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Spin-correlation functions of the S= 1 Heisenberg-Ising chain
by the large-cluster-decomposition Monte Carlo method
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We study the spin-correlation functions of the one-dimensional S = 1 antiferromagnetic
Heisenberg-Ising model by the large-cluster-decomposition Monte Carlo method. It is found that
this model shows a second-order transition at the anisotropy parameter k, = 1.167+0.007. The ob-
tained critical exponents {ri=0.253+0.002, P=0. 126+0.007, v=0. 98+0.02) strongly suggest that
this transition belongs to the same universality class as the two-dimensional Ising model.

I. INTRODUCTION

The one-dimensional (1D) Heisenberg-Ising model

H = g (S;S+, +SfSf+)+AS S +) )

has attracted much attention, both theoretical and exper-
imental. In the case of S=—,', many properties of the
ground state are well known. ' Between the antiferro-
magnetic (AF) (A, ) 1) and the ferromagnetic (F) phase
(I, & —1), there exists an XY phase, characterized by a
gapless ground state' and a power-law decay of the spin-
correlation functions. Approaching from the AF region
to the isotropic point (A, = 1), this model shows essential
singularity, the energy gap and the staggered magnetiza-
tion vanish as

b, -exp[ —C(A, —1) 'i ] . (1.2)

Haldane took the continuum limit of the XXZ model,
and found that this model can be mapped onto the O(3)
nonlinear cr model in 1+1 dimensions. From this analo-
gy he argued that, in the case of the integer spin, this
model shows different behavior from the S =

—,
' case. The

gapless XF phase for A, & A, , (0 & k, & 1) and the ordered
AF phase for A, ) A, z (1 & A,2) are still present, but a new
phase appears for A, , &A, &A,2. This novel phase has an
energy gap and its correlation function decays exponen-
tially. For the half-integer case, there appears an addi-
tional topological term to the nonlinear o. model, and its
phase diagram is similar to the S =

—,
' case.

Much work has been done to examine this conjecture,
using numerical diagonalization and the Monte Carlo
method. ' '" Botet and Jullien carried out an exact di-
agonalization of finite systems. Their analysis by the
finite-size-scaling technique supports Haldane s predic-
tion. But this result is criticized by Bonner and Muller,
and independently by Solyom and Ziman. Bonner and
Miiller applied the finite-size-scaling technique to the
S =—,

' case, and they concluded that a system size up to
N=30 might be required to find the true asymptotic
finite-size behavior. The existence of the energy gap was
confirmed by a Monte Carlo simulation of Nightingale
and Blote. ' They calculated the lowest energies of

II. METHOD

We write the antiferromagnetic Heisenberg Hamiltoni-
an as follows:

N —1

H= gh;,
h; =S;"S;+)+S~S,~+)+A.S S +), (2.1)

SN —SO

Using the large-cluster decomposition, ' ' which is a
variant of the pair-decomposition Monte Carlo method, '

we get the following equation for the partition function
Z:

Z=Tr(V, V2)

V, = g exp( —rH„),
k =odd

V~ = g exp( rHk ), —
k =even

p —1

hpk+ Jj=0
r =PIL

(2.2)

g; S =0 and g; S =1 subspace, and they concluded
that the energy gap is 0.41J in the limit of X~~.
Takahashi calculated the elementary excitation using the
projector Monte Carlo method. ' He found that the
spectra for S =

—,
' and S =1 are completely different. The

former has the shape c
~
sink ~, while the latter has the

shape c (sin k +g )' . In a previous paper' we carried
out a Monte Carlo simulation of this system, and found
that the correlation function decays as

~l~
'~ exp( —I/g), 1//=0. 160,

which is consistent with Haldane's conjecture.
In this paper, we investigate the correlation function of

this model by the large-cluster-decomposition Monte
Carlo method. ' ' It was found that the transition
point between the AF and singlet phase is located at
X2=1.167+0.007, and the critical exponents are very
close to those of the two-dimensional (2D) Ising model.
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where p is a cluster size (see Fig. 1). A Monte Carlo state
is represented by a set of N X2I. classical spins
S j(i =0, . . . , N —1, j =0, . . . , 2L —1). The Boltzman
weight is given by

pp/VJYDg
ITp ~y~i

WEYEEA:: WX/XX/i

8'( IS I ) = & cik, i l exp( ™k) l(zk, &+) ~

k +j =even

!
[~Z ~Z ~Z

k j ~ = jspk j & Spk +),j & ' ' ' & Sp( k +1),j ~

(2.3)

In a Monte Carlo trial, we employ the two types of up-
dating processes, the inner block process and corner pro-
cess. These processes must satisfy local spin conserva-
tion,

rNXPPi
'& fig

p p

g Sp„+,j= g Sp„+;j+, (k+j =even),
i=0

(2.4) FIG. 2. (a) The inner block process. (b) The corner process.
The encircled spins are Aipped.

These processes are illustrated in Fig. 2. In the inner
block process, we choose the new states IS j I which
satisfy

p —1

Spk+i j g Spk+i ji=1 i=1

pk+;,j+(= pk+; j (i =1, . . . ,P —1),
ls,",

l
~s,

SpkjSpkj&Sp(k+))jSp(k+))j(k+j =odd)

and we accept one of the states using the heat-bath
method. Similarly, in the left-corner process, we choose
new states IS '

J which satisfy

Sk.—Sk +I,
Spk j+.1 =Spk j+1+
~PZ ~PZ
~pk + 1,j ~pk + 1,j+ 1 ~pk + 1,j
ls;"~ l S (k +j =odd, m =integer)

(2.7)

and the following identity:

Sp„+,+, =Sp„+,, +2(k+j =even, i =1, . . . ,p —1) .

(2.5)

=(2NL)-'y &S,',S,'+) j) . (2.8)

In order to calculate the correlation function, following
Takahashi, ' we use the structure factor S(q)

2L —1

s(q)—= ye"'p(i)=(2L)-' y & ls;jl'),

Sz N
—1/2 ~ itt)'mSz

m, j
j=0

(2.9)

and we accept one of the states using the heat-bath
method. The right-corner process can be done in the
same way.

In the case of the pair-decomposition Monte Carlo
method, if one reduces ~ to include sufhcient quantum
effects, the acceptance of the new states decreases, and
the longer Monte Carlo steps are needed to reach thermal
equilibrium. Using the large-cluster decomposition,
one can take account of the quantum effects for fairly
large ~.

The correlation function of the quantum system is
given by

p(i)= N 'y&s—;s,'-, &

.~E//P2i ! i !
~EYE/gi

'Yi

j, ri ! .' I '.YgjZgi
:~EX//i
01 23& 5678.

0 1 2

In the sequence of the Minte Carlo simulation we calcu-
late S(q) by the fast Fourier transformation. After the
Monte Carlo calculation of S(q), we calculate p(l) by the
inverse Fourier transformation. Using this method, the
speed of the calculation is faster than the conventional
method (Nlog2N versus N ).

III. RESULTS

A. Critical exyonents

FIG. 1. Graphical representation of the p-spin cluster
decomposition in the case of p =4. The equivalent classical lat-
tice is represented by a checkerboard-like lattice; s denotes sites
on the original 1D lattice, k is a label of the spin cluster p, and j
is a label along the Trotter direction. The shaded rectangles
denote where 2(p + 1) local spins interact. The two spins on the
sites connected by the dashed lines are equal.

We have dealt with the cases N=64, ~=0.5, and
P=32, which can be regarded, practically, as zero tem-
perature. And we set the cluster size p =4. The ratio of
the inner block and the corner processes is chosen as 4:1.
After the 2X10 Monte Carlo steps thermalization, we
did eight runs with 10 Monte Carlo steps. We investi-
gate only g+:o'S =0 subspace, because we are mainly
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M,'= lim ~(Sy;&~ .
$~ oo

(3.1)

We analyze the staggered magnetization near the critical
point in the form

interested in the ground state. We do not employ the glo-
bal process to change the winding number because sys-
tem size is large enough that the contribution from this
process is negligibly small.

We calculate the longitudinal correlation function
p(l) = (SP'I'). In Fig. 3 we show the log-log plot of the
spin-correlation functions at various anisotropy. Above
A, ~ 1.20, this model seems to have the long-range order.
The staggered magnetization M, is evaluated according
to
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and we obtain (see Fig. 4)

C = 1.01+0.02,

P =0.126+0.007,

k, =1.172+0.004 .

(3.2)

(3.3) g =cfog —x, /-,
~ =c'[x—x, &'. (3.5)

FIG. 4. Staggered magnetization M, and correlation length g
as a function of A, . ( o ) M„' (+ ) g.

~p(1)~ = AK (l/g), (3.4)

where g denotes the the correlation length. As will be
seen later, this assumption is asymptotically correct [see
Eq. (3.12)]. The correlation length g and the amplitude
A of Eq. (3.4) are assumed to behave as

As we have found in a previous paper, ' the correla-
tion function of the isotropic Heisenberg model is well
described by the 2D Orstein-Zernike form, that is, the
modified Bessel function. In the singlet phase (A, ~ l. 15),
we approximate the longitudinal correlation function in
the form

We estimate g and A from the data 1=6—16 using Eq.
(3.4), and we obtain (see Fig. 4)

C = 1.05+0.03,
C' =0.31+0.02 =m

A,, = 1.162+0.004,

v=0. 98+0.02,
g'=0. 25+0.03 .

(3.6)

From Eqs. (3.3) and (3.6), we can conclude A, =1.167
+0.007.

The correlation function at the critical point
behaves like

I I I I \ I Ip(I)I = &[l] " . (3.7)
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We obtain from the data l =6—10 (see Fig. 5)

A =0.554+0.002 q=0. 253+0.002 . (3.&)

B. Sealing properties

From the results of previous section we can assume
that the correlation function p(l) has the following scal-
ing property:

These values of the critical exponents are very close to.
those of the classical 2D Ising model (g= 4, v= 1, P= —,

' ),
when we regard the variable A, —A,, as T —T, .

f+(~X—X, ~l), (3.9)

FIG. 3. Spin-correlation functions ( —1)'p(l) are plotted as a
function of I in a log-log plot. Anisotropy parameters are taken
as X=1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, and 1.35. Correla-
tion functions for the k 1.15 behavior are qualitatively
different from k ~ 1.20. The latter seems to have the long-range
order.

where f+ (x) is the scaling function. The + (
—) refers to

A, (A,, (A, ) A,, ). In Fig. 6 we plot ~A,
—A,, ~

'
~p(l)~ as a

function of
~
A,

—
A,, ~/. Except for the data near the critical

point,
~
k —A,, ~

'
~
p(1) ~

shows the scaling behavior beau-
tifully.

As is well known, ' the correlation function of the 2D
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FIG. 5. Spin-correlation function ~p(1}~ at the critical point
A,,=1.167 is plotted as a function of /. {a) the log-log plot. (b)
l '

I p( I}I.

Ising model is asymptotically described by

FIQ. 6. (A,
—A,, ~

'/ [p(l}) as a function of [A,
—

A,, ]l. Here the
data I =4-16 are shown. (a) A, ~A., : (0) A, =1.00, (L) A, =1.05,
{0) A, =1.10, {X) A, =1.15. {b) A. ~A,,: (o) A, =1.20, (0)
A, =1.25, {H) A, =1.30, (X) A=1.35.

& ~o,oust, x & =& '"F+(t»
where

t=~lp —p, l«,
8 =(M +N )'

(3.10)

(3.11)
yE =0.577215 664901 53

is Euler's constant, and
and E is the coupling constant of the 2D Ising model.

As t~ao, A =1.282427 129 10062 .

and

F+(t)=2' (2t)' 7l 'Ko(t)+O(e '),

F (t)=2'/8(2t)'/4(1+m. 'I t'[K f(t) —K', (t)]

(3.12) is Glaisher's constant.
If we assume the form of the scaling function as Eq.

(3.10), it is found that the correlation function ~p(l)~ is
well described by—tK, (t}K,(t)

+ ,'K (t)J )+O(e '—) . '

(3.13}

~ —i/4F+(t)2 —1/82 —i/4X (1.02+0.03),
(3.15}

t = ~Z
—X, ~i X(1.OO+O. O2) .

Conversely, as t —+0,

(t) —21/8e 1/421/2g —3[ ly I tII + I t2+ ] t3II
2 16 32

+ ' t4( n2+—n+ —')]-
+0 (t'Q4),

Q=ln(t/8)+yE,
(3.14)

In Fig. 7 we plot ~p(l)~/f (l) at various anisotropies. Ex-
cept for the data near the critical point where the correla-
tion length g diverges, the correlation function ~p(l)~
agrees with f (1) within a few percent. This fact also sup-
ports that this transition belongs to the same universality
class as the 2D Ising model.
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k, = 1.167+0.007,
v=0. 98+0.02,

P =0.126+0.007,

g=0.253+0.002 .

(4.1)

These exponents strongly suggest that this transition be-
longs to the same universality class as the 2D Ising mod-
el. This critical behavior is drastically different from the
S =

—,
' case, which shows essentially singularity at the

Heisenberg point [cf. Eq. (1.2)]. Our result is consistent
with Haldane s prediction that this transition is the On-
sager P -field-theory. type.

We also find that the correlation function is very well
described by the same scaling function as the 2D Ising
model, except for the data near the critical point. Since„
in our simulation, both system size and p are finite
(X =64, P=32), physical properties in the region where
the correlation length diverges are not well described.

Botet and Jullien analyzed this system by the finite-
size scaling technique. They have found that

I I I I I I I I I i I I I I I I I I I I I I I I I0 9
0, 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0

A,,=1.18+0.01,
v= 1.3+0.2,
P= 0. 17+0.05,
g=0.23+0.03 .

(4.2)

iA —A, il

FICJ. 7. ~p(l)~/f(l). Function f(l) is defined by Eq. (3.15).
Here the data I =4-16 are shown. The meanings of the sym-
bols are same as Fig. 6. (a) A, (A, (b) A, ~ k, .

Their results are different from ours. We think that this
difference comes from the fact that they treated rather
small systems (system size up to N = 12) to reach the true
asymptotic finite-size behavior.

IV. DISCUSSION

We find that the 1D S=1 Heisenberg-Ising model
shows a second-order transition. The obtained critical
point and critical exponents are
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