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Mean-field theory for vacancies in a quantum antiferromagnet

Boris I. Shraiman
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

Eric D. Siggia®
Ecole Normale Superieure, 24 rue Lhomond, Paris, France
(Received 31 May 1989)

The vacancies in a quantum antiferromagnet have dipolar interactions mediated by antiferromag-
netic (AF) spin waves. An effective Hamiltonian incorporating this effect is studied within a mean-
field approximation. The ground state is found to be an s- or d-wave superconductor. In the
strong-coupling regime the superconductivity coexists with the incommensurate spiral AF order.
The analysis is limited to the regime where the AF correlation length is larger than the distance be-

tween vacancies.

The observation of antiferromagnetic correlations' and
superconductivity? in CuO-based compounds has made it
important to learn more about the effect of antiferromag-
netic (AF) correlations on the charge carriers in CuO
planes. Starting with a Hubbard model for electrons with
on-site repulsion at the density close to one per site,’ one
arrives at the problem of mobile vacancies in a quantum
antiferromagnet described by a “¢-J”’ Hamiltonian

HO = tz Er +aCr +str Sy ta s
ra ra
where a =X,, the spin-1 fermion operator ¢, is re-
stricted to single occupancy, and s,=¢,7c, is the local
spin.

Our analysis here is based on the assumption that the
AF order, which is known* to be present in the ground
state of H, at zero vacancy concentration n =0, persists
for small n <<1 at least within a finite AF correlation
length £&. We assume that £ is larger than the intervacan-
cy distance and hence approach the problem from the
AF-ordered side. Since the AF correlation length (at T
not too high) is determined by n, our assumption can be
verified a posteriori; in Ref. 5 we have argued that
&~n "1 and hence in the n —0 limit is much larger than
the vacancy Fermi wavelength k, !~n ~172,

From earlier work® ™ ° we know that the ground state of
a single vacancy in an antiferromagnet lies at the center
of the magnetic zone face and involves a dipolar distor-
tion’ of the staggered magnetization. The latter leads to
long-range dipolar interactions between the vacancies. In
Ref. 5 we have argued that for ¢ <n <<1, this interaction
leads to the ordering of the AF dipole moments associat-
ed with the vacancies, which in turn leads to incommen-
surate spiral AF order of the background spins described
by

(Ox0,0)=P,#0

with |P,| ~n.
Another consequence of the dipolar interactions is su-

perconducting pair correlation, which we explore in the
following. We shall do that on the basis of a phenomeno-
logical Hamiltonian for the vacancies with four-fermion
interactions. This H. incorporates the low-frequency
part of the spin-wave mediated interaction between va-
cancies and can be derived from the “z-J”’ Hamiltonian
H, (at least in the perturbative parameter range, t <<J)
by integrating out the spin waves. (We emphasize that
the interaction originates from the fluctuations of the
direction, rather than the magnitude, of the staggered
magnetization.) For this effective Hamiltonian we find,
within the mean-field approximation, that the ground
state is an s- or d-wave superconductor with the gap A
scaling with the Fermi energy (which for ¢/J >>1 and
low vacancy density n <<1 is of order nJ). The s- and d-
wave channels are degenerate in the low-density limit be-
cause of the structure of the Fermi sea (which consists of
four valleys). We shall define a phenomenological cou-
pling constant g characterizing dipolar interactions in the
following. The weak coupling limit, g <<g,~1, is BCS-
like with A~nJ exp(—2/g). For g > g, the ground state
acquires a dipole polarization corresponding to the spiral
AF state as expected on the basis of the one-particle pic-
ture of Ref. 5. The superconductivity, however, persists
in the polarized phase as well.

In the following we shall introduce the effective Hamil-
tonian and present the mean-field theory results. To
derive H. we factorize’ the electron operator (con-
strained to single occupancy): c¢,,=v%z,, where ¥
creates a vacancy on site » which belongs to sublattice
a= 4,B and z,7, is the Schwinger spin boson. The expli-
cit sublattice index is introduced because in the spin-wave
ground state the unit cell is doubled; more generally it
can be argued that « labels the spin of the vacancy. (The
ground state of a vacancy has the total spin 1.) In the
spin-wave approximation we take

_ ¥
zA=(1—1la/a,,a,)

and
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zP=(b,, 1—1bb,) .

Substituting into H one obtains

How=—4N""SPME, (yeal+v,4,b_,)+H.c.
k,q

+4J3[afa, +bi bl +y lab_, +H.c)], (1)
k

with
Vi =3(cosk, +cosk,) .

Integrating out the spin waves yields a four-fermion in-
teraction, the static part of which is

Hiy=—8N >3 VK .UM, 08 v, @
k,k',q

where g0=2t2/J is the coupling constant, and the in-
teraction has the form

VK, )=1=y ) V=74 Ve = Vit g)
FA+y ) Wrr gVt Viag¥e) - 3

|

In the effective Hamiltonian it is convenient to explicit-
ly include a one-particle dispersion term g, ¢ ¢9¢. This
band energy term arises as a zero frequency part of the
fermion self-energy'®® as derived from Eq. (1); alterna-
tively it appears in the Hartree-Fock factorization of Eq.
(2). It has been observed® ® that the minimum of g,
occurs at the face centers of the magnetic zone boundary
(see Fig. 1). Although various approximations®™® indi-
cate that the band is strongly anisotropic, being relatively
flat along the zone face, in the following, for the sake of
simplicity, we will take e, ~im ~'(k —k,)* in each of
the four valleys k,=(xw/2,£tm/2). In the perturbative
regime ¢ /J << 1, the bandwidth m ~!is of order t2/J. (In
the strong-coupling limit ¢/J >>1 it has been argued8
that m ~!~J; one also expects the same scaling for the
renormalized coupling constant, i.e., go~J.) Next we ob-
serve that for low density of vacancies only the states
close to the zone face centers are important, and there-
fore we can approximate V(k,k’,q) assuming that
k,k',k+q,k'+q are all close to k,. Since y, vanishes
on the zone boundary, the second term in Eq. (3) is small
compared to the first,!' and the interaction potential is
effectively

[sin(1g, )sin(k, +1g,)1[sin(1g, )sin(k, +1g,)]

Vik,k',q)=V(k,k',q)=

(sinlg,)*(coslg, )

, 4)

which has the dipolar character. The latter is not surprising in view of the dipolar nature of the coupling of the vacan-

cy to the transverse distortions of the staggered magnetization.’

effective Hamiltonian takes the form

Heﬁ": 2

k,a= A,B k,k',q

Finally, with all the aforementioned remarks, the

(ex —pIPEUVE—gN 2 3 VUK, @il o 0 f it (5)

where we have chosen m ~! as the energy unit, defined a dimensionless coupling constant g =mg,, and introduced the
chemical potential u. Although our derivation implies g ~O(1) in both weak and strong coupling, we shall take a
broader view, interpreting Eq. (5) as a phenomenological Hamiltonian and exploring the behavior it describes as a func-
tion of g >0. Our analysis will be the straightforward mean-field (MF) approximation,'? and will differ from the BCS
theory only by virtue of the appearance of the dipolar polarization® (or spiral) order parameter.

Let us proceed by introducing the superconducting order parameter

, ,~| k+k' k+k’
A =3 Twli=83"V 5 5
k' k'

k—k' (g fp2y) ()

(where £, = (¢ /142, ) and the prime on the sums denotes that they are normalized by the number of sites N). The di-
polar polarization order parameter is

Qi = —gsin(k,)Q, = —g sink, 3 'sink (¢ fyF.) . (7
<
The MF Hamiltonian then has the form
Hyr=3 e P iPi+ SO PR — S ARy +Hoc. +2 QP+ 135, A, +H.c.) . ®)
ka k k k
It is convenient to write H yp in the form
Hyp=1®M P +const
in terms of a four-component operator

d)k:(lplf’ 1!’?? Jﬁk’ Jgk)
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with the definition
€k o, 0 —A,
O en Ay 0
M= 9
0 Ay g O ©)
—A 0 QO —g
The matrix M has two pairs of eigenfrequencies:
i (k)={[ef +|ALIP+ Q) | TAReAL A L] 21| Q 112+ AL P— Q| " H(ReASA L), (10)

where A}, =(A, +A_;)/2 is the s- or d-wave (depending
on the assumed symmetry with respect to rotation
. of k) singlet superconducting parameter, while A} =(A,
—A_;)/2 is the p-wave triplet. Although we have car-
ried out the analysis of the general case, since in the end
we found that A’=0 for all g, to simplify the presenta-
tion, we restrict ourselves to the case of the pure singlet
right away. In the latter case the form of w,.(k) is greatly
simplified.

The quasiparticle operators x7 (with o=x=) corre-
sponding to the positive frequencies have the form

o 1 7, 7
xk=v—,§ua<k><¢f~o¢£)+%ug<k><¢fk+a¢§k> ,
(11)
where

u, (K)=2)""[1+w; (e, +0|Q, ]2
and

vi(k)=1—ul(k).
We have

HMF::kE 0 (KX IXf—1)

+ e +g QP+ LS (E A +Hoe.) . (12)
k k

-m 71N ky

-

FIG. 1. The structure of the reduced Brillouin zone and the
four valleys of the Fermi sea.

The MF ground state is annihilated by the quasiparticle
operator x7/0)=0. The self-consistent values of the or-
der parameters are obtained by minimizing {O|Hg|0)
with respect to Q, and §,. The MF equations are

Ak’:%Erkk'Ak[wil(k)—Fw:l(k)] ) (13)
K

e 10|
Cl)+(k)

er — Okl

w_(k)

O
Okl

Q= +sink, > sink
k

(14)

The chemical potential u, which has been absorbed into a
shift of g, is fixed by the density constraint

e 10kl
Ct)+(k)

g — 10kl _
2T k)

n:%zk" (15)

To further simplify the analysis we neglect the depen-
dence of the order parameters on k within the valleys
defining A,~A; and Q, =@ , which is reasonable when

the number of vacancies is small. Assuming A,=0 yields
exactly the result of Ref. 5, i.e., the dipolar polarization
appears!! for g > 1 and Q, =2 (7g/2)n where =% or J.
More generally one finds in the weak-coupling regime
g <g. the unpolarized state |Q,| =0, and the BCS-like su-
perconducting gap

A,=A=1"27nE_e ¢ ', (16)

where s-wave symmetry was assumed and E,,~O(u) is
some cutoff energy (since on physical grounds only the
states not too far from the Fermi surface can contribute).
Note that because in the low-density limit 'y, couples
only the opposite valleys of the Fermi sea, one is free to
choose the phase of A, in the two orthogonal directions.
Hence the result of Eq. (16) also holds for d-wave sym-
metry of the gap A, ,=—A,_,=A. (The degeneracy
of s and d channels should be lifted in the next order in n
where the coupling between valleys rotated by 7 /2, in the
Brillouin zone appears.) The transition to the polarized
state occurs for g =g,

g.=1+2(mn) 'E_ exp(—2g, ") .
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For g > g, one finds

2
1 4E;, e~4g—1 (17)
g—1
and
_, 7g A?
=, &y 1——2 |, (18)
< s (mn)*(g —1)

As shown in Fig. 2, there is a discontinuity of d A /dg at
g =g.. The chemical potential for g >g_. is given by
pu=mn(l—1g). Note that the chemical potential be-
comes negative for g > 2, which signals an instability to-
wards phase separation of holes. The latter, however, is
unlikely because of the long-range Coulomb interactions;
instead we expect a transition from the state with spiral
order (at 7'=0) to a disordered state.

It is straightforward to redo the calculation for the
case of finite temperature; however, it is evident that the
transition into the “spiral” state (Q+0) occurs at
Tg~1|Q,|~nm ™!, while the transition to the supercon-
ductor occurs at Tgc ~m ~!A; hence Fig. 2 is also a cari-
cature of the g, T phase diagram. We emphasize that the
relevant energy scale for both transitions is just the Fermi
energy w~nm ! (i.e., nJ in the t/J>>1 limit). Our
crude analysis, however, did not include effects due to the
finiteness of the AF correlation length &, which decreases
as the density of vacancies increases (e.g., in Ref. 5 we ar-
gued that for the spiral state £~#n ~!). The finite correla-
tion length acts to cut off the dipolar interaction and
therefore reduces A, so that within the present mecha-
nism superconductivity would disappear for larger n
when £ !(n) becomes smaller than k. The competition
between the effect of increasing p and decreasing &,
which occurs as n increases, is clearly crucial to under-
stand. Unfortunately, the study of the disordered AF
limit is clearly beyond the simple spin-wave approach
taken up in this paper. Another unresolved issue in-

0.3

FIG. 2. The superconducting order parameter A and the
spiral order parameter Q as a function of the phenomenological
coupling constant g for the vacancy density n =0.1.

9165

volves the energy scales. If the spin-wave integration is
limited to k > &~ !~n, the corresponding energy scale is
crudely o >T~JE™ !, and therefore leaves little phase
space with energy below ep~nJ. The Fermi energy,
however, might in reality be larger than the “¢-J”° model
estimate used earlier, because of the contribution of the
direct hopping processes.

In summary, we have demonstrated that spin-wave
mediated dipolar interactions may lead to s-wave as well
as d-wave superconductivity of vacancies in a quantum
AF magnet. While the competition between the two is
resolved by the finite density effects which were not
presently considered, we note that in either case because
of the multivalley structure of the vacancy Fermi sea
there are no nodes of the gap on the Fermi surface. Our
conclusion is to be contrasted with the notion that the
repulsive interaction in the Hubbard-like model of corre-
lated electrons may lead to d-wave pairing only. The
latter is based on an analysis!>!* which considers the in-
teraction via AF amplitude fluctuations of the paramag-
netic state which are diffusive as opposed to the propaga-
ting collective modes of the ordered AF state which were
studied here. The idea of this paper is closer in spirit to
that of Schrieffer, Wen, and Zhang,'!> who also consider
the AF-ordered state. The crucial difference, however, is
that we find the vacancies to interact through the long-
ranged transverse spin waves rather than short-range am-
plitude modes as in the “spin-bag” scenario of Ref. 15.
The short-range interaction (which may be thought of as
the result of vacancies sharing “strings” of overturned
spins,'® and can be studied in the Ising limit), however,
may also be important, especially since we are interested
in a two-dimensional model. Superconductivity due to
dipolar interactions was previously discussed qualitative-
ly by Aharony e al.!” in the context of the extended
Hubbard model with holes in the o O orbital band. Final-
ly, our analysis suggests that vacancy superconductivity
may coexist with AF order (provided the carriers stay
mobile) and should be enhanced if for fixed carrier densi-
ty (and €z) the AF correlation length could be increased.
On the other hand, our discussion obviously fails to ex-
plain the experimental correlation between the appear-
ance of superconductivity and the disappearance of the
long-range AF order in CuO-based materials as well as
the apparent nonexistence of superconductivity in doped
AF systems of higher spin. Clearly, a better understand-
ing of the disordered state of the doped AF is needed.
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