (o-,' )-,'Ms
I

x [( I+P) v P(E—H. )—)lp'q'(I'A, ')Liv, &.l(o-,')—,'M &. .

To see more clearly that rearrangement is indeed in-
cluded, we consider the V and PV terms. The former
gives rise to (in)elastic scattering without rearrangement.
With only this term we recover the model of Ref. 10. In
the context of the above-mentioned variational method
this result is obtained if we asymmetrically restrict the
subspace in which we solve the Schrodinger equation to
all open channels (below breakup) of one particular pair
o.. In contrast, the term PV is responsible for the rear-
rangement process, since effectively a different particle
pair is bound at either side of V . Finally, the contribu-
tion P(E H)—acco—unts for the nonorthogonality of
the vectors lP &. Intuitively, it guarantees that the Born
series of Eq. (7) contains all possible interactions between
the particles only once.

Formally Eq. (7) is identical to a two-body Lippmann-
Schwinger equation and can be solved in the usual way
by the introduction of the half-shell T (transition) matrix:

T lk, I A. (q qy E)= X f dq' q'V. li., 'i'i'(q q').'ff f

xg, i.i (q') .

To evaluate the "interaction" matrix numerically we
rewrite (1+P)V as V P +PV P and use the angular
momentum representation of P In the case of PV P
this leads to a sum of triple integrals. Each of the triple
integrals can be reduced to an integral over a product of
two integrals if we use cubic splines' to interpolate on
the momentum arguments of the V matrix. This pro-
cedure reduces the computational effort considerably but,
nevertheless, the evaluation of the matrix elements of
PV P is the most time-consuming part of our calculation.

half-shell T matrix with a dimension of 1450. The inver-
sion of this equation is performed by an LU decomposi-
tion of the kernel. As mentioned earlier, the main prob-
lem of the calculation is associated with the term PV P
in the "interaction" matrix. Using the set of channels
given, we had to sum over all angular momenta up to
l =9 in the calculation of this term. Fortunately, it turns
out that only (13,5), (13,7), (14,1), and most importantly
(14,3) contribute significantly as final outgoing states to
Leff

Before we present the results for the rate constant, we
note that it is possible to extract immediately information
on the collisional rovibrational relaxation of H2 in the
'X+ electronic state, since we also evaluate the on-shell T
matrix. In Fig. 1 we summarize the branching ratios for
the dominant elastic and inelastic relaxation processes

0—

v=14

-1000—
v =13

-2000—

III. RESULTS AND DISCUSSION

A. Numerical results

We solved the model described in the preceding section
using Gauss-Legendre quadrature points to discretize the
integral equation. To find converged results for the
recombination rate constant Lg we had to include all ro-
tational levels with v =12,13,14 and in addition the (v, l)
states (6—11,1), (g —11,3), and (11,5). This leads to a total
of 57 channels and a complex matrix equation for the

—3000—
l=5 l=7

FIG. 1. The branching ratios (in %) for collisional rovibra-
tional relaxation of highly excited H2 molecules. Also indicated
is the percentage for elastic collisions.
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FIG. 2. The effective rate constant for three-body dipolar
recombination of spin-polarized atomic hydrogen as a function
of magnetic field. Part (a) shows the range 0—40 T, while part
{b) gives Lg below 10 T, in which range most of the experi-
ments have been carried out. 1: The results of Refs. 10 and 7,
without rearrangement. 2: The results of the present calculation
including rearrangement. The experimental data is obtained
from Refs. 3 and 6.

from the (14,3) state downwards to the U = 12 and 13 ro-
tational levels in an L =2 collision. The probabilities de-
pend, of course, on the relative momentum of atom and
molecule and we have taken a value in agreement with
the experimental situation at B=10 T, in which case the
hydrogen molecules in the (14,3) state are formed in a
recombination event with a kinetic energy of the order of
25 K. From these results we conclude that on average
the (14,3) molecule loses an energy of about 170 K in the
first collision with a b atom in the gas. Note that in our
calculation only a total orbital angular momentum L =2
is used. In a more complete treatment of the collisional
relaxation angular momenta L =3 and 4 would also have
to be included. In view of this we do not give absolute
cross sections but only branching ratios, which should at
least give an impression of orders of magnitude.

%"e now turn to the determination of L' . In Fig. 2 we
give the three-body recombination rate constant as a
function of applied magnetic field and compare both with
experiment ' and our model without rearrangement.
Neglecting for a moment the resonance structure, which
we discuss more thoroughly in Sec. IIIB, we notice in

general an almost magnetic-field-independent behavior of
the background. Physically this can be understood as fol-
lows: Kagan's model predicted a steep increase of L' as
a function of magnetic field, with a strong maximum
around 15 T. This behavior can be explained on the basis
of the overlap in momentum space. The initial state con-
tains three almost immobile atoms and in the final state
the atom-molecule interaction is omitted. Since the mag-
netic dipole interaction induces only small momentum
transfers, there is a strong preference for a slow final out-
going atom. On the other hand, phase-space arguments
associated with the small qf values explain the decrease
of L~ beyond 15 T. Introducing an atom-molecule in-
teraction in the rather weak form —' V' '+ —,

' V" ', as we did
in Refs. 7 and 10, shows already a tendency towards flat-
tening. Although the repulsive V' " and the attractive
V' ' largely compensate one another in the relevant range
of interatomic distances, the final state already contains
such a range of momenta for any asymptotic qf that the
preference for smaller qf is reduced. Much higher mo-
menta are coupled in when the full singlet or triplet in-
teraction V" (depending on the parity of the relative an-
gular momentum) is operating. We believe that this is
the essential reason for the experimental behavior below
10 T, most clearly displayed by the MIT data, which even
show a slight decrease. It follows from the preceding ar-
guments that any future extension of the approach of the
present paper, including the full strength of V", will lead
to the same qualitative feature of the Lg curve.

For fields in the range 10—20 T, we find a resonance-
like behavior with maximum values far above the back-
ground. As we will describe in Sec. III 8 the explanation
for this behavior is very different from the overlap argu-
ments explaining Kagan's maximum. Although Kagan's
model is in better agreement with the high-field data than
our resonating-group approach [see Fig. 2(a) of Ref. 6],
we stress that in our opinion it does not contain an essen-
tial ingredient. On the basis of the analysis of Sec. III 8
we believe that the recently measured high L' values can
instead be explained by a bound-state calculation of the
H3 molecule, which is, however, outside the scope of the
present paper.

Quantitatively, there is still strong disagreement.
Below 10 T our Lg is a factor of 2 too small. In addi-
tion, the resonance peak at higher fields is too narrow
and also does not have the correct position. As we will
show shortly, this is due to an inadequate treatment of
the resonances. To describe them correctly one needs to
add singlet scattering states to the subspace defined by
Eq. (6). However, due to divergences in the expressions
for the "interaction" matrix, it is not possible to do so
directly. One possibility is to include some bounded wave
packets into the variational principle. Since a wave pack-
et is not an eigenstate of the channel Hamiltonian, this
results in a much more complicated equation which does
not have the structure of a two-body Lippman-Schwinger
equation. In any case it is useful to have more informa-
tion on the wave function of the resonance states. This
will enhance physical insight into the reaction mecha-
nism and may ultimately lead to an adequate description
of the recombination process.
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B. H3 resonances

A convenient way to treat resonant scattering is by
means of the Feshbach formalism. ' To do so we divide
the total Hilbert space into two subspaces, conventionally
denoted by P and Q, containing the open and closed
channels of the scattering problem, respectively. Bound
states in Q space then correspond to resonances with
finite lifetimes, because of the coupling between the two
spaces.

In our case these subspaces can be characterized by the
adiabatic states of three hydrogen atoms in a 1s E' elec-
tronic configuration, having a total electron spin S equal
to —,'. The potential surfaces are found by diagonalizing
the 2X2 matrix

V„(Ir I)= ((s—,')SMsi Vi(s' —,')SM )

which depends parametrically on the distances jr I be-
tween the particles. Introducing the notation

V(r )=[V"'(r )+ V' '(r )]/2

configuration, described by S& and S2, cause a steep
linear' increase in the potential energy. Physically, this
means that the H3 molecule carries out small-amplitude,
rapid vibrations around an equilateral configuration that
is vibrating more slowly with a large So amplitude. In
the following we, therefore, consider only potential terms
up to first order in S, and S2 but take aH orders of So
into account.

The Hamiltonian of the rotating and vibrating non-
linear molecule is given by' '

H =—(L—j)p(L —j)— Tr(p)
1

2 8

g2 Q2 + Vg( IS; I ),2mH, . ()S,2

where L—j is the rotational angular momentum, j the vi-

and

&( )=V"'(r ) —V'"(» )

we easily find for the eigenvalues

Vg p(tr I)= g V(r )

+—,
' 'gA'(r )

—g A(r )A(r )' ' '~,
a a(a

(10)

with Q(P) corresponding to the +( —) sign. If atom a'
is far away from the other two atoms, these energy sur-
faces reduce to the singlet and triplet potentials:

leading to the conclusion that below breakup the open
and closed channels of the atom-molecule collision can
indeed be associated with the adiabatic states of the
three-atom system.

We now concentrate on Q space. For fixed g V(r )

the energy surface has a minimum if the atoms are in an
equilateral configuration, because in that case the square
root in' Eq. (10) is zero. Therefore, one would like to in-
troduce coordinates to describe the vibrations around
this configuration. Since the depth of the Q potential sur-
face is about 17 000 K and the calculations of the preced-
ing section show resonances with binding energies in the
range of 35—50 K, we are especially interested in highly
excited states near the continuum ("long-range H3 mol-
ecules"' ). In this case the usual normal coordinates are
not adequate. However, it is possible to introduce the
(external) symmetry coordinates' of an equilateral trian-
gle having symmetry D31„which we denote by S;
(i =1,2, 3).' In Fig. 3 we see that So corresponds to the
symmetric-stretching mode, whereas S, and S2 are two
possible bending modes of the H3 molecule.

The square root in Eq. (10) reducing to zero in the
equilateral configuration, small deviations from this

FICi. 3. The vibrational (external} symmetry coordinates S;
of an equilateral triangle.
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~ SA a SA a
2i aS, '~. ~S2

(12)

Up to first order in SI and S2 the tensor p turns out to be

brational angular momentum, and p the reciprocal iner-
tia tensor, all defined with respect to an Eckart frame '

moving with the molecule. If we choose, in particular,
the frame attached to the instantaneous orientation of the
equilateral triangle we And that the vibrational angular
momentum is perpendicular to the plane of the H3 mole-
cule and equal to

2
p

mHS(

S0+2Si 2S2

2S2 S0 2S I

—'So
(13)

0=H' '+H" +H' '+ V (14)

with

Substituting these results into Eq. (11) and introducing
polar coordinates (S„,8) instead of (S„S2) we find the
Hamiltonian

iri 80"'+H"' + V= — +
2m~ ()S02 ~ [2L (L +1) K+—2KN+N —

—,']
2mHS0

fi 8 g2+3V(SO) —
2

+
2 (N ,')+p(—SO—)S,

2m~ BS„2mHS„

and H"' a small perturbation due to the Coriolis force,
which couples the rotation and vibration of the molecule.
Explicitly it reads

S,Hcor (ei9L 2 +e i9L 2—

mHS03 (16)

:—3 V(SO ) +p(SO )S, ,

which shows the above-mentioned linear dependence of
the potential surface on S„.

Neglecting the Coriolis coupling for a moment we see
that both K and X are good quantum numbers, because
of the D&h symmetry of the Hamiltonian of Eq. (15). The
splitting of a particular vibrational level of the stretching
mode, due to both the bending modes and the rotation of
the H3 molecule, is shown qualitatively in Fig. 4(a), where

In the foregoing expressions we have written the eigen-
values of I., and j, as AK and —AX, respectively. Furth-
ermore, in agreement with the approximations made, we
have also expanded V&( IS; I ) up to first order in S„ lead-
ing to

3 db(SO)
Vg( IS; I ) =3 V(SO)+ — S„

0

the states with odd parity (K =+1) are not considered,
since they do not participate in the recombination pro-
cess (cf. Sec. II). Also indicated is the degeneracy and the
(D 3 ) symmetry class of the states.

Including H"' breaks the D3& symmetry down to D3
and removes the degeneracy of the energy levels as is
shown in Fig. 4(b). Only the levels corresponding to an
E-type symmetry still have twofold degeneracy, which
can be characterized by the conserved quantum number
2X —K. Most importantly, we note that the spectrum of
the (perturbed) N =+1 states corresponds to the spec-
trum found in the calculation of Sec. IIIA, keeping in
mind that the single and double spin-Hip contributions to
the rate constant cause the repetitive structure of L~ (B)
at twice the magnetic field strength. From the numerical-
ly observed splitting between the two E-type levels we
can estimate the average distance (So) between the par-
ticles to be about 7a0. This gives the reason why the res-
onances are inadequately treated in our model: In the
singlet bound states that span the subspace (6) the parti-
cles have on average a separation of at most 5a0, the
(14,3) state having the largest dimensions. We thus have
to include scattering states to make it possible for the
particles to have larger separation. Extending the sub-
space in this manner we expect the resonances to be
much broader, because the coupling with the P space is
enhanced, leading to a shorter resonance lifetime.

E, 2 A)
E

A
A)

1

E
IV. CONCLUSIONS

A)

E

FIG. 4. The energy splitting of a vibrational level of the H3
stretching mode due to the bending modes and molecular rota-
tion. (a) Without Coriolis coupling. (b) With Coriolis coupling.

We have shown that in the three-body recombination
process of spin-polarized atomic hydrogen, resonances
play a crucial role and come into play when the possibili-
ty of rearrangement is included. In addition, we have
identified these resonances with adiabatic states of an H3
molecule in an abnost equilateral configuration. Nonadi-
abatic effects, due to the 5nite kinetic energy of the
atoms, lead to decay and therefore to a 6nite resonance
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lifetime. Our resonating-group method is able to explain
the slow decrease of the recombination rate below 10 T,
as well as the occurrence of a much higher recombination
rate at stronger fields. Despite this qualitative agreement
with experiment, some features require a more thorough
analysis which is at present out of reach: Below 10 T our
results are still a factor of 2 lower than experiment, while
the resonance peaks at higher fields are too narrow and
occur at too low a field value. This discrepancy requires
a more adequate treatment of the H3 resonance states,
which are expected to have much wider interatomic sepa-
ration than even in the case of a (14,3) H2 molecule. In-
cluding singlet scattering states to allow for a large sepa-
ration seems to be diScult in the context of the
resonating-group theory, since it involves nonlocalized
wave functions. One possibility would be to use wave
packets instead.

Another approach, which has the advantage of using

eigenstates of the channel Hamiltonian, was successfully
applied to the triton and may also be used here. Since
the three-body breakup channel is closed, the two-body
continuum neglected in the ansatz (6) has to build up
only a decaying state. Therefore, the channel Hamiltoni-
an can be supplemented by an auxiliary confining poten-
tial conveniently chosen as a harmonic oscillator. This
procedure leads to a discrete representation of the contin-
uum and thus to a natural and rigorous extension of the
calculations presented here.
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